
Technical Slide

1 Lesson 1: Language specifics
Video 1.1: Basic data structures
Video 1.2: Advanced data structures and I/O
Video 1.3: C++
Video 1.4: Java
Video 1.5: Python
Video 1.6: Comparing languages

In this lesson

Useful language features

Specific features and pitfalls of C++, Java and
Python
Pros and cons of languages

In this lesson

Useful language features
Specific features and pitfalls of C++, Java and
Python

Pros and cons of languages

In this lesson

Useful language features
Specific features and pitfalls of C++, Java and
Python
Pros and cons of languages

Arrays

Array
Size is fixed

Could take/set an element by index
This operation is really fast

Dynamic array (vector/list)
Same as a usual array
Size could be changed
Could take twice as much space, as the total
size of elements

Arrays

Array
Size is fixed
Could take/set an element by index

This operation is really fast
Dynamic array (vector/list)

Same as a usual array
Size could be changed
Could take twice as much space, as the total
size of elements

Arrays

Array
Size is fixed
Could take/set an element by index
This operation is really fast

Dynamic array (vector/list)
Same as a usual array
Size could be changed
Could take twice as much space, as the total
size of elements

Arrays

Array
Size is fixed
Could take/set an element by index
This operation is really fast

Dynamic array (vector/list)
Same as a usual array

Size could be changed
Could take twice as much space, as the total
size of elements

Arrays

Array
Size is fixed
Could take/set an element by index
This operation is really fast

Dynamic array (vector/list)
Same as a usual array
Size could be changed

Could take twice as much space, as the total
size of elements

Arrays

Array
Size is fixed
Could take/set an element by index
This operation is really fast

Dynamic array (vector/list)
Same as a usual array
Size could be changed
Could take twice as much space, as the total
size of elements

String

Array of characters + useful tools

Concatenate, extract/find substring
Split, trim (strip)
Convert to/from numbers
Regular expressions

String

Array of characters + useful tools
Concatenate, extract/find substring

Split, trim (strip)
Convert to/from numbers
Regular expressions

String

Array of characters + useful tools
Concatenate, extract/find substring
Split, trim (strip)

Convert to/from numbers
Regular expressions

String

Array of characters + useful tools
Concatenate, extract/find substring
Split, trim (strip)
Convert to/from numbers

Regular expressions

String

Array of characters + useful tools
Concatenate, extract/find substring
Split, trim (strip)
Convert to/from numbers
Regular expressions

Array-like structures

Bitset — an array of bits

Each bit takes a bit in memory, not a byte as in an
array of booleans
Bits are addressed in an array of integers, as if they
are concatenated
Could count ones, do bitwise and, or, xor, etc — in
about n/32 int operations

Big integers — arbitrary-size integer numbers
Big decimals — arbitrary-precision floating point
numbers
Big integer shifted by a power of 2

Array-like structures

Bitset — an array of bits
Each bit takes a bit in memory, not a byte as in an
array of booleans

Bits are addressed in an array of integers, as if they
are concatenated
Could count ones, do bitwise and, or, xor, etc — in
about n/32 int operations

Big integers — arbitrary-size integer numbers
Big decimals — arbitrary-precision floating point
numbers
Big integer shifted by a power of 2

Array-like structures

Bitset — an array of bits
Each bit takes a bit in memory, not a byte as in an
array of booleans
Bits are addressed in an array of integers, as if they
are concatenated

Could count ones, do bitwise and, or, xor, etc — in
about n/32 int operations

Big integers — arbitrary-size integer numbers
Big decimals — arbitrary-precision floating point
numbers
Big integer shifted by a power of 2

Array-like structures

Bitset — an array of bits
Each bit takes a bit in memory, not a byte as in an
array of booleans
Bits are addressed in an array of integers, as if they
are concatenated
Could count ones, do bitwise and, or, xor, etc — in
about n/32 int operations

Big integers — arbitrary-size integer numbers
Big decimals — arbitrary-precision floating point
numbers
Big integer shifted by a power of 2

Array-like structures

Bitset — an array of bits
Each bit takes a bit in memory, not a byte as in an
array of booleans
Bits are addressed in an array of integers, as if they
are concatenated
Could count ones, do bitwise and, or, xor, etc — in
about n/32 int operations

Big integers — arbitrary-size integer numbers

Big decimals — arbitrary-precision floating point
numbers
Big integer shifted by a power of 2

Array-like structures

Bitset — an array of bits
Each bit takes a bit in memory, not a byte as in an
array of booleans
Bits are addressed in an array of integers, as if they
are concatenated
Could count ones, do bitwise and, or, xor, etc — in
about n/32 int operations

Big integers — arbitrary-size integer numbers
Big decimals — arbitrary-precision floating point
numbers
Big integer shifted by a power of 2

Queues

Queue
Push to the back
Take from the front

Stack
Push to the front
Take from the front

Deque
Push to the front/back
Take from the front/back
Could be used as a queue/stack

Queues

Queue
Push to the back
Take from the front

Stack
Push to the front
Take from the front

Deque
Push to the front/back
Take from the front/back
Could be used as a queue/stack

Queues

Queue
Push to the back
Take from the front

Stack
Push to the front
Take from the front

Deque
Push to the front/back
Take from the front/back
Could be used as a queue/stack

Technical Slide

1 Lesson 1: Language specifics
Video 1.1: Basic data structures
Video 1.2: Advanced data structures and I/O
Video 1.3: C++
Video 1.4: Java
Video 1.5: Python
Video 1.6: Comparing languages

Set

Insert an element
Check if some value is contained
Ordered set — could binary search for a value
“find the greatest value less than 109 in the set”
Unordered set (hash set): O(1) per operation —
hash table
Ordered set (tree set): O(log n) per operation —
binary search tree
On practice, ordered set is only slightly slower
In both, much slower operations than in an array
And more space per element

Set

Insert an element

Check if some value is contained
Ordered set — could binary search for a value
“find the greatest value less than 109 in the set”
Unordered set (hash set): O(1) per operation —
hash table
Ordered set (tree set): O(log n) per operation —
binary search tree
On practice, ordered set is only slightly slower
In both, much slower operations than in an array
And more space per element

Set

Insert an element
Check if some value is contained

Ordered set — could binary search for a value
“find the greatest value less than 109 in the set”
Unordered set (hash set): O(1) per operation —
hash table
Ordered set (tree set): O(log n) per operation —
binary search tree
On practice, ordered set is only slightly slower
In both, much slower operations than in an array
And more space per element

Set

Insert an element
Check if some value is contained
Ordered set — could binary search for a value
“find the greatest value less than 109 in the set”

Unordered set (hash set): O(1) per operation —
hash table
Ordered set (tree set): O(log n) per operation —
binary search tree
On practice, ordered set is only slightly slower
In both, much slower operations than in an array
And more space per element

Set

Insert an element
Check if some value is contained
Ordered set — could binary search for a value
“find the greatest value less than 109 in the set”
Unordered set (hash set): O(1) per operation —
hash table

Ordered set (tree set): O(log n) per operation —
binary search tree
On practice, ordered set is only slightly slower
In both, much slower operations than in an array
And more space per element

Set

Insert an element
Check if some value is contained
Ordered set — could binary search for a value
“find the greatest value less than 109 in the set”
Unordered set (hash set): O(1) per operation —
hash table
Ordered set (tree set): O(log n) per operation —
binary search tree

On practice, ordered set is only slightly slower
In both, much slower operations than in an array
And more space per element

Set

Insert an element
Check if some value is contained
Ordered set — could binary search for a value
“find the greatest value less than 109 in the set”
Unordered set (hash set): O(1) per operation —
hash table
Ordered set (tree set): O(log n) per operation —
binary search tree
On practice, ordered set is only slightly slower

In both, much slower operations than in an array
And more space per element

Set

Insert an element
Check if some value is contained
Ordered set — could binary search for a value
“find the greatest value less than 109 in the set”
Unordered set (hash set): O(1) per operation —
hash table
Ordered set (tree set): O(log n) per operation —
binary search tree
On practice, ordered set is only slightly slower
In both, much slower operations than in an array
And more space per element

Map (dict)

Associative array: any type could be used for
keys
Space proportional to the number of elements
Just a set of key-value pairs
Unordered (hash map) and ordered (tree map)

Map (dict)

Associative array: any type could be used for
keys

Space proportional to the number of elements
Just a set of key-value pairs
Unordered (hash map) and ordered (tree map)

Map (dict)

Associative array: any type could be used for
keys
Space proportional to the number of elements

Just a set of key-value pairs
Unordered (hash map) and ordered (tree map)

Map (dict)

Associative array: any type could be used for
keys
Space proportional to the number of elements
Just a set of key-value pairs

Unordered (hash map) and ordered (tree map)

Map (dict)

Associative array: any type could be used for
keys
Space proportional to the number of elements
Just a set of key-value pairs
Unordered (hash map) and ordered (tree map)

Algorithms

Sort — O(n log n)
Stability — order on equals
Binary search — O(log n)
Random numbers generator
Start with some seed
Generate next “random” number
The sequence depends only on the seed
Random integer in [l , r)
Shuffle a sequence

Algorithms

Sort — O(n log n)
Stability — order on equals

Binary search — O(log n)
Random numbers generator
Start with some seed
Generate next “random” number
The sequence depends only on the seed
Random integer in [l , r)
Shuffle a sequence

Algorithms

Sort — O(n log n)
Stability — order on equals
Binary search — O(log n)

Random numbers generator
Start with some seed
Generate next “random” number
The sequence depends only on the seed
Random integer in [l , r)
Shuffle a sequence

Algorithms

Sort — O(n log n)
Stability — order on equals
Binary search — O(log n)
Random numbers generator
Start with some seed
Generate next “random” number
The sequence depends only on the seed
Random integer in [l , r)
Shuffle a sequence

Input/output

Read until the end of file
Read whole lines
Formatted output
Printing floating point numbers

Input/output

Read until the end of file

Read whole lines
Formatted output
Printing floating point numbers

Input/output

Read until the end of file
Read whole lines

Formatted output
Printing floating point numbers

Input/output

Read until the end of file
Read whole lines
Formatted output

Printing floating point numbers

Input/output

Read until the end of file
Read whole lines
Formatted output
Printing floating point numbers

Fast input/output

Individual operations on files are very slow
Buffered: instead of writing characters as they
come, accumulate them in a temporary array —
buffer
Write it to the file only when it’s large enough
Could also force to write the buffer — “flush”

Interactive problems
Debug output — confusing when it prints not
where it’s in the code

Fast input/output

Individual operations on files are very slow

Buffered: instead of writing characters as they
come, accumulate them in a temporary array —
buffer
Write it to the file only when it’s large enough
Could also force to write the buffer — “flush”

Interactive problems
Debug output — confusing when it prints not
where it’s in the code

Fast input/output

Individual operations on files are very slow
Buffered: instead of writing characters as they
come, accumulate them in a temporary array —
buffer
Write it to the file only when it’s large enough

Could also force to write the buffer — “flush”
Interactive problems
Debug output — confusing when it prints not
where it’s in the code

Fast input/output

Individual operations on files are very slow
Buffered: instead of writing characters as they
come, accumulate them in a temporary array —
buffer
Write it to the file only when it’s large enough
Could also force to write the buffer — “flush”

Interactive problems
Debug output — confusing when it prints not
where it’s in the code

Technical Slide

1 Lesson 1: Language specifics
Video 1.1: Basic data structures
Video 1.2: Advanced data structures and I/O
Video 1.3: C++
Video 1.4: Java
Video 1.5: Python
Video 1.6: Comparing languages

Strings

C way: arrays of char
C++ way: string
Fixed-size vs dynamic
Functions (like strcmp, strcat) vs members
Slightly faster vs convenient
string is used more often

Strings

C way: arrays of char

C++ way: string
Fixed-size vs dynamic
Functions (like strcmp, strcat) vs members
Slightly faster vs convenient
string is used more often

Strings

C way: arrays of char
C++ way: string

Fixed-size vs dynamic
Functions (like strcmp, strcat) vs members
Slightly faster vs convenient
string is used more often

Strings

C way: arrays of char
C++ way: string
Fixed-size vs dynamic

Functions (like strcmp, strcat) vs members
Slightly faster vs convenient
string is used more often

Strings

C way: arrays of char
C++ way: string
Fixed-size vs dynamic
Functions (like strcmp, strcat) vs members

Slightly faster vs convenient
string is used more often

Strings

C way: arrays of char
C++ way: string
Fixed-size vs dynamic
Functions (like strcmp, strcat) vs members
Slightly faster vs convenient

string is used more often

Strings

C way: arrays of char
C++ way: string
Fixed-size vs dynamic
Functions (like strcmp, strcat) vs members
Slightly faster vs convenient
string is used more often

Input/output

C way:
int a;
scanf("%d", &a);
print("%d", a);
Fast
Powerful templates
Dangerous: no type checks, just writes to the
memory
Templates may differ in different compilers

Input/output

C way:
int a;
scanf("%d", &a);
print("%d", a);

Fast
Powerful templates
Dangerous: no type checks, just writes to the
memory
Templates may differ in different compilers

Input/output

C way:
int a;
scanf("%d", &a);
print("%d", a);
Fast

Powerful templates
Dangerous: no type checks, just writes to the
memory
Templates may differ in different compilers

Input/output

C way:
int a;
scanf("%d", &a);
print("%d", a);
Fast
Powerful templates

Dangerous: no type checks, just writes to the
memory
Templates may differ in different compilers

Input/output

C way:
int a;
scanf("%d", &a);
print("%d", a);
Fast
Powerful templates
Dangerous: no type checks, just writes to the
memory

Templates may differ in different compilers

Input/output

C way:
int a;
scanf("%d", &a);
print("%d", a);
Fast
Powerful templates
Dangerous: no type checks, just writes to the
memory
Templates may differ in different compilers

Input/output
C++ way:
int a;
cin >> a;
cout << a;

More convenient on simple input/output
Slow by default:
Synchronises with stdio
— turn off with
ios_base::sync_with_stdio(false);
cout buffer flushes on each cin
— turn off with cin.tie(0);
cout << endl; flushes — use cout << ’\n’;
Just as fast as printf/scanf, if tuned correctly

Input/output
C++ way:
int a;
cin >> a;
cout << a;
More convenient on simple input/output

Slow by default:
Synchronises with stdio
— turn off with
ios_base::sync_with_stdio(false);
cout buffer flushes on each cin
— turn off with cin.tie(0);
cout << endl; flushes — use cout << ’\n’;
Just as fast as printf/scanf, if tuned correctly

Input/output
C++ way:
int a;
cin >> a;
cout << a;
More convenient on simple input/output
Slow by default:

Synchronises with stdio
— turn off with
ios_base::sync_with_stdio(false);
cout buffer flushes on each cin
— turn off with cin.tie(0);
cout << endl; flushes — use cout << ’\n’;
Just as fast as printf/scanf, if tuned correctly

Input/output
C++ way:
int a;
cin >> a;
cout << a;
More convenient on simple input/output
Slow by default:
Synchronises with stdio
— turn off with
ios_base::sync_with_stdio(false);

cout buffer flushes on each cin
— turn off with cin.tie(0);
cout << endl; flushes — use cout << ’\n’;
Just as fast as printf/scanf, if tuned correctly

Input/output
C++ way:
int a;
cin >> a;
cout << a;
More convenient on simple input/output
Slow by default:
Synchronises with stdio
— turn off with
ios_base::sync_with_stdio(false);
cout buffer flushes on each cin
— turn off with cin.tie(0);

cout << endl; flushes — use cout << ’\n’;
Just as fast as printf/scanf, if tuned correctly

Input/output
C++ way:
int a;
cin >> a;
cout << a;
More convenient on simple input/output
Slow by default:
Synchronises with stdio
— turn off with
ios_base::sync_with_stdio(false);
cout buffer flushes on each cin
— turn off with cin.tie(0);
cout << endl; flushes — use cout << ’\n’;

Just as fast as printf/scanf, if tuned correctly

Input/output
C++ way:
int a;
cin >> a;
cout << a;
More convenient on simple input/output
Slow by default:
Synchronises with stdio
— turn off with
ios_base::sync_with_stdio(false);
cout buffer flushes on each cin
— turn off with cin.tie(0);
cout << endl; flushes — use cout << ’\n’;
Just as fast as printf/scanf, if tuned correctly

Undefined behavior

Incorrect array indices: negative or too large

int a[10];
a[-1] = a[10] = 0;

Using local variables before assignment
int a;
a++;
cout << a;
Non-void functions without return
Signed integer overflow

Undefined behavior

Incorrect array indices: negative or too large

int a[10];
a[-1] = a[10] = 0;

Using local variables before assignment
int a;
a++;
cout << a;
Non-void functions without return
Signed integer overflow

Undefined behavior

Incorrect array indices: negative or too large

int a[10];
a[-1] = a[10] = 0;

Using local variables before assignment
int a;
a++;
cout << a;

Non-void functions without return
Signed integer overflow

Undefined behavior

Incorrect array indices: negative or too large

int a[10];
a[-1] = a[10] = 0;

Using local variables before assignment
int a;
a++;
cout << a;
Non-void functions without return

Signed integer overflow

Undefined behavior

Incorrect array indices: negative or too large

int a[10];
a[-1] = a[10] = 0;

Using local variables before assignment
int a;
a++;
cout << a;
Non-void functions without return
Signed integer overflow

Undefined behavior
Compiler may do anything: your program could
crash, or work incorrectly, or even correctly
It could depend on compiler version, flags,
memory before running

Know common UBs
Some may be detected by compiler warnings:
turn on as much as possible
g++ -Wall -Wextra ...
Platform-dependent flags
Sanitizing: memory issues
Linking libs with pedantic implementations: e.g.
std::vector which always checks indices

Undefined behavior
Compiler may do anything: your program could
crash, or work incorrectly, or even correctly
It could depend on compiler version, flags,
memory before running
Know common UBs

Some may be detected by compiler warnings:
turn on as much as possible
g++ -Wall -Wextra ...
Platform-dependent flags
Sanitizing: memory issues
Linking libs with pedantic implementations: e.g.
std::vector which always checks indices

Undefined behavior
Compiler may do anything: your program could
crash, or work incorrectly, or even correctly
It could depend on compiler version, flags,
memory before running
Know common UBs
Some may be detected by compiler warnings:
turn on as much as possible
g++ -Wall -Wextra ...

Platform-dependent flags
Sanitizing: memory issues
Linking libs with pedantic implementations: e.g.
std::vector which always checks indices

Undefined behavior
Compiler may do anything: your program could
crash, or work incorrectly, or even correctly
It could depend on compiler version, flags,
memory before running
Know common UBs
Some may be detected by compiler warnings:
turn on as much as possible
g++ -Wall -Wextra ...
Platform-dependent flags
Sanitizing: memory issues
Linking libs with pedantic implementations: e.g.
std::vector which always checks indices

Other remarks
Segmentation fault — use a debugger to find
the exact place

Compilation errors — always start from the first
using namespace std; — shortens code, but
occupies variable names
Compiler differences — perfomance, variable size
(long double), scanf/printf templates
Assigning/passing structures — O(n) time!
Use pointers or references where needed
C++11 features
unordered_set
vector<int> a = {1, 2, 3};
for (auto x : a)

Other remarks
Segmentation fault — use a debugger to find
the exact place
Compilation errors — always start from the first

using namespace std; — shortens code, but
occupies variable names
Compiler differences — perfomance, variable size
(long double), scanf/printf templates
Assigning/passing structures — O(n) time!
Use pointers or references where needed
C++11 features
unordered_set
vector<int> a = {1, 2, 3};
for (auto x : a)

Other remarks
Segmentation fault — use a debugger to find
the exact place
Compilation errors — always start from the first
using namespace std; — shortens code, but
occupies variable names

Compiler differences — perfomance, variable size
(long double), scanf/printf templates
Assigning/passing structures — O(n) time!
Use pointers or references where needed
C++11 features
unordered_set
vector<int> a = {1, 2, 3};
for (auto x : a)

Other remarks
Segmentation fault — use a debugger to find
the exact place
Compilation errors — always start from the first
using namespace std; — shortens code, but
occupies variable names
Compiler differences — perfomance, variable size
(long double), scanf/printf templates

Assigning/passing structures — O(n) time!
Use pointers or references where needed
C++11 features
unordered_set
vector<int> a = {1, 2, 3};
for (auto x : a)

Other remarks
Segmentation fault — use a debugger to find
the exact place
Compilation errors — always start from the first
using namespace std; — shortens code, but
occupies variable names
Compiler differences — perfomance, variable size
(long double), scanf/printf templates
Assigning/passing structures — O(n) time!
Use pointers or references where needed

C++11 features
unordered_set
vector<int> a = {1, 2, 3};
for (auto x : a)

Other remarks
Segmentation fault — use a debugger to find
the exact place
Compilation errors — always start from the first
using namespace std; — shortens code, but
occupies variable names
Compiler differences — perfomance, variable size
(long double), scanf/printf templates
Assigning/passing structures — O(n) time!
Use pointers or references where needed
C++11 features
unordered_set
vector<int> a = {1, 2, 3};
for (auto x : a)

Technical Slide

1 Lesson 1: Language specifics
Video 1.1: Basic data structures
Video 1.2: Advanced data structures and I/O
Video 1.3: C++
Video 1.4: Java
Video 1.5: Python
Video 1.6: Comparing languages

Input/Output
Scanner is convenient, but very slow
Only small inputs, less than 10 000 integers

BufferedReader is fast, but it only reads
whole lines
Pass lines to a StringTokenizer
Parse numbers from tokens by e.g.
Integer.parseInt
Put it in a separate class with Scanner-like
methods, e.g. nextInt()
Include in your template code, to not write every
time
For output, PrintWriter is fine

Input/Output
Scanner is convenient, but very slow
Only small inputs, less than 10 000 integers
BufferedReader is fast, but it only reads
whole lines

Pass lines to a StringTokenizer
Parse numbers from tokens by e.g.
Integer.parseInt
Put it in a separate class with Scanner-like
methods, e.g. nextInt()
Include in your template code, to not write every
time
For output, PrintWriter is fine

Input/Output
Scanner is convenient, but very slow
Only small inputs, less than 10 000 integers
BufferedReader is fast, but it only reads
whole lines
Pass lines to a StringTokenizer

Parse numbers from tokens by e.g.
Integer.parseInt
Put it in a separate class with Scanner-like
methods, e.g. nextInt()
Include in your template code, to not write every
time
For output, PrintWriter is fine

Input/Output
Scanner is convenient, but very slow
Only small inputs, less than 10 000 integers
BufferedReader is fast, but it only reads
whole lines
Pass lines to a StringTokenizer
Parse numbers from tokens by e.g.
Integer.parseInt

Put it in a separate class with Scanner-like
methods, e.g. nextInt()
Include in your template code, to not write every
time
For output, PrintWriter is fine

Input/Output
Scanner is convenient, but very slow
Only small inputs, less than 10 000 integers
BufferedReader is fast, but it only reads
whole lines
Pass lines to a StringTokenizer
Parse numbers from tokens by e.g.
Integer.parseInt
Put it in a separate class with Scanner-like
methods, e.g. nextInt()

Include in your template code, to not write every
time
For output, PrintWriter is fine

Input/Output
Scanner is convenient, but very slow
Only small inputs, less than 10 000 integers
BufferedReader is fast, but it only reads
whole lines
Pass lines to a StringTokenizer
Parse numbers from tokens by e.g.
Integer.parseInt
Put it in a separate class with Scanner-like
methods, e.g. nextInt()
Include in your template code, to not write every
time

For output, PrintWriter is fine

Input/Output
Scanner is convenient, but very slow
Only small inputs, less than 10 000 integers
BufferedReader is fast, but it only reads
whole lines
Pass lines to a StringTokenizer
Parse numbers from tokens by e.g.
Integer.parseInt
Put it in a separate class with Scanner-like
methods, e.g. nextInt()
Include in your template code, to not write every
time
For output, PrintWriter is fine

Collections

Collections always store objects, not primitives

Could use a primitive wrapper like Integer
But Integer takes 16 bytes, not 4!
Object overhead with collections
ArrayList<Integer> — much worse than
int[]
Collections: unsynchronised and synchronised
ArrayList vs Vector
Use unsynchronised — optimised for a single
thread

Collections

Collections always store objects, not primitives
Could use a primitive wrapper like Integer
But Integer takes 16 bytes, not 4!

Object overhead with collections
ArrayList<Integer> — much worse than
int[]
Collections: unsynchronised and synchronised
ArrayList vs Vector
Use unsynchronised — optimised for a single
thread

Collections

Collections always store objects, not primitives
Could use a primitive wrapper like Integer
But Integer takes 16 bytes, not 4!
Object overhead with collections
ArrayList<Integer> — much worse than
int[]

Collections: unsynchronised and synchronised
ArrayList vs Vector
Use unsynchronised — optimised for a single
thread

Collections

Collections always store objects, not primitives
Could use a primitive wrapper like Integer
But Integer takes 16 bytes, not 4!
Object overhead with collections
ArrayList<Integer> — much worse than
int[]
Collections: unsynchronised and synchronised
ArrayList vs Vector
Use unsynchronised — optimised for a single
thread

Strings

String — immutable

Every operation produces a new object, so most
are linear
s += ’a’ is also O(n)!
StringBuilder — special class for growing
strings
append method — O(1)
Elements are char — no object overhead

Strings

String — immutable
Every operation produces a new object, so most
are linear

s += ’a’ is also O(n)!
StringBuilder — special class for growing
strings
append method — O(1)
Elements are char — no object overhead

Strings

String — immutable
Every operation produces a new object, so most
are linear
s += ’a’ is also O(n)!

StringBuilder — special class for growing
strings
append method — O(1)
Elements are char — no object overhead

Strings

String — immutable
Every operation produces a new object, so most
are linear
s += ’a’ is also O(n)!
StringBuilder — special class for growing
strings
append method — O(1)
Elements are char — no object overhead

Other remarks

Size of any object — at least 8 bytes more than
the size of fields

Collections.sort — merge sort: stable,
always O(n log n)
Arrays.sort — a version of quick sort:
unstable, faster on average, but could take n2 on
specific tests!
Shuffle the array before sorting
Do not forget to clone

Other remarks

Size of any object — at least 8 bytes more than
the size of fields
Collections.sort — merge sort: stable,
always O(n log n)

Arrays.sort — a version of quick sort:
unstable, faster on average, but could take n2 on
specific tests!
Shuffle the array before sorting
Do not forget to clone

Other remarks

Size of any object — at least 8 bytes more than
the size of fields
Collections.sort — merge sort: stable,
always O(n log n)
Arrays.sort — a version of quick sort:
unstable, faster on average, but could take n2 on
specific tests!
Shuffle the array before sorting

Do not forget to clone

Other remarks

Size of any object — at least 8 bytes more than
the size of fields
Collections.sort — merge sort: stable,
always O(n log n)
Arrays.sort — a version of quick sort:
unstable, faster on average, but could take n2 on
specific tests!
Shuffle the array before sorting
Do not forget to clone

Technical Slide

1 Lesson 1: Language specifics
Video 1.1: Basic data structures
Video 1.2: Advanced data structures and I/O
Video 1.3: C++
Video 1.4: Java
Video 1.5: Python
Video 1.6: Comparing languages

Speed up
Local variables are faster than global
Local — list, global — dict

Put global code in a separate function, to not
use global variables
def main():

write global code here

main()

Appends with + create new object, so linear time
s = s + ’a’ + ’b’
a = a + [0]

Use += or append

Speed up
Local variables are faster than global
Local — list, global — dict
Put global code in a separate function, to not
use global variables
def main():

write global code here

main()

Appends with + create new object, so linear time
s = s + ’a’ + ’b’
a = a + [0]

Use += or append

Speed up
Local variables are faster than global
Local — list, global — dict
Put global code in a separate function, to not
use global variables
def main():

write global code here

main()

Appends with + create new object, so linear time
s = s + ’a’ + ’b’
a = a + [0]

Use += or append

Speed up I/O

Instead of input and print use file I/O — like
read or write
Read and write all at once
sys.stdin.read()
sys.stdin.readlines()
sys.stdout.write(’ ’.join(map(str, a)))

Speed up I/O

Instead of input and print use file I/O — like
read or write

Read and write all at once
sys.stdin.read()
sys.stdin.readlines()
sys.stdout.write(’ ’.join(map(str, a)))

Speed up I/O

Instead of input and print use file I/O — like
read or write
Read and write all at once
sys.stdin.read()
sys.stdin.readlines()
sys.stdout.write(’ ’.join(map(str, a)))

Lists

A lot of useful tools for lists: standard functions
like sum, min, join and the module itertools

Not only shorten the code, but are also faster
than for:
s = sum(a)

s = 0
for x in a:

s += x

Additions are performed inside the C code of
sum!

Lists

A lot of useful tools for lists: standard functions
like sum, min, join and the module itertools
Not only shorten the code, but are also faster
than for:
s = sum(a)

s = 0
for x in a:

s += x

Additions are performed inside the C code of
sum!

Other remarks

Different versions of Python: Python 2 and
Python 3
In Python 2, range(n) creates a list, and
xrange(n) — a generator, which is much faster
In Python 3, range(n) — a generator

On average, Python 2 is slightly faster
PyPy — another interpretator — could be faster,
especially PyPy 2
Max depth of recursion is 1000 by default
Use sys.setrecursionlimit to increase

Other remarks

Different versions of Python: Python 2 and
Python 3
In Python 2, range(n) creates a list, and
xrange(n) — a generator, which is much faster
In Python 3, range(n) — a generator
On average, Python 2 is slightly faster

PyPy — another interpretator — could be faster,
especially PyPy 2
Max depth of recursion is 1000 by default
Use sys.setrecursionlimit to increase

Other remarks

Different versions of Python: Python 2 and
Python 3
In Python 2, range(n) creates a list, and
xrange(n) — a generator, which is much faster
In Python 3, range(n) — a generator
On average, Python 2 is slightly faster
PyPy — another interpretator — could be faster,
especially PyPy 2

Max depth of recursion is 1000 by default
Use sys.setrecursionlimit to increase

Other remarks

Different versions of Python: Python 2 and
Python 3
In Python 2, range(n) creates a list, and
xrange(n) — a generator, which is much faster
In Python 3, range(n) — a generator
On average, Python 2 is slightly faster
PyPy — another interpretator — could be faster,
especially PyPy 2
Max depth of recursion is 1000 by default
Use sys.setrecursionlimit to increase

Other remarks

eval and exec help in some implementation
problems

No compiler — no prior checks
Test solutions even more carefully
No compile errors with compiler’s message
Everything — a runtime error
Do not forget to clone
b = a[:] for lists
[[]] * n — all sublists are the same one!
[[] for i in range(n)] — correct

Other remarks

eval and exec help in some implementation
problems
No compiler — no prior checks
Test solutions even more carefully

No compile errors with compiler’s message
Everything — a runtime error
Do not forget to clone
b = a[:] for lists
[[]] * n — all sublists are the same one!
[[] for i in range(n)] — correct

Other remarks

eval and exec help in some implementation
problems
No compiler — no prior checks
Test solutions even more carefully
No compile errors with compiler’s message
Everything — a runtime error

Do not forget to clone
b = a[:] for lists
[[]] * n — all sublists are the same one!
[[] for i in range(n)] — correct

Other remarks

eval and exec help in some implementation
problems
No compiler — no prior checks
Test solutions even more carefully
No compile errors with compiler’s message
Everything — a runtime error
Do not forget to clone
b = a[:] for lists
[[]] * n — all sublists are the same one!
[[] for i in range(n)] — correct

Technical Slide

1 Lesson 1: Language specifics
Video 1.1: Basic data structures
Video 1.2: Advanced data structures and I/O
Video 1.3: C++
Video 1.4: Java
Video 1.5: Python
Video 1.6: Comparing languages

C++

Most popular language on competitions

Very fast, decent standard library
Undefined behavior situations and uninformative
crashes may be hard to debug

C++

Most popular language on competitions
Very fast, decent standard library

Undefined behavior situations and uninformative
crashes may be hard to debug

C++

Most popular language on competitions
Very fast, decent standard library
Undefined behavior situations and uninformative
crashes may be hard to debug

Java

Still fast enough — only 1.5-2 times slower than
C++, on average
Standard library in some cases overpowers that
of C++, e.g. BigInteger
Need to implement fast reading
More checks and limitations than in C++
Informative RuntimeException
Codes are longer

Java

Still fast enough — only 1.5-2 times slower than
C++, on average

Standard library in some cases overpowers that
of C++, e.g. BigInteger
Need to implement fast reading
More checks and limitations than in C++
Informative RuntimeException
Codes are longer

Java

Still fast enough — only 1.5-2 times slower than
C++, on average
Standard library in some cases overpowers that
of C++, e.g. BigInteger

Need to implement fast reading
More checks and limitations than in C++
Informative RuntimeException
Codes are longer

Java

Still fast enough — only 1.5-2 times slower than
C++, on average
Standard library in some cases overpowers that
of C++, e.g. BigInteger
Need to implement fast reading

More checks and limitations than in C++
Informative RuntimeException
Codes are longer

Java

Still fast enough — only 1.5-2 times slower than
C++, on average
Standard library in some cases overpowers that
of C++, e.g. BigInteger
Need to implement fast reading
More checks and limitations than in C++
Informative RuntimeException

Codes are longer

Java

Still fast enough — only 1.5-2 times slower than
C++, on average
Standard library in some cases overpowers that
of C++, e.g. BigInteger
Need to implement fast reading
More checks and limitations than in C++
Informative RuntimeException
Codes are longer

Python

10–100 times slower than C++ — some
problems could not be solved at all

Standard library lacks sorted set and bitset
More high-level, programs are shorter
Useful where C++ is too cumbersome, or big
integers are needed
Implementation/math problems

Python

10–100 times slower than C++ — some
problems could not be solved at all
Standard library lacks sorted set and bitset

More high-level, programs are shorter
Useful where C++ is too cumbersome, or big
integers are needed
Implementation/math problems

Python

10–100 times slower than C++ — some
problems could not be solved at all
Standard library lacks sorted set and bitset
More high-level, programs are shorter

Useful where C++ is too cumbersome, or big
integers are needed
Implementation/math problems

Python

10–100 times slower than C++ — some
problems could not be solved at all
Standard library lacks sorted set and bitset
More high-level, programs are shorter
Useful where C++ is too cumbersome, or big
integers are needed
Implementation/math problems

Summary

Learn to use standard library tools

Know common pitfalls
Choose language wisely

Summary

Learn to use standard library tools
Know common pitfalls

Choose language wisely

Summary

Learn to use standard library tools
Know common pitfalls
Choose language wisely

	Lesson 1: Language specifics
	Video 1.1: Basic data structures
	Video 1.2: Advanced data structures and I/O
	Video 1.3: C++
	Video 1.4: Java
	Video 1.5: Python
	Video 1.6: Comparing languages

