
Technical Slide

Module 6: Dynamic Programming ||

1 Lesson 1: Knapsack
Video 1.1: Knapsack with Repetitions
Video 1.2: Knapsack without Repetitions
Video 1.3: Final Remarks

2 Lesson 2: Chain Matrix Multiplication
Video 2.1: Chain Matrix Multiplication
Video 2.2: Summary

Knapsack Problem

Goal
Maximize
value ($) while
limiting total
weight (kg)

Applications

Classical problem in combinatorial optimization
with applications in resource allocation,
cryptography, planning

Weights and values may mean various resources
(to be maximized or limited):

Select a set of TV commercials (each commercial
has duration and cost) so that the total revenue is
maximal while the total length does not exceed the
length of the available time slot
Purchase computers for a data center to achieve
the maximal performance under limited budget

Applications

Classical problem in combinatorial optimization
with applications in resource allocation,
cryptography, planning
Weights and values may mean various resources
(to be maximized or limited):

Select a set of TV commercials (each commercial
has duration and cost) so that the total revenue is
maximal while the total length does not exceed the
length of the available time slot
Purchase computers for a data center to achieve
the maximal performance under limited budget

Applications

Classical problem in combinatorial optimization
with applications in resource allocation,
cryptography, planning
Weights and values may mean various resources
(to be maximized or limited):

Select a set of TV commercials (each commercial
has duration and cost) so that the total revenue is
maximal while the total length does not exceed the
length of the available time slot

Purchase computers for a data center to achieve
the maximal performance under limited budget

Applications

Classical problem in combinatorial optimization
with applications in resource allocation,
cryptography, planning
Weights and values may mean various resources
(to be maximized or limited):

Select a set of TV commercials (each commercial
has duration and cost) so that the total revenue is
maximal while the total length does not exceed the
length of the available time slot
Purchase computers for a data center to achieve
the maximal performance under limited budget

Problem Variations

knapsack

Problem Variations

knapsack

fractional
knapsack

discrete
knapsack

Problem Variations

knapsack

fractional
knapsack

discrete
knapsack

can take fractions
of items

each item is either taken
or not

Problem Variations

knapsack

fractional
knapsack

discrete
knapsack

with
repetitions

without
repetitions

unlimited
quantities

one of each
item

Problem Variations

knapsack

fractional
knapsack

discrete
knapsack

with
repetitions

without
repetitions

unlimited
quantities

one of each
item

greedy algorithm

Problem Variations

knapsack

fractional
knapsack

discrete
knapsack

with
repetitions

without
repetitions

unlimited
quantities

one of each
item

greedy algorithm

greedy does not work for
discrete knapsack! will
design a dynamic program-
ming solution

Example

6
$30

3
$14

4
$16

2
$9

10
knapsack

6
$30

4
$16

w/o repeats total: $46

6
$30

2
$9

2
$9

w repeats total: $48

fractional 6
$30

3 1
$4.5$14

total: $48.5

Example

6
$30

3
$14

4
$16

2
$9

6
$30

4
$16

w/o repeats total: $46

6
$30

2
$9

2
$9

w repeats total: $48

fractional 6
$30

3 1
$4.5$14

total: $48.5

Example

6
$30

3
$14

4
$16

2
$9

6
$30

4
$16

w/o repeats total: $46

6
$30

2
$9

2
$9

w repeats total: $48

fractional 6
$30

3 1
$4.5$14

total: $48.5

Example

6
$30

3
$14

4
$16

2
$9

6
$30

4
$16

w/o repeats total: $46

6
$30

2
$9

2
$9

w repeats total: $48

fractional 6
$30

3 1
$4.5$14

total: $48.5

Without repetitions:
one of each item

With repetitions:
unlimited quantities

Knapsack with repetitions problem

Input: Weights w0, . . . ,wn−1 and values
v0, . . . , vn−1 of n items; total weight W
(vi ’s, wi ’s, and W are non-negative
integers).

Output: The maximum value of items whose
weight does not exceed W . Each item
can be used any number of times.

Analyzing an Optimal Solution

Consider an optimal solution and an item in it:
Wwi

If we take this item out then we get an optimal
solution for a knapsack of total weight W − wi .

Analyzing an Optimal Solution

Consider an optimal solution and an item in it:
Wwi

If we take this item out then we get an optimal
solution for a knapsack of total weight W − wi .

Subproblems

Let value(u) be the maximum value of knapsack
of weight u

value(u) = max
i : wi≤w

{value(u − wi) + vi}

Base case: value(0) = 0
This recurrence relation is transformed into
a recursive algorithm in a straightforward way

Subproblems

Let value(u) be the maximum value of knapsack
of weight u

value(u) = max
i : wi≤w

{value(u − wi) + vi}

Base case: value(0) = 0
This recurrence relation is transformed into
a recursive algorithm in a straightforward way

Subproblems

Let value(u) be the maximum value of knapsack
of weight u

value(u) = max
i : wi≤w

{value(u − wi) + vi}

Base case: value(0) = 0

This recurrence relation is transformed into
a recursive algorithm in a straightforward way

Subproblems

Let value(u) be the maximum value of knapsack
of weight u

value(u) = max
i : wi≤w

{value(u − wi) + vi}

Base case: value(0) = 0
This recurrence relation is transformed into
a recursive algorithm in a straightforward way

Recursive Algorithm
1 T = dict ()
2
3 def knapsack (w, v , u) :
4 i f u not in T:
5 T[u] = 0
6
7 for i in range (len (w)) :
8 i f w[i] <= u :
9 T[u] = max(T[u] ,

10 knapsack (w, v , u − w[i]) + v [i])
11
12 return T[u]
13
14
15 pr int (knapsack (w=[6 , 3 , 4 , 2] ,
16 v=[30 , 14 , 16 , 9] , u=10))

Recursive into Iterative

As usual, one can transform a recursive
algorithm into an iterative one

For this, we gradually fill in an array T :
T [u] = value(u)

Recursive into Iterative

As usual, one can transform a recursive
algorithm into an iterative one
For this, we gradually fill in an array T :
T [u] = value(u)

Recursive Algorithm

1 def knapsack (W, w, v) :
2 T = [0] * (W + 1)
3
4 for u in range (1 , W + 1) :
5 for i in range (len (w)) :
6 i f w[i] <= u :
7 T[u] = max(T[u] , T[u − w[i]] + v [i])
8
9 return T[W]

10
11
12 pr int (knapsack (W=10, w=[6 , 3 , 4 , 2] ,
13 v=[30 , 14 , 16 , 9]))

Example: W = 10

6
$30

3
$14

4
$16

2
$9

0 1 2 3 4 5 6 7 8 9 10

0 0 9 14 18 23 30 32 39 44

Example: W = 10

6
$30

3
$14

4
$16

2
$9

0 1 2 3 4 5 6 7 8 9 10

0 0 9 14 18 23 30 32 39 44

+30 +14 +9+16

Example: W = 10

6
$30

3
$14

4
$16

2
$9

0 1 2 3 4 5 6 7 8 9 10

0 0 9 14 18 23 30 32 39 44 48

+30 +14 +9+16

Subproblems Revisited

Another way of arriving at subproblems:
optimizing brute force solution

Populate a list of used items one by one

Subproblems Revisited

Another way of arriving at subproblems:
optimizing brute force solution
Populate a list of used items one by one

Brute Force: Knapsack with Repetitions

1 def knapsack (W, w, v , i t ems) :
2 we ight = sum(w[i] for i in i t ems)
3 v a l u e = sum(v [i] for i in i t ems)
4
5 for i in range (len (w)) :
6 i f we ight + w[i] <= W:
7 va l u e = max(va lue ,
8 knapsack (W, w, v , i t ems + [i]))
9

10 return v a l u e
11
12 pr int (knapsack (W=10, w=[6 , 3 , 4 , 2] ,
13 v=[30 , 14 , 16 , 9] , i t ems = []))

Subproblems

It remains to notice that the only important
thing for extending the current set of items is
the weight of this set

One then replaces items by their weight in the
list of parameters

Subproblems

It remains to notice that the only important
thing for extending the current set of items is
the weight of this set
One then replaces items by their weight in the
list of parameters

Technical Slide

Module 6: Dynamic Programming ||

1 Lesson 1: Knapsack
Video 1.1: Knapsack with Repetitions
Video 1.2: Knapsack without Repetitions
Video 1.3: Final Remarks

2 Lesson 2: Chain Matrix Multiplication
Video 2.1: Chain Matrix Multiplication
Video 2.2: Summary

Without repetitions:
one of each item

With repetitions:
unlimited quantities

Knapsack without repetitions problem

Input: Weights w0, . . . ,wn−1 and values
v0, . . . , vn−1 of n items; total weight W
(vi ’s, wi ’s, and W are non-negative
integers).

Output: The maximum value of items whose
weight does not exceed W . Each item
can be used at most once.

Same Subproblems?

Wwn−1

Same Subproblems?

Wwn−1

W − wn−1

Same Subproblems?

Wwn−1

W − wn−1wn−1

Same Subproblems?

Wwn−1

W − wn−1wn−1

Subproblems

If the last item is taken into an optimal solution:
Wwn−1

then what is left is an optimal solution for a
knapsack of total weight W − wn−1 using items
0, 1, . . . , n − 2.

If the last item is not used, then the whole
knapsack must be filled in optimally with items
0, 1, . . . , n − 2.

Subproblems

If the last item is taken into an optimal solution:
Wwn−1

then what is left is an optimal solution for a
knapsack of total weight W − wn−1 using items
0, 1, . . . , n − 2.
If the last item is not used, then the whole
knapsack must be filled in optimally with items
0, 1, . . . , n − 2.

Subproblems

For 0 ≤ u ≤ W and 0 ≤ i ≤ n, value(u, i) is
the maximum value achievable using a knapsack
of weight u and the first i items.

Base case: value(u, 0) = 0, value(0, i) = 0
For i > 0, the item i − 1 is either used or not:
value(u, i) is equal to

max{value(u−wi−1, i−1)+vi−1, value(u, i−1)}

Subproblems

For 0 ≤ u ≤ W and 0 ≤ i ≤ n, value(u, i) is
the maximum value achievable using a knapsack
of weight u and the first i items.
Base case: value(u, 0) = 0, value(0, i) = 0

For i > 0, the item i − 1 is either used or not:
value(u, i) is equal to

max{value(u−wi−1, i−1)+vi−1, value(u, i−1)}

Subproblems

For 0 ≤ u ≤ W and 0 ≤ i ≤ n, value(u, i) is
the maximum value achievable using a knapsack
of weight u and the first i items.
Base case: value(u, 0) = 0, value(0, i) = 0
For i > 0, the item i − 1 is either used or not:
value(u, i) is equal to

max{value(u−wi−1, i−1)+vi−1, value(u, i−1)}

Recursive Algorithm
1 T = d i c t ()
2
3 def knapsack (w, v , u , i) :
4 i f (u , i) not in T:
5 i f i == 0 :
6 T[u , i] = 0
7 e l s e :
8 T[u , i] = knapsack (w, v , u , i − 1)
9 i f u >= w[i − 1] :

10 T[u , i] = max(T[u , i] ,
11 knapsack (w, v , u − w[i − 1] , i − 1) + v [i − 1])
12
13 return T[u , i]
14
15
16 p r i n t (knapsack (w=[6 , 3 , 4 , 2] ,
17 v=[30 , 14 , 16 , 9] , u=10, i =4))

Iterative Algorithm
1 def knapsack (W, w, v) :
2 T = [[None] * (l en (w) + 1) f o r _ i n range (W + 1)]
3
4 f o r u i n range (W + 1) :
5 T[u] [0] = 0
6
7 f o r i i n range (1 , l en (w) + 1) :
8 f o r u i n range (W + 1) :
9 T[u] [i] = T[u] [i − 1]

10 i f u >= w[i − 1] :
11 T[u] [i] = max(T[u] [i] ,
12 T[u − w[i − 1]] [i − 1] + v [i − 1])
13
14 return T[W] [l en (w)]
15
16
17 p r i n t (knapsack (W=10, w=[6 , 3 , 4 , 2] ,
18 v=[30 , 14 , 16 , 9]))

Analysis

Running time: O(nW)

Space: O(nW)

Space can be improved to O(W) in the iterative
version: instead of storing the whole table, store
the current column and the previous one

Analysis

Running time: O(nW)

Space: O(nW)

Space can be improved to O(W) in the iterative
version: instead of storing the whole table, store
the current column and the previous one

Analysis

Running time: O(nW)

Space: O(nW)

Space can be improved to O(W) in the iterative
version: instead of storing the whole table, store
the current column and the previous one

Reconstructing a Solution

As it usually happens, an optimal solution can
be unwound by analyzing the computed
solutions to subproblems

Start with u = W , i = n

If value(u, i) = value(u, i − 1), then item i − 1
is not taken. Update i to i − 1
Otherwise
value(u, i) = value(u − wi−1, i − 1) + vi−1 and
the item i − i is taken. Update i to i − 1 and u
to u − wi−1

Reconstructing a Solution

As it usually happens, an optimal solution can
be unwound by analyzing the computed
solutions to subproblems
Start with u = W , i = n

If value(u, i) = value(u, i − 1), then item i − 1
is not taken. Update i to i − 1
Otherwise
value(u, i) = value(u − wi−1, i − 1) + vi−1 and
the item i − i is taken. Update i to i − 1 and u
to u − wi−1

Reconstructing a Solution

As it usually happens, an optimal solution can
be unwound by analyzing the computed
solutions to subproblems
Start with u = W , i = n

If value(u, i) = value(u, i − 1), then item i − 1
is not taken. Update i to i − 1

Otherwise
value(u, i) = value(u − wi−1, i − 1) + vi−1 and
the item i − i is taken. Update i to i − 1 and u
to u − wi−1

Reconstructing a Solution

As it usually happens, an optimal solution can
be unwound by analyzing the computed
solutions to subproblems
Start with u = W , i = n

If value(u, i) = value(u, i − 1), then item i − 1
is not taken. Update i to i − 1
Otherwise
value(u, i) = value(u − wi−1, i − 1) + vi−1 and
the item i − i is taken. Update i to i − 1 and u
to u − wi−1

Subproblems Revisited

How to implement a brute force solution for the
knapsack without repetitions problem?

Process items one by one. For each item, either
take into a bag or not

Subproblems Revisited

How to implement a brute force solution for the
knapsack without repetitions problem?
Process items one by one. For each item, either
take into a bag or not

1 def knapsack (W, w, v , i tems , l a s t) :
2 we ight = sum(w[i] f o r i i n i t ems)
3
4 i f l a s t == l en (w) − 1 :
5 return sum(v [i] f o r i i n i t ems)
6
7 v a l u e = knapsack (W, w, v , i tems , l a s t + 1)
8 i f we ight + w[l a s t + 1] <= W:
9 i t ems . append (l a s t + 1)

10 va l u e = max(va lue ,
11 knapsack (W, w, v , i tems , l a s t + 1))
12 i t ems . pop ()
13
14 return v a l u e
15
16 p r i n t (knapsack (W=10, w=[6 , 3 , 4 , 2] ,
17 v=[30 , 14 , 16 , 9] ,
18 i t ems =[] , l a s t =−1))

Technical Slide

Module 6: Dynamic Programming ||

1 Lesson 1: Knapsack
Video 1.1: Knapsack with Repetitions
Video 1.2: Knapsack without Repetitions
Video 1.3: Final Remarks

2 Lesson 2: Chain Matrix Multiplication
Video 2.1: Chain Matrix Multiplication
Video 2.2: Summary

Recursive vs Iterative

If all subproblems must be solved then an
iterative algorithm is usually faster since it has
no recursion overhead

There are cases however when one does not
need to solve all subproblems and the knapsack
problem is a good example: assume that W and
all wi ’s are multiples of 100; then value(w) is
not needed if w is not divisible by 100

Recursive vs Iterative

If all subproblems must be solved then an
iterative algorithm is usually faster since it has
no recursion overhead
There are cases however when one does not
need to solve all subproblems and the knapsack
problem is a good example: assume that W and
all wi ’s are multiples of 100; then value(w) is
not needed if w is not divisible by 100

Polynomial Time?
The running time O(nW) is not polynomial
since the input size is proportional to logW , but
not W

In other words, the running time is O(n2logW).
E.g., for

W = 10 345 970 345 617 824 751

(twentу digits only!) the algorithm needs
roughly 1020 basic operations
Solving the knapsack problem in truly
polynomial time is the essence of the P vs NP
problem, the most important open problem in
Computer Science (with a bounty of $1M)

Polynomial Time?
The running time O(nW) is not polynomial
since the input size is proportional to logW , but
not W
In other words, the running time is O(n2logW).

E.g., for

W = 10 345 970 345 617 824 751

(twentу digits only!) the algorithm needs
roughly 1020 basic operations
Solving the knapsack problem in truly
polynomial time is the essence of the P vs NP
problem, the most important open problem in
Computer Science (with a bounty of $1M)

Polynomial Time?
The running time O(nW) is not polynomial
since the input size is proportional to logW , but
not W
In other words, the running time is O(n2logW).
E.g., for

W = 10 345 970 345 617 824 751

(twentу digits only!) the algorithm needs
roughly 1020 basic operations

Solving the knapsack problem in truly
polynomial time is the essence of the P vs NP
problem, the most important open problem in
Computer Science (with a bounty of $1M)

Polynomial Time?
The running time O(nW) is not polynomial
since the input size is proportional to logW , but
not W
In other words, the running time is O(n2logW).
E.g., for

W = 10 345 970 345 617 824 751

(twentу digits only!) the algorithm needs
roughly 1020 basic operations
Solving the knapsack problem in truly
polynomial time is the essence of the P vs NP
problem, the most important open problem in
Computer Science (with a bounty of $1M)

Technical Slide

Module 6: Dynamic Programming ||

1 Lesson 1: Knapsack
Video 1.1: Knapsack with Repetitions
Video 1.2: Knapsack without Repetitions
Video 1.3: Final Remarks

2 Lesson 2: Chain Matrix Multiplication
Video 2.1: Chain Matrix Multiplication
Video 2.2: Summary

Chain matrix multiplication

Input: Chain of n matrices A0, . . . ,An−1 to be
multiplied.

Output: An order of multiplication minimizing the
total cost of multiplication.

Clarifications

Denote the sizes of matrices A0, . . . ,An−1 by

m0 ×m1,m1 ×m2, . . . ,mn−1 ×mn

respectively. I.e., the size of Ai is mi ×mi+1

Matrix multiplication is not commutative (in
general, A× B ̸= B × A), but it is associative:
A× (B × C) = (A× B)× C

Thus A× B × C × D can be computed, e.g., as
(A× B)× (C × D) or (A× (B × C))× D

The cost of multiplying two matrices of size
p × q and q × r is pqr

Clarifications

Denote the sizes of matrices A0, . . . ,An−1 by

m0 ×m1,m1 ×m2, . . . ,mn−1 ×mn

respectively. I.e., the size of Ai is mi ×mi+1

Matrix multiplication is not commutative (in
general, A× B ̸= B × A), but it is associative:
A× (B × C) = (A× B)× C

Thus A× B × C × D can be computed, e.g., as
(A× B)× (C × D) or (A× (B × C))× D

The cost of multiplying two matrices of size
p × q and q × r is pqr

Clarifications

Denote the sizes of matrices A0, . . . ,An−1 by

m0 ×m1,m1 ×m2, . . . ,mn−1 ×mn

respectively. I.e., the size of Ai is mi ×mi+1

Matrix multiplication is not commutative (in
general, A× B ̸= B × A), but it is associative:
A× (B × C) = (A× B)× C

Thus A× B × C × D can be computed, e.g., as
(A× B)× (C × D) or (A× (B × C))× D

The cost of multiplying two matrices of size
p × q and q × r is pqr

Clarifications

Denote the sizes of matrices A0, . . . ,An−1 by

m0 ×m1,m1 ×m2, . . . ,mn−1 ×mn

respectively. I.e., the size of Ai is mi ×mi+1

Matrix multiplication is not commutative (in
general, A× B ̸= B × A), but it is associative:
A× (B × C) = (A× B)× C

Thus A× B × C × D can be computed, e.g., as
(A× B)× (C × D) or (A× (B × C))× D

The cost of multiplying two matrices of size
p × q and q × r is pqr

Example: A× ((B × C)× D)

A
50× 20

B
20× 1

C
1× 10

D
10× 100

× × ×

cost:

A
50× 20

B × C
20× 10

D
10× 100

× ×

cost: 20 · 1 · 10

A
50× 20

B × C × D
20× 100

×

cost: 20 · 1 · 10+ 20 · 10 · 100

A× B × C × D
50× 100

cost: 20 · 1 · 10+ 20 · 10 · 100+ 50 · 20 · 100 = 120 200

Example: A× ((B × C)× D)

A
50× 20

B
20× 1

C
1× 10

D
10× 100

× × ×

cost:

A
50× 20

B × C
20× 10

D
10× 100

× ×

cost: 20 · 1 · 10

A
50× 20

B × C × D
20× 100

×

cost: 20 · 1 · 10+ 20 · 10 · 100

A× B × C × D
50× 100

cost: 20 · 1 · 10+ 20 · 10 · 100+ 50 · 20 · 100 = 120 200

Example: A× ((B × C)× D)

A
50× 20

B
20× 1

C
1× 10

D
10× 100

× × ×

cost:

A
50× 20

B × C
20× 10

D
10× 100

× ×

cost: 20 · 1 · 10

A
50× 20

B × C × D
20× 100

×

cost: 20 · 1 · 10+ 20 · 10 · 100

A× B × C × D
50× 100

cost: 20 · 1 · 10+ 20 · 10 · 100+ 50 · 20 · 100 = 120 200

Example: A× ((B × C)× D)

A
50× 20

B
20× 1

C
1× 10

D
10× 100

× × ×

cost:

A
50× 20

B × C
20× 10

D
10× 100

× ×

cost: 20 · 1 · 10

A
50× 20

B × C × D
20× 100

×

cost: 20 · 1 · 10+ 20 · 10 · 100

A× B × C × D
50× 100

cost: 20 · 1 · 10+ 20 · 10 · 100+ 50 · 20 · 100 = 120 200

Example: (A× B)× (C × D)

A
50× 20

B
20× 1

C
1× 10

D
10× 100

× × ×

cost:

A× B
50× 1

C
1× 10

D
10× 100

× ×

cost: 50 · 20 · 1

A× B
50× 1

C × D
1× 100

×

cost: 50 · 20 · 1+ 1 · 10 · 100

A× B × C × D
50× 100

cost: 50 · 20 · 1+ 1 · 10 · 100+ 50 · 1 · 100 = 7 000

Example: (A× B)× (C × D)

A
50× 20

B
20× 1

C
1× 10

D
10× 100

× × ×

cost:

A× B
50× 1

C
1× 10

D
10× 100

× ×

cost: 50 · 20 · 1

A× B
50× 1

C × D
1× 100

×

cost: 50 · 20 · 1+ 1 · 10 · 100

A× B × C × D
50× 100

cost: 50 · 20 · 1+ 1 · 10 · 100+ 50 · 1 · 100 = 7 000

Example: (A× B)× (C × D)

A
50× 20

B
20× 1

C
1× 10

D
10× 100

× × ×

cost:

A× B
50× 1

C
1× 10

D
10× 100

× ×

cost: 50 · 20 · 1

A× B
50× 1

C × D
1× 100

×

cost: 50 · 20 · 1+ 1 · 10 · 100

A× B × C × D
50× 100

cost: 50 · 20 · 1+ 1 · 10 · 100+ 50 · 1 · 100 = 7 000

Example: (A× B)× (C × D)

A
50× 20

B
20× 1

C
1× 10

D
10× 100

× × ×

cost:

A× B
50× 1

C
1× 10

D
10× 100

× ×

cost: 50 · 20 · 1

A× B
50× 1

C × D
1× 100

×

cost: 50 · 20 · 1+ 1 · 10 · 100

A× B × C × D
50× 100

cost: 50 · 20 · 1+ 1 · 10 · 100+ 50 · 1 · 100 = 7 000

Order as a Full Binary Tree

D

C

A B

((A× B)× C)× D

A

D

B C

A× ((B × C)× D)

D

A

B C

(A× (B × C))× D

Analyzing an Optimal Tree

A0, . . . ,Ai−1
Ai , . . . ,Aj−1

Aj , . . . ,Ak−1
Ak , . . . ,An−1

each subtree computes
the product of Ap, . . . ,Aq for some p ≤ q

Subproblems

Let M(i , j) be the minimum cost of computing
Ai × · · · × Aj−1

Then

M(i , j) = min
i<k<j

{M(i , k)+M(k , j)+mi ·mk ·mj}

Base case: M(i , i + 1) = 0

Subproblems

Let M(i , j) be the minimum cost of computing
Ai × · · · × Aj−1

Then

M(i , j) = min
i<k<j

{M(i , k)+M(k , j)+mi ·mk ·mj}

Base case: M(i , i + 1) = 0

Subproblems

Let M(i , j) be the minimum cost of computing
Ai × · · · × Aj−1

Then

M(i , j) = min
i<k<j

{M(i , k)+M(k , j)+mi ·mk ·mj}

Base case: M(i , i + 1) = 0

Recursive Algorithm
1 T = d i c t ()
2
3 def matr ix_mult (m, i , j) :
4 i f (i , j) not in T:
5 i f j == i + 1 :
6 T[i , j] = 0
7 e l s e :
8 T[i , j] = f l o a t (" i n f ")
9 f o r k i n range (i + 1 , j) :

10 T[i , j] = min (T[i , j] ,
11 matr ix_mult (m, i , k) +
12 matr ix_mult (m, k , j) +
13 m[i] * m[j] * m[k])
14
15 return T[i , j]
16
17 p r i n t (matr ix_mult (m=[50 , 20 , 1 , 10 , 100] , i =0, j =4))

Converting to an Iterative Algorithm

We want to solve subproblems going from
smaller size subproblems to larger size ones
The size is the number of matrices needed to be
multiplied: j − i

A possible order:

Iterative Algorithm
1 def matr ix_mult (m) :
2 n = l en (m) − 1
3 T = [[f l o a t (" i n f ")] * (n + 1) f o r _ i n range (n + 1)]
4
5 f o r i i n range (n) :
6 T[i] [i + 1] = 0
7
8 f o r s i n range (2 , n + 1) :
9 f o r i i n range (n − s + 1) :

10 j = i + s
11 f o r k i n range (i + 1 , j) :
12 T[i] [j] = min (T[i] [j] ,
13 T[i] [k] + T[k] [j] +
14 m[i] * m[j] * m[k])
15
16 return T [0] [n]
17
18 p r i n t (matr ix_mult (m=[50 , 20 , 1 , 10 , 1 0 0]))

Final Remarks

Running time: O(n3)

To unwind a solution, go from the cell (0, n) to
a cell (i , i + 1)
Brute force search: recursively enumerate all
possible trees

Final Remarks

Running time: O(n3)

To unwind a solution, go from the cell (0, n) to
a cell (i , i + 1)

Brute force search: recursively enumerate all
possible trees

Final Remarks

Running time: O(n3)

To unwind a solution, go from the cell (0, n) to
a cell (i , i + 1)
Brute force search: recursively enumerate all
possible trees

Technical Slide

Module 6: Dynamic Programming ||

1 Lesson 1: Knapsack
Video 1.1: Knapsack with Repetitions
Video 1.2: Knapsack without Repetitions
Video 1.3: Final Remarks

2 Lesson 2: Chain Matrix Multiplication
Video 2.1: Chain Matrix Multiplication
Video 2.2: Summary

Step 1 (the most important step)

Define subproblems and write down a
recurrence relation (with a base case)

either by analyzing the structure
of an optimal solution, or
by optimizing a brute force
solution

Subproblems: Review

1 Longest increasing subsequence: LIS(i) is the
length of longest common subsequence ending
at element A[i]

2 Edit distance: ED(i , j) is the edit distance
between prefixes of length i and j

3 Knapsack: K (w) is the optimal value of
a knapsack of total weight w

4 Chain matrix multiplication M(i , j) is the
optimal cost of multiplying matrices through i
to j − 1

Step 2

Convert a recurrence relation into a
recursive algorithm:

store a solution to each
subproblem in a table
before solving a subproblem check
whether its solution is already
stored in the table

Step 3

Convert a recursive algorithm into an
iterative algorithm:

initialize the table
go from smaller subproblems to
larger ones
specify an order of subproblems

Step 4

Prove an upper bound on the running
time. Usually the product of the
number of subproblems and the time
needed to solve a subproblem is a
reasonable estimate.

Step 5

Uncover a solution

Step 6

Exploit the regular structure of the
table to check whether space can be
saved

Recursive vs Iterative

Advantages of iterative approach:
No recursion overhead
May allow saving space by exploiting a regular
structure of the table

Advantages of recursive approach:
May be faster if not all the subproblems need to be
solved
An order on subproblems is implicit

	Lesson 1: Knapsack
	Video 1.1: Knapsack with Repetitions
	Video 1.2: Knapsack without Repetitions
	Video 1.3: Final Remarks

	Lesson 2: Chain Matrix Multiplication
	Video 2.1: Chain Matrix Multiplication
	Video 2.2: Summary

