Technical Slide

0 Lesson 1: Language specifics
Video 1.1: Basic data structures

In this lesson

m Useful language features

In this lesson

m Useful language features

m Specific features and pitfalls of C++, Java and
Python

In this lesson

m Useful language features

m Specific features and pitfalls of C++, Java and
Python

m Pros and cons of languages

Arrays

Array
m Size is fixed

Arrays

Array
m Size is fixed
m Could take/set an element by index

Arrays

Array
m Size is fixed
m Could take/set an element by index
m This operation is really fast

Arrays

Array
m Size is fixed
m Could take/set an element by index
m This operation is really fast
Dynamic array (vector/list)

m Same as a usual array

Arrays

Array
m Size is fixed
m Could take/set an element by index
m This operation is really fast
Dynamic array (vector/list)
m Same as a usual array

m Size could be changed

Arrays

Array
m Size is fixed
m Could take/set an element by index
m This operation is really fast
Dynamic array (vector/list)
m Same as a usual array
m Size could be changed

m Could take twice as much space, as the total
size of elements

String

m Array of characters + useful tools

String

m Array of characters + useful tools
m Concatenate, extract/find substring

String

m Array of characters + useful tools
m Concatenate, extract/find substring
m Split, trim (strip)

String

m Array of characters + useful tools
m Concatenate, extract/find substring
m Split, trim (strip)

m Convert to/from numbers

String

Array of characters + useful tools
Concatenate, extract/find substring
Split, trim (strip)

Convert to/from numbers

Regular expressions

Array-like structures

m Bitset — an array of bits

Array-like structures

m Bitset — an array of bits

m Each bit takes a bit in memory, not a byte as in an
array of booleans

Array-like structures

m Bitset — an array of bits
m Each bit takes a bit in memory, not a byte as in an
array of booleans
m Bits are addressed in an array of integers, as if they
are concatenated

Array-like structures

m Bitset — an array of bits
m Each bit takes a bit in memory, not a byte as in an
array of booleans
m Bits are addressed in an array of integers, as if they
are concatenated
m Could count ones, do bitwise and, or, xor, etc — in
about n/32 int operations

Array-like structures

m Bitset — an array of bits
m Each bit takes a bit in memory, not a byte as in an
array of booleans
m Bits are addressed in an array of integers, as if they
are concatenated
m Could count ones, do bitwise and, or, xor, etc — in
about n/32 int operations

m Big integers — arbitrary-size integer numbers

Array-like structures

m Bitset — an array of bits

m Each bit takes a bit in memory, not a byte as in an
array of booleans

m Bits are addressed in an array of integers, as if they
are concatenated

m Could count ones, do bitwise and, or, xor, etc — in
about n/32 int operations

m Big integers — arbitrary-size integer numbers

m Big decimals — arbitrary-precision floating point
numbers
Big integer shifted by a power of 2

Queues

Queue
m Push to the back
m [ake from the front

Queues

Queue

m Push to the back

m Take from the front
Stack

m Push to the front

m Take from the front

Queues

Queue

m Push to the back

m Take from the front
Stack

m Push to the front

m Take from the front
Deque

m Push to the front/back

m Take from the front/back

m Could be used as a queue/stack

Technical Slide

0 Lesson 1: Language specifics

Video 1.2: Advanced data structures and 1/O

Set

Set

m Insert an element

Set

m Insert an element
m Check if some value is contained

Set

m Insert an element
m Check if some value is contained

m Ordered set — could binary search for a value
“find the greatest value less than 10° in the set”

Set

m Insert an element
m Check if some value is contained

m Ordered set — could binary search for a value
“find the greatest value less than 10° in the set”

m Unordered set (hash set): O(1) per operation —
hash table

Set

m Insert an element
m Check if some value is contained

m Ordered set — could binary search for a value
“find the greatest value less than 10° in the set”

m Unordered set (hash set): O(1) per operation —
hash table

m Ordered set (tree set): O(logn) per operation —
binary search tree

Set

m Insert an element
m Check if some value is contained

m Ordered set — could binary search for a value
“find the greatest value less than 10° in the set”

m Unordered set (hash set): O(1) per operation —
hash table

m Ordered set (tree set): O(logn) per operation —
binary search tree

m On practice, ordered set is only slightly slower

Set

Insert an element
Check if some value is contained

Ordered set — could binary search for a value
“find the greatest value less than 10° in the set”

Unordered set (hash set): O(1) per operation —
hash table

Ordered set (tree set): O(log n) per operation —
binary search tree

On practice, ordered set is only slightly slower

In both, much slower operations than in an array
And more space per element

Map (dict)

Map (dict)

m Associative array: any type could be used for
keys

Map (dict)

m Associative array: any type could be used for
keys
m Space proportional to the number of elements

Map (dict)

m Associative array: any type could be used for
keys

m Space proportional to the number of elements

m Just a set of key-value pairs

Map (dict)

m Associative array: any type could be used for
keys

m Space proportional to the number of elements

m Just a set of key-value pairs

m Unordered (hash map) and ordered (tree map)

Algorithms

Algorithms

m Sort — O(nlogn)
Stability — order on equals

Algorithms

m Sort — O(nlogn)
Stability — order on equals
m Binary search — O(log n)

Algorithms

m Sort — O(nlogn)
Stability — order on equals
m Binary search — O(log n)
m Random numbers generator
Start with some seed
Generate next “random” number
The sequence depends only on the seed
Random integer in [/, r)
Shuffle a sequence

Input/output

Input/output

m Read until the end of file

Input/output

m Read until the end of file
m Read whole lines

Input/output

m Read until the end of file
m Read whole lines

m Formatted output

Input/output

Read until the end of file

Read whole lines

Formatted output

Printing floating point numbers

Fast input/output

Fast input/output

m Individual operations on files are very slow

Fast input/output

m Individual operations on files are very slow

m Buffered: instead of writing characters as they
come, accumulate them in a temporary array —
buffer
Write it to the file only when it's large enough

Fast input/output

Individual operations on files are very slow

Buffered: instead of writing characters as they
come, accumulate them in a temporary array —
buffer

Write it to the file only when it's large enough
Could also force to write the buffer — “flush”

m Interactive problems
m Debug output — confusing when it prints not
where it's in the code

Technical Slide

0 Lesson 1: Language specifics

Video 1.3: C4++

Strings

Strings

m C way: arrays of char

Strings

m C way: arrays of char
m C++ way: string

Strings

m C way: arrays of char
m C++ way: string
m Fixed-size vs dynamic

Strings

C way: arrays of char

C++ way: string

Fixed-size vs dynamic

Functions (like strcmp, strcat) vs members

Strings

C way: arrays of char

C++ way: string

Fixed-size vs dynamic

Functions (like strcmp, strcat) vs members
Slightly faster vs convenient

Strings

C way: arrays of char

C++ way: string

Fixed-size vs dynamic

Functions (like strcmp, strcat) vs members
Slightly faster vs convenient

string is used more often

Input/output

Input/output

m C way:
int a;
scanf ("%d", &a);
print("%d", a);

Input/output

m C way:
int a;
scanf ("%d", &a);
print("%d", a);
m Fast

Input/output

m C way:
int a;
scanf ("%d", &a);
print("%d", a);
m Fast

m Powerful templates

Input/output

m C way:
int a;
scanf ("%d", &a);
print("%d", a);
m Fast
m Powerful templates

m Dangerous: no type checks, just writes to the
memory

Input/output

C way:

int a;

scanf ("%d", &a);
print("%d", a);
Fast

Powerful templates

Dangerous: no type checks, just writes to the
memory

Templates may differ in different compilers

Input/output
m C++ way:
int a;
cin >> a;
cout << a;

Input/output
m C++ way:
int a;
cin >> a;
cout << a;
m More convenient on simple input/output

Input/output
m C++ way:
int a;
cin >> a;
cout << a;
m More convenient on simple input/output
m Slow by default:

Input/output

m C++ way:
int a;
cin >> a;
cout << a;
m More convenient on simple input/output
m Slow by default:
m Synchronises with stdio
— turn off with
ios_base::sync_with_stdio(false);

Input/output

m C++ way:
int a;
cin >> a;
cout << a;
m More convenient on simple input/output
m Slow by default:
m Synchronises with stdio
— turn off with
ios_base::sync_with_stdio(false);
m cout buffer flushes on each cin
— turn off with cin.tie(0);

Input/output

m C++ way:
int a;
cin >> a;
cout << a;
m More convenient on simple input/output
m Slow by default:
m Synchronises with stdio
— turn off with
ios_base::sync_with_stdio(false);
m cout buffer flushes on each cin
— turn off with cin.tie(0);
m cout << endl; flushes — use cout << ’\n’;

Input/output

m C++ way:
int a;
cin >> a;
cout << a;
m More convenient on simple input/output
m Slow by default:
m Synchronises with stdio
— turn off with
ios_base::sync_with_stdio(false);
m cout buffer flushes on each cin
— turn off with cin.tie(0);
m cout << endl; flushes — use cout << ’\n’;
m Just as fast as printf/scanf, if tuned correctly

Undefined behavior

Undefined behavior

m Incorrect array indices: negative or too large

int al10];
al-1] = al[10] = 0;

Undefined behavior

m Incorrect array indices: negative or too large

int a[10];
al-1] = a[10] = 0;

m Using local variables before assignment
int a;
at+;

cout << a;

Undefined behavior

m Incorrect array indices: negative or too large

int a[10];
al-1] = a[10] = 0;
m Using local variables before assignment
int a;
at+;

cout << a;
m Non-void functions without return

Undefined behavior

m Incorrect array indices: negative or too large

int a[10];
al-1] = a[10] = 0;

m Using local variables before assignment
int a;
at+;
cout << a;

m Non-void functions without return

m Signed integer overflow

Undefined behavior

m Compiler may do anything: your program could
crash, or work incorrectly, or even correctly
It could depend on compiler version, flags,
memory before running

Undefined behavior

m Compiler may do anything: your program could
crash, or work incorrectly, or even correctly
It could depend on compiler version, flags,
memory before running

m Know common UBs

Undefined behavior

m Compiler may do anything: your program could
crash, or work incorrectly, or even correctly
It could depend on compiler version, flags,
memory before running

m Know common UBs

m Some may be detected by compiler warnings:
turn on as much as possible
g++ -Wall -Wextra .

Undefined behavior

Compiler may do anything: your program could
crash, or work incorrectly, or even correctly

It could depend on compiler version, flags,
memory before running

Know common UBs

m Some may be detected by compiler warnings:
turn on as much as possible
g++ -Wall -Wextra .

Platform-dependent flags

Sanitizing: memory issues

Linking libs with pedantic implementations: e.g.
std: :vector which always checks indices

Other remarks

m Segmentation fault — use a debugger to find
the exact place

Other remarks

m Segmentation fault — use a debugger to find
the exact place
m Compilation errors — always start from the first

Other remarks

m Segmentation fault — use a debugger to find
the exact place

m Compilation errors — always start from the first

m using namespace std; — shortens code, but
occupies variable names

Other remarks

m Segmentation fault — use a debugger to find
the exact place

m Compilation errors — always start from the first

m using namespace std; — shortens code, but
occupies variable names

m Compiler differences — perfomance, variable size
(Long double), scanf/printf templates

Other remarks

Segmentation fault — use a debugger to find
the exact place

Compilation errors — always start from the first
using namespace std; — shortens code, but
occupies variable names

Compiler differences — perfomance, variable size
(Long double), scanf/printf templates
Assigning/passing structures — O(n) time!

Use pointers or references where needed

Other remarks

Segmentation fault — use a debugger to find
the exact place

Compilation errors — always start from the first
using namespace std; — shortens code, but
occupies variable names

Compiler differences — perfomance, variable size
(Long double), scanf/printf templates
Assigning/passing structures — O(n) time!

Use pointers or references where needed

C++11 features

unordered_set

vector<int> a = {1, 2, 3};

for (auto x : a)

Technical Slide

0 Lesson 1: Language specifics

Video 1.4: Java

Input/Output

m Scanner is convenient, but very slow
Only small inputs, less than 10000 integers

Input/Output

m Scanner is convenient, but very slow
Only small inputs, less than 10000 integers

m BufferedReader is fast, but it only reads
whole lines

Input/Output
m Scanner is convenient, but very slow
Only small inputs, less than 10000 integers
m BufferedReader is fast, but it only reads
whole lines
m Pass lines to a StringTokenizer

Input/Output
m Scanner is convenient, but very slow

Only small inputs, less than 10000 integers

m BufferedReader is fast, but it only reads
whole lines

m Pass lines to a StringTokenizer

m Parse numbers from tokens by e.g.
Integer.parselnt

Input/Output

Scanner is convenient, but very slow
Only small inputs, less than 10000 integers

BufferedReader is fast, but it only reads
whole lines

m Pass lines to a StringTokenizer

Parse numbers from tokens by e.g.
Integer.parselnt

Put it in a separate class with Scanner-like
methods, e.g. nextInt ()

Input/Output
m Scanner is convenient, but very slow

Only small inputs, less than 10000 integers

m BufferedReader is fast, but it only reads
whole lines

m Pass lines to a StringTokenizer

m Parse numbers from tokens by e.g.
Integer.parselnt

m Put it in a separate class with Scanner-like
methods, e.g. nextInt ()

m Include in your template code, to not write every
time

Input/Output
Scanner is convenient, but very slow

Only small inputs, less than 10000 integers

BufferedReader is fast, but it only reads
whole lines

m Pass lines to a StringTokenizer

Parse numbers from tokens by e.g.
Integer.parselnt

Put it in a separate class with Scanner-like
methods, e.g. nextInt ()

Include in your template code, to not write every
time

For output, PrintWriter is fine

Collections

m Collections always store objects, not primitives

Collections

m Collections always store objects, not primitives

m Could use a primitive wrapper like Integer
But Integer takes 16 bytes, not 4!

Collections

m Collections always store objects, not primitives
m Could use a primitive wrapper like Integer
But Integer takes 16 bytes, not 4!

m Object overhead with collections
ArrayList<Integer> — much worse than
int[]

Collections

m Collections always store objects, not primitives

Could use a primitive wrapper like Integer
But Integer takes 16 bytes, not 4!

Object overhead with collections
ArrayList<Integer> — much worse than
int []

Collections: unsynchronised and synchronised
ArrayList vs Vector

Use unsynchronised — optimised for a single
thread

Strings

m String — immutable

Strings

m String — immutable

m Every operation produces a new object, so most
are linear

Strings

m String — immutable

m Every operation produces a new object, so most
are linear

ms += ’a’isalso O(n)!

Strings

String — immutable

Every operation produces a new object, so most
are linear

ms += ’a’isalso O(n)!

StringBuilder — special class for growing
strings

append method — O(1)

Elements are char — no object overhead

Other remarks

m Size of any object — at least 8 bytes more than
the size of fields

Other remarks

m Size of any object — at least 8 bytes more than
the size of fields

m Collections.sort — merge sort: stable,
always O(nlog n)

Other remarks

m Size of any object — at least 8 bytes more than
the size of fields

m Collections.sort — merge sort: stable,
always O(nlog n)

m Arrays.sort — a version of quick sort:
unstable, faster on average, but could take n® on
specific tests!

Shuffle the array before sorting

Other remarks

m Size of any object — at least 8 bytes more than
the size of fields

m Collections.sort — merge sort: stable,
always O(nlog n)

m Arrays.sort — a version of quick sort:
unstable, faster on average, but could take n® on
specific tests!

Shuffle the array before sorting

m Do not forget to clone

Technical Slide

0 Lesson 1: Language specifics

Video 1.5: Python

Speed up

m Local variables are faster than global
Local — 1ist, global — dict

Speed up

m Local variables are faster than global
Local — 1ist, global — dict

m Put global code in a separate function, to not
use global variables

def main():
write global code here

main()

Speed up
m Local variables are faster than global

Local — 1ist, global — dict

m Put global code in a separate function, to not
use global variables

def main():
write global code here

main()

m Appends with + create new object, so linear time
s =s+’a’” +’b’
a=a+ [0]

Use += or append

Speed up 1/0

Speed up 1/0

m Instead of input and print use file |/O — like
read or write

Speed up 1/0

m Instead of input and print use file |/O — like
read or write

m Read and write all at once

sys.stdin.read()
sys.stdin.readlines()
sys.stdout.write(’ ’.join(map(str, a)))

Lists

m A lot of useful tools for lists: standard functions
like sum, min, join and the module itertools

Lists

m A lot of useful tools for lists: standard functions
like sum, min, join and the module itertools

m Not only shorten the code, but are also faster
than for:

s = sum(a)

s =0
for x in a:
s += X

Additions are performed inside the C code of
sum!

Other remarks

m Different versions of Python: Python 2 and
Python 3
In Python 2, range (n) creates a list, and
xrange (n) — a generator, which is much faster
In Python 3, range (n) — a generator

Other remarks

m Different versions of Python: Python 2 and
Python 3
In Python 2, range (n) creates a list, and
xrange (n) — a generator, which is much faster
In Python 3, range (n) — a generator

m On average, Python 2 is slightly faster

Other remarks

m Different versions of Python: Python 2 and
Python 3
In Python 2, range (n) creates a list, and
xrange (n) — a generator, which is much faster
In Python 3, range (n) — a generator

m On average, Python 2 is slightly faster

m PyPy — another interpretator — could be faster,
especially PyPy 2

Other remarks

Different versions of Python: Python 2 and
Python 3

In Python 2, range (n) creates a list, and
xrange (n) — a generator, which is much faster
In Python 3, range (n) — a generator

m On average, Python 2 is slightly faster

PyPy — another interpretator — could be faster,
especially PyPy 2

Max depth of recursion is 1000 by default

Use sys.setrecursionlimit to increase

Other remarks

m eval and exec help in some implementation
problems

Other remarks

m eval and exec help in some implementation
problems

m No compiler — no prior checks
Test solutions even more carefully

Other remarks

m eval and exec help in some implementation
problems

m No compiler — no prior checks
Test solutions even more carefully

m No compile errors with compiler's message
Everything — a runtime error

Other remarks

eval and exec help in some implementation
problems

No compiler — no prior checks
Test solutions even more carefully

No compile errors with compiler's message
Everything — a runtime error

Do not forget to clone

b = al[:] for lists

[[J] * n — all sublists are the same one!
[[] for i in range(n)] —

Technical Slide

0 Lesson 1: Language specifics

Video 1.6: Comparing languages

C++

m Most popular language on competitions

C++

m Most popular language on competitions
m Very fast, decent standard library

C++

m Most popular language on competitions
m Very fast, decent standard library

m Undefined behavior situations and uninformative
crashes may be hard to debug

Java

Java

m Still fast enough — only 1.5-2 times slower than
C++, on average

Java

m Still fast enough — only 1.5-2 times slower than
C++, on average

m Standard library in some cases overpowers that
of C++, e.g. BigInteger

Java

m Still fast enough — only 1.5-2 times slower than
C++, on average

m Standard library in some cases overpowers that
of C++, e.g. BigInteger

m Need to implement fast reading

Java

m Still fast enough — only 1.5-2 times slower than
C++, on average

m Standard library in some cases overpowers that
of C++, e.g. BigInteger

m Need to implement fast reading

m More checks and limitations than in C4++
Informative RuntimeException

Java

m Still fast enough — only 1.5-2 times slower than
C++, on average

m Standard library in some cases overpowers that
of C++, e.g. BigInteger

m Need to implement fast reading

m More checks and limitations than in C4++
Informative RuntimeException

m Codes are longer

Python

m 10-100 times slower than C++ — some
problems could not be solved at all

Python

m 10-100 times slower than C++ — some
problems could not be solved at all

m Standard library lacks sorted set and bitset

Python

m 10-100 times slower than C++ — some
problems could not be solved at all

m Standard library lacks sorted set and bitset
m More high-level, programs are shorter

Python

m 10-100 times slower than C++ — some
problems could not be solved at all

m Standard library lacks sorted set and bitset
m More high-level, programs are shorter

m Useful where C++ is too cumbersome, or big
integers are needed
Implementation/math problems

Summary

m Learn to use standard library tools

Summary

m Learn to use standard library tools
m Know common pitfalls

Summary

m Learn to use standard library tools
m Know common pitfalls

m Choose language wisely

	Lesson 1: Language specifics
	Video 1.1: Basic data structures
	Video 1.2: Advanced data structures and I/O
	Video 1.3: C++
	Video 1.4: Java
	Video 1.5: Python
	Video 1.6: Comparing languages

