
Technical Slide

Module 5: Dynamic Programming

1 Lesson 1: Longest Increasing Subsequence
Video 1.1: Warm-up
Video 1.2: Subproblems and Recurrence Relation
Video 1.3: Reconstructing a Solution
Video 1.4: Subproblems Revisited

2 Lesson 2: Edit Distance
Video 2.1: Algorithm
Video 2.2: Reconstructing a Solution
Video 2.3: Final Remarks

Dynamic Programming

Extremely powerful algorithmic technique with
applications in optimization, scheduling,
planning, economics, bioinformatics, etc

At contests, probably the most popular type of
problems
A solution is usually not so easy to find, but
when found, is easily implementable
Need a lot of practice!

Dynamic Programming

Extremely powerful algorithmic technique with
applications in optimization, scheduling,
planning, economics, bioinformatics, etc
At contests, probably the most popular type of
problems

A solution is usually not so easy to find, but
when found, is easily implementable
Need a lot of practice!

Dynamic Programming

Extremely powerful algorithmic technique with
applications in optimization, scheduling,
planning, economics, bioinformatics, etc
At contests, probably the most popular type of
problems
A solution is usually not so easy to find, but
when found, is easily implementable

Need a lot of practice!

Dynamic Programming

Extremely powerful algorithmic technique with
applications in optimization, scheduling,
planning, economics, bioinformatics, etc
At contests, probably the most popular type of
problems
A solution is usually not so easy to find, but
when found, is easily implementable
Need a lot of practice!

Fibonacci numbers

Fibonacci numbers

Fn =

⎧⎪⎨⎪⎩
0, n = 0 ,
1, n = 1 ,
Fn−1 + Fn−2, n > 1 .

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Computing Fibonacci Numbers

Computing Fn

Input: An integer n ≥ 0.
Output: The n-th Fibonacci number Fn.

1 def f i b (n) :
2 i f n <= 1 :
3 return n
4 return f i b (n − 1) + f i b (n − 2)

Computing Fibonacci Numbers

Computing Fn

Input: An integer n ≥ 0.
Output: The n-th Fibonacci number Fn.

1 def f i b (n) :
2 i f n <= 1 :
3 return n
4 return f i b (n − 1) + f i b (n − 2)

Recursion Tree

Fn

Fn−1

Fn−2

Fn−3 Fn−4

Fn−3

Fn−4 Fn−5

Fn−2

Fn−3

Fn−4 Fn−5

Fn−4

Fn−5 Fn−6

Fn

Fn−1

Fn−2

Fn−3 Fn−4

Fn−3

Fn−4 Fn−5

Fn−2

Fn−3

Fn−4 Fn−5

Fn−4

Fn−5 Fn−6

...

Recursion Tree

Fn

Fn−1

Fn−2

Fn−3 Fn−4

Fn−3

Fn−4 Fn−5

Fn−2

Fn−3

Fn−4 Fn−5

Fn−4

Fn−5 Fn−6

Fn

Fn−1

Fn−2

Fn−3 Fn−4

Fn−3

Fn−4 Fn−5

Fn−2

Fn−3

Fn−4 Fn−5

Fn−4

Fn−5 Fn−6...

Running Time

Essentially, the algorithm computes Fn as the
sum of Fn 1’s

Hence its running time is O(Fn)

But Fibonacci numbers grow exponentially fast:
Fn ≈ 𝜑n, where 𝜑 = 1.618 . . . is the golden ratio
E.g., F150 is already 31 decimal digits long
The Sun may die before your computer returns
F150

Running Time

Essentially, the algorithm computes Fn as the
sum of Fn 1’s
Hence its running time is O(Fn)

But Fibonacci numbers grow exponentially fast:
Fn ≈ 𝜑n, where 𝜑 = 1.618 . . . is the golden ratio
E.g., F150 is already 31 decimal digits long
The Sun may die before your computer returns
F150

Running Time

Essentially, the algorithm computes Fn as the
sum of Fn 1’s
Hence its running time is O(Fn)

But Fibonacci numbers grow exponentially fast:
Fn ≈ 𝜑n, where 𝜑 = 1.618 . . . is the golden ratio

E.g., F150 is already 31 decimal digits long
The Sun may die before your computer returns
F150

Running Time

Essentially, the algorithm computes Fn as the
sum of Fn 1’s
Hence its running time is O(Fn)

But Fibonacci numbers grow exponentially fast:
Fn ≈ 𝜑n, where 𝜑 = 1.618 . . . is the golden ratio
E.g., F150 is already 31 decimal digits long

The Sun may die before your computer returns
F150

Running Time

Essentially, the algorithm computes Fn as the
sum of Fn 1’s
Hence its running time is O(Fn)

But Fibonacci numbers grow exponentially fast:
Fn ≈ 𝜑n, where 𝜑 = 1.618 . . . is the golden ratio
E.g., F150 is already 31 decimal digits long
The Sun may die before your computer returns
F150

Reason

Many computations are repeated

“Those who cannot remember the past are
condemned to repeat it.” (George Santayana)
A simple, but crucial idea: instead of
recomputing the intermediate results, let’s store
them once they are computed

Reason

Many computations are repeated
“Those who cannot remember the past are
condemned to repeat it.” (George Santayana)

A simple, but crucial idea: instead of
recomputing the intermediate results, let’s store
them once they are computed

Reason

Many computations are repeated
“Those who cannot remember the past are
condemned to repeat it.” (George Santayana)
A simple, but crucial idea: instead of
recomputing the intermediate results, let’s store
them once they are computed

Memoization
1 def f i b (n) :
2 i f n <= 1 :
3 return n
4 return f i b (n − 1) + f i b (n − 2)

1 T = dict()
2
3 def f i b (n) :
4 if n not in T:
5 i f n <= 1 :
6 T[n] = n
7 e l se :
8 T[n] = f i b (n − 1) + f i b (n − 2)
9

10 return T[n]

Memoization
1 def f i b (n) :
2 i f n <= 1 :
3 return n
4 return f i b (n − 1) + f i b (n − 2)

1 T = dict()
2
3 def f i b (n) :
4 if n not in T:
5 i f n <= 1 :
6 T[n] = n
7 e l se :
8 T[n] = f i b (n − 1) + f i b (n − 2)
9

10 return T[n]

Hm...

But do we really need all this fancy stuff
(recursion, memoization, dictionaries) to solve
this simple problem?

After all, this is how you would compute F5 by
hand:

1 F0 = 0, F1 = 1
2 F2 = 0 + 1 = 1
3 F3 = 1 + 1 = 2
4 F4 = 1 + 2 = 3
5 F5 = 2 + 3 = 5

Hm...

But do we really need all this fancy stuff
(recursion, memoization, dictionaries) to solve
this simple problem?
After all, this is how you would compute F5 by
hand:

1 F0 = 0, F1 = 1
2 F2 = 0 + 1 = 1
3 F3 = 1 + 1 = 2
4 F4 = 1 + 2 = 3
5 F5 = 2 + 3 = 5

Hm...

But do we really need all this fancy stuff
(recursion, memoization, dictionaries) to solve
this simple problem?
After all, this is how you would compute F5 by
hand:

1 F0 = 0, F1 = 1

2 F2 = 0 + 1 = 1
3 F3 = 1 + 1 = 2
4 F4 = 1 + 2 = 3
5 F5 = 2 + 3 = 5

Hm...

But do we really need all this fancy stuff
(recursion, memoization, dictionaries) to solve
this simple problem?
After all, this is how you would compute F5 by
hand:

1 F0 = 0, F1 = 1
2 F2 = 0 + 1 = 1

3 F3 = 1 + 1 = 2
4 F4 = 1 + 2 = 3
5 F5 = 2 + 3 = 5

Hm...

But do we really need all this fancy stuff
(recursion, memoization, dictionaries) to solve
this simple problem?
After all, this is how you would compute F5 by
hand:

1 F0 = 0, F1 = 1
2 F2 = 0 + 1 = 1
3 F3 = 1 + 1 = 2

4 F4 = 1 + 2 = 3
5 F5 = 2 + 3 = 5

Hm...

But do we really need all this fancy stuff
(recursion, memoization, dictionaries) to solve
this simple problem?
After all, this is how you would compute F5 by
hand:

1 F0 = 0, F1 = 1
2 F2 = 0 + 1 = 1
3 F3 = 1 + 1 = 2
4 F4 = 1 + 2 = 3

5 F5 = 2 + 3 = 5

Hm...

But do we really need all this fancy stuff
(recursion, memoization, dictionaries) to solve
this simple problem?
After all, this is how you would compute F5 by
hand:

1 F0 = 0, F1 = 1
2 F2 = 0 + 1 = 1
3 F3 = 1 + 1 = 2
4 F4 = 1 + 2 = 3
5 F5 = 2 + 3 = 5

Iterative Algorithm

1 def f i b (n) :
2 T = [None] * (n + 1)
3 T [0] , T [1] = 0 , 1
4
5 for i in range (2 , n + 1) :
6 T[i] = T[i − 1] + T[i − 2]
7
8 return T[n]

Hm Again...

But do we really need to waste so much space?

1 def f i b (n) :
2 i f n <= 1 :
3 return n
4
5 p r e v i o u s , c u r r e n t = 0 , 1
6 for _ in range (n − 1) :
7 new_current = p r e v i o u s + cu r r e n t
8 p r e v i o u s , c u r r e n t = cu r r en t , new_current
9

10 return c u r r e n t

Hm Again...

But do we really need to waste so much space?
1 def f i b (n) :
2 i f n <= 1 :
3 return n
4
5 p r e v i o u s , c u r r e n t = 0 , 1
6 for _ in range (n − 1) :
7 new_current = p r e v i o u s + cu r r e n t
8 p r e v i o u s , c u r r e n t = cu r r en t , new_current
9

10 return c u r r e n t

Running Time

O(n) additions

On the other hand, recall that Fibonacci
numbers grow exponentially fast: the binary
length of Fn is O(n)

In theory: we should not treat such additions as
basic operations
In practice: just F100 does not fit into a 64-bit
integer type anymore, hence we need bignum
arithmetic

Running Time

O(n) additions
On the other hand, recall that Fibonacci
numbers grow exponentially fast: the binary
length of Fn is O(n)

In theory: we should not treat such additions as
basic operations
In practice: just F100 does not fit into a 64-bit
integer type anymore, hence we need bignum
arithmetic

Running Time

O(n) additions
On the other hand, recall that Fibonacci
numbers grow exponentially fast: the binary
length of Fn is O(n)

In theory: we should not treat such additions as
basic operations

In practice: just F100 does not fit into a 64-bit
integer type anymore, hence we need bignum
arithmetic

Running Time

O(n) additions
On the other hand, recall that Fibonacci
numbers grow exponentially fast: the binary
length of Fn is O(n)

In theory: we should not treat such additions as
basic operations
In practice: just F100 does not fit into a 64-bit
integer type anymore, hence we need bignum
arithmetic

Summary

The key idea of dynamic programming: avoid
recomputing the same thing again!

At the same time, the case of Fibonacci
numbers is a slightly artificial example of
dynamic programming since it is clear from the
very beginning what intermediate results we
need to compute the final result

Summary

The key idea of dynamic programming: avoid
recomputing the same thing again!
At the same time, the case of Fibonacci
numbers is a slightly artificial example of
dynamic programming since it is clear from the
very beginning what intermediate results we
need to compute the final result

Technical Slide

Module 5: Dynamic Programming

1 Lesson 1: Longest Increasing Subsequence
Video 1.1: Warm-up
Video 1.2: Subproblems and Recurrence Relation
Video 1.3: Reconstructing a Solution
Video 1.4: Subproblems Revisited

2 Lesson 2: Edit Distance
Video 2.1: Algorithm
Video 2.2: Reconstructing a Solution
Video 2.3: Final Remarks

Longest Increasing Subsequence

Longest increasing subsequence

Input: An array A = [a0, a1, . . . , an−1].
Output: A longest increasing subsequence (LIS),

i.e., ai1, ai2, . . . , aik such that
i1 < i2 < . . . < ik , ai1 < ai2 < · · · < aik ,
and k is maximal.

Example

Example

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

Example

Example

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

Analyzing an Optimal Solution
Consider the last element x of an optimal
increasing subsequence and its previous
element z :

z x

First of all, z < x

Moreover, the prefix of the IS ending at z must
be an optimal IS ending at z as otherwise the
initial IS would not be optimal:

z x

Optimal substructure by “cut-and-paste” trick

Analyzing an Optimal Solution
Consider the last element x of an optimal
increasing subsequence and its previous
element z :

z x

First of all, z < x

Moreover, the prefix of the IS ending at z must
be an optimal IS ending at z as otherwise the
initial IS would not be optimal:

z x

Optimal substructure by “cut-and-paste” trick

Analyzing an Optimal Solution
Consider the last element x of an optimal
increasing subsequence and its previous
element z :

z x

First of all, z < x

Moreover, the prefix of the IS ending at z must
be an optimal IS ending at z as otherwise the
initial IS would not be optimal:

z x

Optimal substructure by “cut-and-paste” trick

Analyzing an Optimal Solution
Consider the last element x of an optimal
increasing subsequence and its previous
element z :

z x

First of all, z < x

Moreover, the prefix of the IS ending at z must
be an optimal IS ending at z as otherwise the
initial IS would not be optimal:

z x

Optimal substructure by “cut-and-paste” trick

Analyzing an Optimal Solution
Consider the last element x of an optimal
increasing subsequence and its previous
element z :

z x

First of all, z < x

Moreover, the prefix of the IS ending at z must
be an optimal IS ending at z as otherwise the
initial IS would not be optimal:

z x

Optimal substructure by “cut-and-paste” trick

Subproblems and Recurrence Relation

Let LIS(i) be the optimal length of a LIS ending
at A[i]

Then

LIS(i) = 1+max{LIS(j) : j < i and A[j] < A[i]}

Convention: maximum of an empty set is equal
to zero
Base case: LIS(0) = 1

Subproblems and Recurrence Relation

Let LIS(i) be the optimal length of a LIS ending
at A[i]
Then

LIS(i) = 1+max{LIS(j) : j < i and A[j] < A[i]}

Convention: maximum of an empty set is equal
to zero
Base case: LIS(0) = 1

Subproblems and Recurrence Relation

Let LIS(i) be the optimal length of a LIS ending
at A[i]
Then

LIS(i) = 1+max{LIS(j) : j < i and A[j] < A[i]}

Convention: maximum of an empty set is equal
to zero

Base case: LIS(0) = 1

Subproblems and Recurrence Relation

Let LIS(i) be the optimal length of a LIS ending
at A[i]
Then

LIS(i) = 1+max{LIS(j) : j < i and A[j] < A[i]}

Convention: maximum of an empty set is equal
to zero
Base case: LIS(0) = 1

Algorithm

When we have a recurrence relation at hand,
converting it to a recursive algorithm with
memoization is just a technicality

We will use a table T to store the results:
T [i] = LIS(i)

Initially, T is empty. When LIS(i) is computed,
we store its value at T [i] (so that we will never
recompute LIS(i) again)
The exact data structure behind T is not that
important at this point: it could be an array or
a hash table

Algorithm

When we have a recurrence relation at hand,
converting it to a recursive algorithm with
memoization is just a technicality

We will use a table T to store the results:
T [i] = LIS(i)

Initially, T is empty. When LIS(i) is computed,
we store its value at T [i] (so that we will never
recompute LIS(i) again)

The exact data structure behind T is not that
important at this point: it could be an array or
a hash table

Algorithm

When we have a recurrence relation at hand,
converting it to a recursive algorithm with
memoization is just a technicality

We will use a table T to store the results:
T [i] = LIS(i)

Initially, T is empty. When LIS(i) is computed,
we store its value at T [i] (so that we will never
recompute LIS(i) again)
The exact data structure behind T is not that
important at this point: it could be an array or
a hash table

Memoization

1 T = dict ()
2
3 def l i s (A , i) :
4 i f i not in T:
5 T[i] = 1
6
7 for j in range (i) :
8 i f A[j] < A[i] :
9 T[i] = max(T[i] , l i s (A , j) + 1)

10
11 return T[i]
12
13 A = [7 , 2 , 1 , 3 , 8 , 4 , 9 , 1 , 2 , 6 , 5 , 9 , 3]
14 pr int (max(l i s (A , i) for i in range (len (A))))

Running Time

The running time is quadratic (O(n2)): there are n
“serious” recursive calls (that are not just table
look-ups), each of them needs time O(n) (not
counting the inner recursive calls)

Table and Recursion

We need to store in the table T the value of
LIS(i) for all i from 0 to n − 1

Reasonable choice of a data structure for T :
an array of size n
Moreover, one can fill in this array iteratively
instead of recursively

Table and Recursion

We need to store in the table T the value of
LIS(i) for all i from 0 to n − 1
Reasonable choice of a data structure for T :
an array of size n

Moreover, one can fill in this array iteratively
instead of recursively

Table and Recursion

We need to store in the table T the value of
LIS(i) for all i from 0 to n − 1
Reasonable choice of a data structure for T :
an array of size n
Moreover, one can fill in this array iteratively
instead of recursively

Iterative Algorithm
1 def l i s (A) :
2 T = [None] * len (A)
3
4 for i in range (len (A)) :
5 T[i] = 1
6 for j in range (i) :
7 i f A[j] < A[i] and T[i] < T[j] + 1 :
8 T[i] = T[j] + 1
9

10 return max(T[i] for i in range (len (A)))

Crucial property: when computing T [i], T [j] for
all j < i have already been computed
Running time: O(n2)

Iterative Algorithm
1 def l i s (A) :
2 T = [None] * len (A)
3
4 for i in range (len (A)) :
5 T[i] = 1
6 for j in range (i) :
7 i f A[j] < A[i] and T[i] < T[j] + 1 :
8 T[i] = T[j] + 1
9

10 return max(T[i] for i in range (len (A)))

Crucial property: when computing T [i], T [j] for
all j < i have already been computed

Running time: O(n2)

Iterative Algorithm
1 def l i s (A) :
2 T = [None] * len (A)
3
4 for i in range (len (A)) :
5 T[i] = 1
6 for j in range (i) :
7 i f A[j] < A[i] and T[i] < T[j] + 1 :
8 T[i] = T[j] + 1
9

10 return max(T[i] for i in range (len (A)))

Crucial property: when computing T [i], T [j] for
all j < i have already been computed
Running time: O(n2)

Technical Slide

Module 5: Dynamic Programming

1 Lesson 1: Longest Increasing Subsequence
Video 1.1: Warm-up
Video 1.2: Subproblems and Recurrence Relation
Video 1.3: Reconstructing a Solution
Video 1.4: Subproblems Revisited

2 Lesson 2: Edit Distance
Video 2.1: Algorithm
Video 2.2: Reconstructing a Solution
Video 2.3: Final Remarks

Reconstructing a Solution

How to reconstruct an optimal IS?

In order to reconstruct it, for each subproblem
we will keep its optimal value and a choice
leading to this value

Reconstructing a Solution

How to reconstruct an optimal IS?
In order to reconstruct it, for each subproblem
we will keep its optimal value and a choice
leading to this value

Adjusting the Algorithm

1 def l i s (A) :
2 T = [None] * len (A)
3 prev = [None] * len(A)
4
5 for i in range (len (A)) :
6 T[i] = 1
7 prev[i] = -1
8 for j in range (i) :
9 i f A[j] < A[i] and T[i] < T[j] + 1 :

10 T[i] = T[j] + 1
11 prev[i] = j

Example
Example

7
0

2
1

1
2

3
3

8
4

4
5

9
6

1
7

2
8

6
9

5
10

9
11

3
12

8
13

1
14

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

A

T

prev -1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example
Example

7
0

2
1

1
2

3
3

8
4

4
5

9
6

1
7

2
8

6
9

5
10

9
11

3
12

8
13

1
14

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

A

T

prev -1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example
Example

7
0

2
1

1
2

3
3

8
4

4
5

9
6

1
7

2
8

6
9

5
10

9
11

3
12

8
13

1
14

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

A

T

prev -1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example
Example

7
0

2
1

1
2

3
3

8
4

4
5

9
6

1
7

2
8

6
9

5
10

9
11

3
12

8
13

1
14

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

A

T

prev -1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example
Example

7
0

2
1

1
2

3
3

8
4

4
5

9
6

1
7

2
8

6
9

5
10

9
11

3
12

8
13

1
14

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

A

T

prev -1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example
Example

7
0

2
1

1
2

3
3

8
4

4
5

9
6

1
7

2
8

6
9

5
10

9
11

3
12

8
13

1
14

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

A

T

prev -1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example
Example

7
0

2
1

1
2

3
3

8
4

4
5

9
6

1
7

2
8

6
9

5
10

9
11

3
12

8
13

1
14

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

A

T

prev -1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example
Example

7
0

2
1

1
2

3
3

8
4

4
5

9
6

1
7

2
8

6
9

5
10

9
11

3
12

8
13

1
14

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

A

T

prev -1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example
Example

7
0

2
1

1
2

3
3

8
4

4
5

9
6

1
7

2
8

6
9

5
10

9
11

3
12

8
13

1
14

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

A

T

prev -1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example
Example

7
0

2
1

1
2

3
3

8
4

4
5

9
6

1
7

2
8

6
9

5
10

9
11

3
12

8
13

1
14

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

A

T

prev -1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example
Example

7
0

2
1

1
2

3
3

8
4

4
5

9
6

1
7

2
8

6
9

5
10

9
11

3
12

8
13

1
14

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

A

T

prev -1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Unwinding Solution

1 l a s t = 0
2 for i in range (1 , len (A)) :
3 i f T[i] > T[l a s t] :
4 l a s t = i
5
6 l i s= []
7 c u r r e n t = l a s t
8 while c u r r e n t >= 0 :
9 l i s . append (c u r r e n t)

10 c u r r e n t = prev [c u r r e n t]
11 l i s . r e v e r s e ()
12 return [A [i] for i in l i s]

Reconstructing Again

Reconstructing without prev

7
0

2
1

1
2

3
3

8
4

4
5

9
6

1
7

2
8

6
9

5
10

9
11

3
12

8
13

1
14

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

A

T

Reconstructing Again

Reconstructing without prev

7
0

2
1

1
2

3
3

8
4

4
5

9
6

1
7

2
8

6
9

5
10

9
11

3
12

8
13

1
14

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

A

T

Reconstructing Again

Reconstructing without prev

7
0

2
1

1
2

3
3

8
4

4
5

9
6

1
7

2
8

6
9

5
10

9
11

3
12

8
13

1
14

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

A

T

Reconstructing Again

Reconstructing without prev

7
0

2
1

1
2

3
3

8
4

4
5

9
6

1
7

2
8

6
9

5
10

9
11

3
12

8
13

1
14

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

A

T

Reconstructing Again

Reconstructing without prev

7
0

2
1

1
2

3
3

8
4

4
5

9
6

1
7

2
8

6
9

5
10

9
11

3
12

8
13

1
14

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

A

T

Summary
Optimal substructure property: any prefix of an
optimal increasing subsequence must be a
longest increasing subsequence ending at this
particular element

Subproblem: the length of an optimal increasing
subsequence ending at i -th element
A recurrence relation for subproblems can be
immediately converted into a recursive algorithm
with memoization
A recursive algorithm, in turn, can be converted
into an iterative one
An optimal solution can be recovered either by
using an additional bookkeeping info or by using
the computed solutions to all subproblems

Summary
Optimal substructure property: any prefix of an
optimal increasing subsequence must be a
longest increasing subsequence ending at this
particular element
Subproblem: the length of an optimal increasing
subsequence ending at i -th element

A recurrence relation for subproblems can be
immediately converted into a recursive algorithm
with memoization
A recursive algorithm, in turn, can be converted
into an iterative one
An optimal solution can be recovered either by
using an additional bookkeeping info or by using
the computed solutions to all subproblems

Summary
Optimal substructure property: any prefix of an
optimal increasing subsequence must be a
longest increasing subsequence ending at this
particular element
Subproblem: the length of an optimal increasing
subsequence ending at i -th element
A recurrence relation for subproblems can be
immediately converted into a recursive algorithm
with memoization

A recursive algorithm, in turn, can be converted
into an iterative one
An optimal solution can be recovered either by
using an additional bookkeeping info or by using
the computed solutions to all subproblems

Summary
Optimal substructure property: any prefix of an
optimal increasing subsequence must be a
longest increasing subsequence ending at this
particular element
Subproblem: the length of an optimal increasing
subsequence ending at i -th element
A recurrence relation for subproblems can be
immediately converted into a recursive algorithm
with memoization
A recursive algorithm, in turn, can be converted
into an iterative one

An optimal solution can be recovered either by
using an additional bookkeeping info or by using
the computed solutions to all subproblems

Summary
Optimal substructure property: any prefix of an
optimal increasing subsequence must be a
longest increasing subsequence ending at this
particular element
Subproblem: the length of an optimal increasing
subsequence ending at i -th element
A recurrence relation for subproblems can be
immediately converted into a recursive algorithm
with memoization
A recursive algorithm, in turn, can be converted
into an iterative one
An optimal solution can be recovered either by
using an additional bookkeeping info or by using
the computed solutions to all subproblems

Technical Slide

Module 5: Dynamic Programming

1 Lesson 1: Longest Increasing Subsequence
Video 1.1: Warm-up
Video 1.2: Subproblems and Recurrence Relation
Video 1.3: Reconstructing a Solution
Video 1.4: Subproblems Revisited

2 Lesson 2: Edit Distance
Video 2.1: Algorithm
Video 2.2: Reconstructing a Solution
Video 2.3: Final Remarks

The Most Creative Part
In most DP algorithms, the most creative part is
coming up with the right notion of a subproblem
and a recurrence relation

When a recurrence relation is written down, it
can be wrapped with memoization to get
a recursive algorithm
In the previous video, we arrived at a reasonable
subproblem by analyzing the structure of an
optimal solution
In this video, we’ll provide an alternative way of
arriving at subproblems: implement a naive
brute force solution, then optimize it

The Most Creative Part
In most DP algorithms, the most creative part is
coming up with the right notion of a subproblem
and a recurrence relation
When a recurrence relation is written down, it
can be wrapped with memoization to get
a recursive algorithm

In the previous video, we arrived at a reasonable
subproblem by analyzing the structure of an
optimal solution
In this video, we’ll provide an alternative way of
arriving at subproblems: implement a naive
brute force solution, then optimize it

The Most Creative Part
In most DP algorithms, the most creative part is
coming up with the right notion of a subproblem
and a recurrence relation
When a recurrence relation is written down, it
can be wrapped with memoization to get
a recursive algorithm
In the previous video, we arrived at a reasonable
subproblem by analyzing the structure of an
optimal solution

In this video, we’ll provide an alternative way of
arriving at subproblems: implement a naive
brute force solution, then optimize it

The Most Creative Part
In most DP algorithms, the most creative part is
coming up with the right notion of a subproblem
and a recurrence relation
When a recurrence relation is written down, it
can be wrapped with memoization to get
a recursive algorithm
In the previous video, we arrived at a reasonable
subproblem by analyzing the structure of an
optimal solution
In this video, we’ll provide an alternative way of
arriving at subproblems: implement a naive
brute force solution, then optimize it

Brute Force: Plan

Need the longest increasing subsequence? No
problem! Just iterate over all subsequences and
select the longest one:

Start with an empty sequence
Extend it element by element recursively
Keep track of the length of the sequence

This is going to be slow, but not to worry: we
will optimize it later

Brute Force: Plan

Need the longest increasing subsequence? No
problem! Just iterate over all subsequences and
select the longest one:

Start with an empty sequence

Extend it element by element recursively
Keep track of the length of the sequence

This is going to be slow, but not to worry: we
will optimize it later

Brute Force: Plan

Need the longest increasing subsequence? No
problem! Just iterate over all subsequences and
select the longest one:

Start with an empty sequence
Extend it element by element recursively

Keep track of the length of the sequence

This is going to be slow, but not to worry: we
will optimize it later

Brute Force: Plan

Need the longest increasing subsequence? No
problem! Just iterate over all subsequences and
select the longest one:

Start with an empty sequence
Extend it element by element recursively
Keep track of the length of the sequence

This is going to be slow, but not to worry: we
will optimize it later

Brute Force: Plan

Need the longest increasing subsequence? No
problem! Just iterate over all subsequences and
select the longest one:

Start with an empty sequence
Extend it element by element recursively
Keep track of the length of the sequence

This is going to be slow, but not to worry: we
will optimize it later

Brute Force: Code
1 def l i s (A , seq) :
2 r e s u l t = len (seq)
3
4 i f len (seq) == 0 :
5 l a s t_ i nd e x = −1
6 l a s t_e l emen t = f l oa t ("− i n f ")
7 e l se :
8 l a s t_ i nd e x = seq [−1]
9 l a s t_e l emen t = A[l a s t_ i n d e x]

10
11 for i in range (l a s t_ i n d e x + 1 , len (A)) :
12 i f A[i] > l a s t_e l emen t :
13 r e s u l t = max(r e s u l t , l i s (A , seq + [i]))
14
15 return r e s u l t
16
17 pr int (l i s (A=[7 , 2 , 1 , 3 , 8 , 4 , 9] , seq = []))

Optimizing

At each step, we are trying to extend the
current sequence

For this, we pass the current sequence to each
recursive call
At the same time, code inspection reveals that
we are not using all of the sequence: we are only
interested in its last element and its length
Let’s optimize!

Optimizing

At each step, we are trying to extend the
current sequence
For this, we pass the current sequence to each
recursive call

At the same time, code inspection reveals that
we are not using all of the sequence: we are only
interested in its last element and its length
Let’s optimize!

Optimizing

At each step, we are trying to extend the
current sequence
For this, we pass the current sequence to each
recursive call
At the same time, code inspection reveals that
we are not using all of the sequence: we are only
interested in its last element and its length

Let’s optimize!

Optimizing

At each step, we are trying to extend the
current sequence
For this, we pass the current sequence to each
recursive call
At the same time, code inspection reveals that
we are not using all of the sequence: we are only
interested in its last element and its length
Let’s optimize!

Optimized Code
1 def l i s (A , seq_len , l a s t_ i nd e x) :
2 i f l a s t_ i nd e x == −1:
3 l a s t_e l emen t = f l oa t ("− i n f ")
4 e l se :
5 l a s t_e l emen t = A[l a s t_ i n d e x]
6
7 r e s u l t = seq_len
8
9 for i in range (l a s t_ i n d e x + 1 , len (A)) :

10 i f A[i] > l a s t_e l emen t :
11 r e s u l t = max(r e s u l t ,
12 l i s (A , seq_len + 1 , i))
13
14 return r e s u l t
15
16 pr int (l i s ([3 , 2 , 7 , 8 , 9 , 5 , 8] , 0 , −1))

Optimizing Further

Inspecting the code further, we realize that
seq_len is not used for extending the current
sequence (we don’t need to know even the
length of the initial part of the sequence to
optimally extend it)

More formally, for any x ,
extend(A, seq_len, i) is equal to
extend(A, seq_len - x, i) + x
Hence, can optimize the code as follows:
max(result, 1 + seq_len + extend(A, 0, i))
Excludes seq_len from the list of parameters!

Optimizing Further

Inspecting the code further, we realize that
seq_len is not used for extending the current
sequence (we don’t need to know even the
length of the initial part of the sequence to
optimally extend it)
More formally, for any x ,
extend(A, seq_len, i) is equal to
extend(A, seq_len - x, i) + x

Hence, can optimize the code as follows:
max(result, 1 + seq_len + extend(A, 0, i))
Excludes seq_len from the list of parameters!

Optimizing Further

Inspecting the code further, we realize that
seq_len is not used for extending the current
sequence (we don’t need to know even the
length of the initial part of the sequence to
optimally extend it)
More formally, for any x ,
extend(A, seq_len, i) is equal to
extend(A, seq_len - x, i) + x
Hence, can optimize the code as follows:
max(result, 1 + seq_len + extend(A, 0, i))

Excludes seq_len from the list of parameters!

Optimizing Further

Inspecting the code further, we realize that
seq_len is not used for extending the current
sequence (we don’t need to know even the
length of the initial part of the sequence to
optimally extend it)
More formally, for any x ,
extend(A, seq_len, i) is equal to
extend(A, seq_len - x, i) + x
Hence, can optimize the code as follows:
max(result, 1 + seq_len + extend(A, 0, i))
Excludes seq_len from the list of parameters!

Resulting Code
1 def l i s (A , l a s t_ i nd e x) :
2 i f l a s t_ i nd e x == −1:
3 l a s t_e l emen t = f l oa t ("− i n f ")
4 e l se :
5 l a s t_e l emen t = A[l a s t_ i n d e x]
6
7 r e s u l t = 0
8
9 for i in range (l a s t_ i n d e x + 1 , len (A)) :

10 i f A[i] > l a s t_e l emen t :
11 r e s u l t = max(r e s u l t , 1 + l i s (A , i))
12
13 return r e s u l t
14
15 pr int (l i s ([8 , 2 , 3 , 4 , 5 , 6 , 7] , −1))

It remains to add memoization!

Resulting Code
1 def l i s (A , l a s t_ i nd e x) :
2 i f l a s t_ i nd e x == −1:
3 l a s t_e l emen t = f l oa t ("− i n f ")
4 e l se :
5 l a s t_e l emen t = A[l a s t_ i n d e x]
6
7 r e s u l t = 0
8
9 for i in range (l a s t_ i n d e x + 1 , len (A)) :

10 i f A[i] > l a s t_e l emen t :
11 r e s u l t = max(r e s u l t , 1 + l i s (A , i))
12
13 return r e s u l t
14
15 pr int (l i s ([8 , 2 , 3 , 4 , 5 , 6 , 7] , −1))

It remains to add memoization!

Summary

Subproblems (and recurrence relation on them)
is the most important ingredient of a dynamic
programming algorithm

Two common ways of arriving at the right
subproblem:

Analyze the structure of an optimal solution
Implement a brute force solution and optimize it

Summary

Subproblems (and recurrence relation on them)
is the most important ingredient of a dynamic
programming algorithm
Two common ways of arriving at the right
subproblem:

Analyze the structure of an optimal solution
Implement a brute force solution and optimize it

Summary

Subproblems (and recurrence relation on them)
is the most important ingredient of a dynamic
programming algorithm
Two common ways of arriving at the right
subproblem:

Analyze the structure of an optimal solution

Implement a brute force solution and optimize it

Summary

Subproblems (and recurrence relation on them)
is the most important ingredient of a dynamic
programming algorithm
Two common ways of arriving at the right
subproblem:

Analyze the structure of an optimal solution
Implement a brute force solution and optimize it

Technical Slide

Module 5: Dynamic Programming

1 Lesson 1: Longest Increasing Subsequence
Video 1.1: Warm-up
Video 1.2: Subproblems and Recurrence Relation
Video 1.3: Reconstructing a Solution
Video 1.4: Subproblems Revisited

2 Lesson 2: Edit Distance
Video 2.1: Algorithm
Video 2.2: Reconstructing a Solution
Video 2.3: Final Remarks

Statement

Edit distance

Input: Two strings A[0 . . . n − 1] and
B[0 . . .m − 1].

Output: The minimal number of insertions,
deletions, and substitutions needed to
transform A to B . This number is known
as edit distance or Levenshtein distance.

Example: EDITING → DISTANCE
EDITING

Example: EDITING → DISTANCE
EDITING

DITING
remove E

Example: EDITING → DISTANCE
EDITING

DITING

DISTING

remove E

insert S

Example: EDITING → DISTANCE
EDITING

DITING

DISTING

DISTANG

remove E

insert S

replace I with by A

Example: EDITING → DISTANCE
EDITING

DITING

DISTING

DISTANG

DISTANC

remove E

insert S

replace I with by A

replace G with C

Example: EDITING → DISTANCE
EDITING

DITING

DISTING

DISTANG

DISTANC

DISTANCE

remove E

insert S

replace I with by A

replace G with C

insert E

Example: alignment

E D I − T I N G −
− D I S T A N C E

cost: 5

substitutions/mismatches

deletion insertions

matches

Example: alignment

E D I − T I N G −
− D I S T A N C E

cost: 5

substitutions/mismatches

deletion insertions

matches

Analyzing an Optimal Alignment

A[0 . . . n − 1]

B[0 . . .m − 1]

A[0 . . . n − 1] −
B[0 . . .m − 2] B[m − 1]

insertion

A[0 . . . n − 2] A[n − 1]

B[0 . . .m − 1] −
deletion

A[0 . . . n − 2] A[n − 1]

B[0 . . .m − 2] B[m − 1]match/mismatch

Analyzing an Optimal Alignment

A[0 . . . n − 1]

B[0 . . .m − 1]

A[0 . . . n − 1] −
B[0 . . .m − 2] B[m − 1]

insertion

A[0 . . . n − 2] A[n − 1]

B[0 . . .m − 1] −
deletion

A[0 . . . n − 2] A[n − 1]

B[0 . . .m − 2] B[m − 1]match/mismatch

Analyzing an Optimal Alignment

A[0 . . . n − 1]

B[0 . . .m − 1]

A[0 . . . n − 1] −
B[0 . . .m − 2] B[m − 1]

insertion

A[0 . . . n − 2] A[n − 1]

B[0 . . .m − 1] −
deletion

A[0 . . . n − 2] A[n − 1]

B[0 . . .m − 2] B[m − 1]match/mismatch

Analyzing an Optimal Alignment

A[0 . . . n − 1]

B[0 . . .m − 1]

A[0 . . . n − 1] −
B[0 . . .m − 2] B[m − 1]

insertion

A[0 . . . n − 2] A[n − 1]

B[0 . . .m − 1] −
deletion

A[0 . . . n − 2] A[n − 1]

B[0 . . .m − 2] B[m − 1]match/mismatch

Subproblems

Let ED(i , j) be the edit distance of
A[0 . . . i − 1] and B[0 . . . j − 1].

We know for sure that the last column of an
optimal alignment is either an insertion, a
deletion, or a match/mismatch.
What is left is an optimal alignment of the
corresponding two prefixes (by cut-and-paste).

Subproblems

Let ED(i , j) be the edit distance of
A[0 . . . i − 1] and B[0 . . . j − 1].
We know for sure that the last column of an
optimal alignment is either an insertion, a
deletion, or a match/mismatch.

What is left is an optimal alignment of the
corresponding two prefixes (by cut-and-paste).

Subproblems

Let ED(i , j) be the edit distance of
A[0 . . . i − 1] and B[0 . . . j − 1].
We know for sure that the last column of an
optimal alignment is either an insertion, a
deletion, or a match/mismatch.
What is left is an optimal alignment of the
corresponding two prefixes (by cut-and-paste).

Recurrence Relation

ED(i , j) = min

⎧⎪⎨⎪⎩
ED(i , j − 1) + 1
ED(i − 1, j) + 1
ED(i − 1, j − 1) + diff(A[i],B[j])

Base case: ED(i , 0) = i , ED(0, j) = j

Recurrence Relation

ED(i , j) = min

⎧⎪⎨⎪⎩
ED(i , j − 1) + 1
ED(i − 1, j) + 1
ED(i − 1, j − 1) + diff(A[i],B[j])

Base case: ED(i , 0) = i , ED(0, j) = j

Recursive Algorithm
1 T = d i c t ()
2
3 def e d i t_d i s t a n c e (a , b , i , j) :
4 i f not (i , j) i n T:
5 i f i == 0 : T[i , j] = j
6 e l i f j == 0 : T[i , j] = i
7 e l s e :
8 d i f f = 0 i f a [i − 1] == b [j − 1] e l s e 1
9 T[i , j] = min (

10 e d i t_d i s t a n c e (a , b , i − 1 , j) + 1 ,
11 e d i t_d i s t a n c e (a , b , i , j − 1) + 1 ,
12 e d i t_d i s t a n c e (a , b , i − 1 , j − 1) + d i f f)
13
14 return T[i , j]
15
16
17 p r i n t (e d i t_d i s t a n c e (a=" e d i t i n g " , b=" d i s t a n c e " ,
18 i =7, j =8))

Converting to a Recursive Algorithm

Use a 2D table to store the intermediate results

ED(i , j) depends on ED(i − 1, j − 1),
ED(i − 1, j), and ED(i , j − 1):

0

n

i

0 mj (mis)match

insertion

deletion

Converting to a Recursive Algorithm

Use a 2D table to store the intermediate results
ED(i , j) depends on ED(i − 1, j − 1),
ED(i − 1, j), and ED(i , j − 1):

0

n

i

0 mj (mis)match

insertion

deletion

Filling the Table

Fill in the table row by row or column by column:

0

n

i

0 mj

0

n

i

0 mj

Iterative Algorithm
1 def e d i t_d i s t a n c e (a , b) :
2 T = [[f l o a t (" i n f ")] * (l en (b) + 1)
3 f o r _ i n range (l en (a) + 1)]
4 f o r i i n range (l en (a) + 1) :
5 T[i] [0] = i
6 f o r j i n range (l en (b) + 1) :
7 T [0] [j] = j
8
9 f o r i i n range (1 , l en (a) + 1) :

10 f o r j i n range (1 , l en (b) + 1) :
11 d i f f = 0 i f a [i − 1] == b [j − 1] e l s e 1
12 T[i] [j] = min (T[i − 1] [j] + 1 ,
13 T[i] [j − 1] + 1 ,
14 T[i − 1] [j − 1] + d i f f)
15
16 return T[l en (a)] [l en (b)]
17
18
19 p r i n t (e d i t_d i s t a n c e (a=" d i s t a n c e " , b=" e d i t i n g "))

Example

E D I T I N G
0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
D 1 1
I 2 2
S 3 3
T 4 4
A 5 5
N 6 6
C 7 7
E 8 8

Example

E D I T I N G
0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
D 1 1
I 2 2
S 3 3
T 4 4
A 5 5
N 6 6
C 7 7
E 8 8

Example

E D I T I N G
0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
D 1 1 1
I 2 2
S 3 3
T 4 4
A 5 5
N 6 6
C 7 7
E 8 8

Example

E D I T I N G
0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
D 1 1 1
I 2 2
S 3 3
T 4 4
A 5 5
N 6 6
C 7 7
E 8 8

Example

E D I T I N G
0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
D 1 1 1 1
I 2 2
S 3 3
T 4 4
A 5 5
N 6 6
C 7 7
E 8 8

Example

E D I T I N G
0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
D 1 1 1 1
I 2 2
S 3 3
T 4 4
A 5 5
N 6 6
C 7 7
E 8 8

Example

E D I T I N G
0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
D 1 1 1 1 2
I 2 2
S 3 3
T 4 4
A 5 5
N 6 6
C 7 7
E 8 8

Example

E D I T I N G
0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
D 1 1 1 1 2 3 4 5 6
I 2 2 2 2 1 2 3 4 5
S 3 3 3 3 2 2 3 4 5
T 4 4 4 4 3 2 3 4 5
A 5 5 5 5 4 3 3 4 5
N 6 6 6 6 5 4 4 3 4
C 7 7 7 7 6 5 5 4 4
E 8 8 7 8 7 6 6 5 5

Brute Force

Recursively construct an alignment column by
column

Then note, that for extending the partially
constructed alignment optimally, one only needs
to know the already used length of prefix of A
and the length of prefix of B

Brute Force

Recursively construct an alignment column by
column
Then note, that for extending the partially
constructed alignment optimally, one only needs
to know the already used length of prefix of A
and the length of prefix of B

Technical Slide

Module 5: Dynamic Programming

1 Lesson 1: Longest Increasing Subsequence
Video 1.1: Warm-up
Video 1.2: Subproblems and Recurrence Relation
Video 1.3: Reconstructing a Solution
Video 1.4: Subproblems Revisited

2 Lesson 2: Edit Distance
Video 2.1: Algorithm
Video 2.2: Reconstructing a Solution
Video 2.3: Final Remarks

Reconstructing a Solution

To reconstruct a solution, we go back from the
cell (n,m) to the cell (0, 0)

If ED(i , j) = ED(i − 1, j) + 1, then there exists
an optimal alignment whose last column is a
deletion
If ED(i , j) = ED(i , j − 1) + 1, then there exists
an optimal alignment whose last column is an
insertion
If ED(i , j) = ED(i − 1, j − 1) + diff(A[i],B[j]),
then match (if A[i] = B[j]) or mismatch (if
A[i] ̸= B[j])

Reconstructing a Solution

To reconstruct a solution, we go back from the
cell (n,m) to the cell (0, 0)
If ED(i , j) = ED(i − 1, j) + 1, then there exists
an optimal alignment whose last column is a
deletion

If ED(i , j) = ED(i , j − 1) + 1, then there exists
an optimal alignment whose last column is an
insertion
If ED(i , j) = ED(i − 1, j − 1) + diff(A[i],B[j]),
then match (if A[i] = B[j]) or mismatch (if
A[i] ̸= B[j])

Reconstructing a Solution

To reconstruct a solution, we go back from the
cell (n,m) to the cell (0, 0)
If ED(i , j) = ED(i − 1, j) + 1, then there exists
an optimal alignment whose last column is a
deletion
If ED(i , j) = ED(i , j − 1) + 1, then there exists
an optimal alignment whose last column is an
insertion

If ED(i , j) = ED(i − 1, j − 1) + diff(A[i],B[j]),
then match (if A[i] = B[j]) or mismatch (if
A[i] ̸= B[j])

Reconstructing a Solution

To reconstruct a solution, we go back from the
cell (n,m) to the cell (0, 0)
If ED(i , j) = ED(i − 1, j) + 1, then there exists
an optimal alignment whose last column is a
deletion
If ED(i , j) = ED(i , j − 1) + 1, then there exists
an optimal alignment whose last column is an
insertion
If ED(i , j) = ED(i − 1, j − 1) + diff(A[i],B[j]),
then match (if A[i] = B[j]) or mismatch (if
A[i] ̸= B[j])

Example
E D I T I N G

0 1 2 3 4 5 6 7
D 1 1 1 2 3 4 5 6
I 2 2 2 1 2 3 4 5
S 3 3 3 2 2 3 4 5
T 4 4 4 3 2 3 4 5
A 5 5 5 4 3 3 4 5
N 6 6 6 5 4 4 3 4
C 7 7 7 6 5 5 4 4
E 8 7 8 7 6 6 5 5

(mis)match
insertion

deletion

Example

(mis)match
insertion

deletion
E D I T I N G

0 1 2 3 4 5 6 7
D 1 1 1 2 3 4 5 6
I 2 2 2 1 2 3 4 5
S 3 3 3 2 2 3 4 5
T 4 4 4 3 2 3 4 5
A 5 5 5 4 3 3 4 5
N 6 6 6 5 4 4 3 4
C 7 7 7 6 5 5 4 4
E 8 7 8 7 6 6 5 5

E
G

Example

(mis)match
insertion

deletion
E D I T I N G

0 1 2 3 4 5 6 7
D 1 1 1 2 3 4 5 6
I 2 2 2 1 2 3 4 5
S 3 3 3 2 2 3 4 5
T 4 4 4 3 2 3 4 5
A 5 5 5 4 3 3 4 5
N 6 6 6 5 4 4 3 4
C 7 7 7 6 5 5 4 4
E 8 7 8 7 6 6 5 5

C E
- G

Example

(mis)match
insertion

deletion
E D I T I N G

0 1 2 3 4 5 6 7
D 1 1 1 2 3 4 5 6
I 2 2 2 1 2 3 4 5
S 3 3 3 2 2 3 4 5
T 4 4 4 3 2 3 4 5
A 5 5 5 4 3 3 4 5
N 6 6 6 5 4 4 3 4
C 7 7 7 6 5 5 4 4
E 8 7 8 7 6 6 5 5

N C E
N - G

Example

(mis)match
insertion

deletion
E D I T I N G

0 1 2 3 4 5 6 7
D 1 1 1 2 3 4 5 6
I 2 2 2 1 2 3 4 5
S 3 3 3 2 2 3 4 5
T 4 4 4 3 2 3 4 5
A 5 5 5 4 3 3 4 5
N 6 6 6 5 4 4 3 4
C 7 7 7 6 5 5 4 4
E 8 7 8 7 6 6 5 5

A N C E
I N - G

Example

(mis)match
insertion

deletion
E D I T I N G

0 1 2 3 4 5 6 7
D 1 1 1 2 3 4 5 6
I 2 2 2 1 2 3 4 5
S 3 3 3 2 2 3 4 5
T 4 4 4 3 2 3 4 5
A 5 5 5 4 3 3 4 5
N 6 6 6 5 4 4 3 4
C 7 7 7 6 5 5 4 4
E 8 7 8 7 6 6 5 5

T A N C E
T I N - G

Example

(mis)match
insertion

deletion
E D I T I N G

0 1 2 3 4 5 6 7
D 1 1 1 2 3 4 5 6
I 2 2 2 1 2 3 4 5
S 3 3 3 2 2 3 4 5
T 4 4 4 3 2 3 4 5
A 5 5 5 4 3 3 4 5
N 6 6 6 5 4 4 3 4
C 7 7 7 6 5 5 4 4
E 8 7 8 7 6 6 5 5

S T A N C E
- T I N - G

Example

(mis)match
insertion

deletion
E D I T I N G

0 1 2 3 4 5 6 7
D 1 1 1 2 3 4 5 6
I 2 2 2 1 2 3 4 5
S 3 3 3 2 2 3 4 5
T 4 4 4 3 2 3 4 5
A 5 5 5 4 3 3 4 5
N 6 6 6 5 4 4 3 4
C 7 7 7 6 5 5 4 4
E 8 7 8 7 6 6 5 5

I S T A N C E
I - T I N - G

Example

(mis)match
insertion

deletion
E D I T I N G

0 1 2 3 4 5 6 7
D 1 1 1 2 3 4 5 6
I 2 2 2 1 2 3 4 5
S 3 3 3 2 2 3 4 5
T 4 4 4 3 2 3 4 5
A 5 5 5 4 3 3 4 5
N 6 6 6 5 4 4 3 4
C 7 7 7 6 5 5 4 4
E 8 7 8 7 6 6 5 5

D I S T A N C E
D I - T I N - G

Example

(mis)match
insertion

deletion
E D I T I N G

0 1 2 3 4 5 6 7
D 1 1 1 2 3 4 5 6
I 2 2 2 1 2 3 4 5
S 3 3 3 2 2 3 4 5
T 4 4 4 3 2 3 4 5
A 5 5 5 4 3 3 4 5
N 6 6 6 5 4 4 3 4
C 7 7 7 6 5 5 4 4
E 8 7 8 7 6 6 5 5

- D I S T A N C E
E D I - T I N - G

Technical Slide

Module 5: Dynamic Programming

1 Lesson 1: Longest Increasing Subsequence
Video 1.1: Warm-up
Video 1.2: Subproblems and Recurrence Relation
Video 1.3: Reconstructing a Solution
Video 1.4: Subproblems Revisited

2 Lesson 2: Edit Distance
Video 2.1: Algorithm
Video 2.2: Reconstructing a Solution
Video 2.3: Final Remarks

Saving Space

When filling in the matrix it is enough to keep
only the current column and the previous
column:

0

n

i

0 mj

0

n

i

0 mj

Thus, one can compute the edit distance of two
given strings A[1 . . . n] and B[1 . . .m] in time
O(nm) and space O(min{n,m}).

Saving Space

When filling in the matrix it is enough to keep
only the current column and the previous
column:

0

n

i

0 mj

0

n

i

0 mj

Thus, one can compute the edit distance of two
given strings A[1 . . . n] and B[1 . . .m] in time
O(nm) and space O(min{n,m}).

Reconstructing a Solution

However we need the whole table to find an
actual alignment (we trace an alignment from
the bottom right corner to the top left corner)

There exists an algorithm constructing an
optimal alignment in time O(nm) and space
O(n +m) (Hirschberg’s algorithm)

Reconstructing a Solution

However we need the whole table to find an
actual alignment (we trace an alignment from
the bottom right corner to the top left corner)
There exists an algorithm constructing an
optimal alignment in time O(nm) and space
O(n +m) (Hirschberg’s algorithm)

Weighted Edit Distance

The cost of insertions, deletions, and
substitutions is not necessarily identical
Spell checking: some substitutions are more
likely than others
Biology: some mutations are more likely than
others

Generalized Recurrence Relation

min

⎧⎪⎨⎪⎩
ED(i , j − 1) + inscost(B[j]),

ED(i − 1, j) + delcost(A[i]),

ED(i − 1, j − 1) + substcost(A[i],B[j])

	Lesson 1: Longest Increasing Subsequence
	Video 1.1: Warm-up
	Video 1.2: Subproblems and Recurrence Relation
	Video 1.3: Reconstructing a Solution
	Video 1.4: Subproblems Revisited

	Lesson 2: Edit Distance
	Video 2.1: Algorithm
	Video 2.2: Reconstructing a Solution
	Video 2.3: Final Remarks

