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Size is fixed
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Dynamic array (vector/list)
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Array-like structures

Bitset — an array of bits

Each bit takes a bit in memory, not a byte as in an
array of booleans
Bits are addressed in an array of integers, as if they
are concatenated
Could count ones, do bitwise and, or, xor, etc — in
about n/32 int operations

Big integers — arbitrary-size integer numbers
Big decimals — arbitrary-precision floating point
numbers
Big integer shifted by a power of 2
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Set

Insert an element
Check if some value is contained
Ordered set — could binary search for a value
“find the greatest value less than 109 in the set”
Unordered set (hash set): O(1) per operation —
hash table
Ordered set (tree set): O(log n) per operation —
binary search tree
On practice, ordered set is only slightly slower
In both, much slower operations than in an array
And more space per element
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Random integer in [l , r)
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Fast input/output

Individual operations on files are very slow
Buffered: instead of writing characters as they
come, accumulate them in a temporary array —
buffer
Write it to the file only when it’s large enough
Could also force to write the buffer — “flush”

Interactive problems
Debug output — confusing when it prints not
where it’s in the code
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Functions (like strcmp, strcat) vs members
Slightly faster vs convenient
string is used more often
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Powerful templates
Dangerous: no type checks, just writes to the
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Input/output
C++ way:
int a;
cin >> a;
cout << a;

More convenient on simple input/output
Slow by default:
Synchronises with stdio
— turn off with
ios_base::sync_with_stdio(false);
cout buffer flushes on each cin
— turn off with cin.tie(0);
cout << endl; flushes — use cout << ’\n’;
Just as fast as printf/scanf, if tuned correctly
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Undefined behavior

Incorrect array indices: negative or too large

int a[10];
a[-1] = a[10] = 0;

Using local variables before assignment
int a;
a++;
cout << a;
Non-void functions without return
Signed integer overflow
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Undefined behavior
Compiler may do anything: your program could
crash, or work incorrectly, or even correctly
It could depend on compiler version, flags,
memory before running

Know common UBs
Some may be detected by compiler warnings:
turn on as much as possible
g++ -Wall -Wextra ...
Platform-dependent flags
Sanitizing: memory issues
Linking libs with pedantic implementations: e.g.
std::vector which always checks indices
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Other remarks
Segmentation fault — use a debugger to find
the exact place

Compilation errors — always start from the first
using namespace std; — shortens code, but
occupies variable names
Compiler differences — perfomance, variable size
(long double), scanf/printf templates
Assigning/passing structures — O(n) time!
Use pointers or references where needed
C++11 features
unordered_set
vector<int> a = {1, 2, 3};
for (auto x : a)
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Input/Output
Scanner is convenient, but very slow
Only small inputs, less than 10 000 integers

BufferedReader is fast, but it only reads
whole lines
Pass lines to a StringTokenizer
Parse numbers from tokens by e.g.
Integer.parseInt
Put it in a separate class with Scanner-like
methods, e.g. nextInt()
Include in your template code, to not write every
time
For output, PrintWriter is fine
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Collections

Collections always store objects, not primitives

Could use a primitive wrapper like Integer
But Integer takes 16 bytes, not 4!
Object overhead with collections
ArrayList<Integer> — much worse than
int[]
Collections: unsynchronised and synchronised
ArrayList vs Vector
Use unsynchronised — optimised for a single
thread
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String — immutable

Every operation produces a new object, so most
are linear
s += ’a’ is also O(n)!
StringBuilder — special class for growing
strings
append method — O(1)
Elements are char — no object overhead



Strings

String — immutable
Every operation produces a new object, so most
are linear

s += ’a’ is also O(n)!
StringBuilder — special class for growing
strings
append method — O(1)
Elements are char — no object overhead



Strings

String — immutable
Every operation produces a new object, so most
are linear
s += ’a’ is also O(n)!

StringBuilder — special class for growing
strings
append method — O(1)
Elements are char — no object overhead



Strings

String — immutable
Every operation produces a new object, so most
are linear
s += ’a’ is also O(n)!
StringBuilder — special class for growing
strings
append method — O(1)
Elements are char — no object overhead



Other remarks

Size of any object — at least 8 bytes more than
the size of fields

Collections.sort — merge sort: stable,
always O(n log n)
Arrays.sort — a version of quick sort:
unstable, faster on average, but could take n2 on
specific tests!
Shuffle the array before sorting
Do not forget to clone
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Speed up
Local variables are faster than global
Local — list, global — dict

Put global code in a separate function, to not
use global variables
def main():

# write global code here

main()

Appends with + create new object, so linear time
s = s + ’a’ + ’b’
a = a + [0]

Use += or append
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Speed up I/O

Instead of input and print use file I/O — like
read or write
Read and write all at once
sys.stdin.read()
sys.stdin.readlines()
sys.stdout.write(’ ’.join(map(str, a)))
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Lists

A lot of useful tools for lists: standard functions
like sum, min, join and the module itertools

Not only shorten the code, but are also faster
than for:
s = sum(a)

s = 0
for x in a:

s += x

Additions are performed inside the C code of
sum!
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Other remarks

Different versions of Python: Python 2 and
Python 3
In Python 2, range(n) creates a list, and
xrange(n) — a generator, which is much faster
In Python 3, range(n) — a generator

On average, Python 2 is slightly faster
PyPy — another interpretator — could be faster,
especially PyPy 2
Max depth of recursion is 1000 by default
Use sys.setrecursionlimit to increase
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Other remarks

eval and exec help in some implementation
problems

No compiler — no prior checks
Test solutions even more carefully
No compile errors with compiler’s message
Everything — a runtime error
Do not forget to clone
b = a[:] for lists
[[]] * n — all sublists are the same one!
[[] for i in range(n)] — correct
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C++

Most popular language on competitions

Very fast, decent standard library
Undefined behavior situations and uninformative
crashes may be hard to debug
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Java

Still fast enough — only 1.5-2 times slower than
C++, on average
Standard library in some cases overpowers that
of C++, e.g. BigInteger
Need to implement fast reading
More checks and limitations than in C++
Informative RuntimeException
Codes are longer
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Python

10–100 times slower than C++ — some
problems could not be solved at all

Standard library lacks sorted set and bitset
More high-level, programs are shorter
Useful where C++ is too cumbersome, or big
integers are needed
Implementation/math problems
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