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Range Sum Query
It is often required to answer to a larger number
of queries like “Find a sum of all numbers of a
subarray of a given array”.

If the given array is constant, it is done by
pre-evalualating array of so-called prefix sums:

bi =
i−1∑︀
j=0

aj .

In this case, the sum on a segment
ak + ak+1 + · · ·+ al could be calculated as
bl+1 − bk .
But what if the given array is modified
dynamically?

a0 a1 a2 a3 a4

b0

a0b1

a0 + a1−b2

a0 + a1 + a2b3

a0 + a1 + a2 + a3+b4

a0 + a1 + a2 + a3 + a4b5
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Segment Tree
The segment tree also pre-calculates sums on
some subarrays of the array, but not only
prefixes are selected.

Let’s assume the length of an array is some
N = 2k (if it is not, expand the array with zeros
to the right).
The whole segment [1..2k ] is divided on two
equal parts: [1..2k−1] and [2k−1 + 1..2k ].
Each of these parts is also divided on two equal
parts and so on.
This process is completed when each of the
parts consists of exactly one element.

a0 + a1 + · · ·+ a6 + a7

a0 + a1 + a2 + a3 a4 + a5 + a6 + a7

a0 + a1 a2 + a3 a4 + a5 a6 + a7

a0 a1 a2 a3 a4 a5 a6 a7
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Graphical Representation
It is called a Segment Tree because each segment has
two children: two smaller segments.

a0 + a1 + · · ·+ a6 + a7

a0 + a1 + a2 + a3 a4 + a5 + a6 + a7

a0 + a1 a2 + a3 a4 + a5 a6 + a7
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Storing Segment Tree

The segment tree can be easily stored in an
one-dimensional array of length 2N .

The root (corresponding to the whole segment)
is stored in a cell 1.
The chidren of any segment stored in some cell i
are stored in cells 2i and 2i + 1.
The number in the cell is just the sum of the
numbers in its children.

b1 = a0 + a1 + · · ·+ a6 + a7

b2 = a0 + · · ·+ a3 b3 = a4 + · · ·+ a7

b4 b5 b6 b7

b8 b9 b10 b11 b12 b13 b14 b15
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Storing Segment Tree

The segment tree can be easily stored in an
one-dimensional array of length 2N .
The root (corresponding to the whole segment)
is stored in a cell 1.
The chidren of any segment stored in some cell i
are stored in cells 2i and 2i + 1.
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Some Useful Formulae

Let’s denote C (M) = ⌊log2 M⌋.

Note that segment corresponding to tree cell bM
has length of exactly P(M) = 2k−C (M).
One can easily evaluate left and right boundaries
of a segment corresponding to cell bM : its first
cell is P(M) · (M − 2C (M)), its last cell is
P(M) · (M − 2C (M) + 1)− 1.
The leaves of the tree begin from the cell with
index N = 2k .
The leaf corresponding to the element ai of the
original array is stored in the cell bN+i .

b1
C (M) = 0

b2 b3
C (M) = 1

b4 b5 b6 b7
C (M) = 2

b8 b9 b10 b11 b12 b13 b14 b15
C (M) = 3
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How To Calculate Sum on a Segment

It is obvious that segment tree contains cells
evaluated for all segments of length of some 2t ,
starting with an element with index which is a
multiple of 2t .

So if you partition the segment of query to the
segments of such kind, you could just sum the
corresponding cells of a segment tree.
There are two ways of doing this: going upwards
(ascending the tree from leaves to its root) and
downwards (descending the tree from root to its
leaves).

0..15

0..7

0..3 4..7

0..1 2..3 4..5 6..7

0 1 2 3 4 5 6 7

8..15

8..11 12..15

8..9 10..11 12..13 14..15

8 9 10 11 12 13 14 15
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Going Upwards

It’s the fastest way, but less universal.

Let’s consider a query for the segment from x to
y , inclusive.
You can imagine that the query is given not for
the original array, but for the tree. Just add
N = 2k to its boundaries: l = x + N ,
r = y + N .
Now we have a new task: calculate the sum for
the segment of the tree array, from l to r ,
inclusive. How to solve it?
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Transition One Level Up - 1
We are given l and r in the segment tree. How
to calculate the sum of stored cells of the tree
between l and r , inclusive?

If l > r , the answer is 0. If l = r , the answer is
bl = br .
If there are at least two elements in the
segment, let’s look to cell l . If l is even, both bl
and bl+1 are children of bl/2. Otherwise let’s
add bl to some cumulative result variable S and
increment l . Now l is even.
You can also do the same thing with r . If r is
odd, br−1 and br are children of b⌊r/2⌋.
Otherwise let’s add br to S and decrement r .
Now r is odd.

l r
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Transition One Level Up - 2

Now we can easily move one level up. Just
divide l and r by 2 (as integers). It’s the same
sum in terms of original array.

After the process is terminated, S will contain
the answer to the query.
The complexity is obviously O(k) = O(logN)
(there are O(k) levels).
Excercise: you can prove that the case l = r can
be processed as the general case (the base is
only l > r).

l r



Transition One Level Up - 2

Now we can easily move one level up. Just
divide l and r by 2 (as integers). It’s the same
sum in terms of original array.
After the process is terminated, S will contain
the answer to the query.

The complexity is obviously O(k) = O(logN)
(there are O(k) levels).
Excercise: you can prove that the case l = r can
be processed as the general case (the base is
only l > r).

l = r



Transition One Level Up - 2

Now we can easily move one level up. Just
divide l and r by 2 (as integers). It’s the same
sum in terms of original array.
After the process is terminated, S will contain
the answer to the query.
The complexity is obviously O(k) = O(logN)
(there are O(k) levels).

Excercise: you can prove that the case l = r can
be processed as the general case (the base is
only l > r).

l = r



Transition One Level Up - 2

Now we can easily move one level up. Just
divide l and r by 2 (as integers). It’s the same
sum in terms of original array.
After the process is terminated, S will contain
the answer to the query.
The complexity is obviously O(k) = O(logN)
(there are O(k) levels).
Excercise: you can prove that the case l = r can
be processed as the general case (the base is
only l > r).

l = r



Code Example: Sum Upwards

l = x + N;
r = y + N;
S = 0;
while (l <= r) {

if (l % 2 != 0) S += b[l++];
if (r % 2 == 0) S -= b[r--];
l /= 2;
r /= 2;

}



Here is a Picture

lr



Going Downwards
It’s more universal way. When you go
downwards, different operations with segment
tree look almost the same.

Let’s consider a query for the segment from x to
y , inclusive.
Let’s support the number of current node v and
two boundaries of the segment described by this
node: lv and rv .
Let’s generalize the task: find the sum of
intersection of two segments of the original
array: the query (from x to y) and the current
node (from lv and rv).
The original task is now rewritten as finding the
sum from x to y at node 1.
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Transition One Level Down - 1

We are given x and y of the original query. How
to calculate sum on intersection of this segment
with segment from lv to rv corresponding to
node v?

If the intersection is empty (rv < x or y < lv),
the sum is zero.
If the intersection is the whole segment
corresponding to node v (x ≤ lv and rv ≤ y),
the sum is exactly bv .

x y

1 : [0, 15]
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Transition One Level Down - 1

We are given x and y of the original query. How
to calculate sum on intersection of this segment
with segment from lv to rv corresponding to
node v?
If the intersection is empty (rv < x or y < lv),
the sum is zero.
If the intersection is the whole segment
corresponding to node v (x ≤ lv and rv ≤ y),
the sum is exactly bv .
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Transition One Level Down - 2

If we are not in one of two basic cases, the sum
can be easily calculated by solving the same task
descending one level down: let’s solve the task
for nodes 2v and 2v + 1 and sum the answers.

The complexity is also O(logN). To prove this,
one can notice that there are no more than two
segments of each of three kinds on each level.
Each segment of the third kind produces no
more than one segment of the third kind and no
more than one segment of the first or second
kind.

x y

1 : [0, 15]

2 : [0, 7] 3 : [8, 15]

f + g

f g
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Code Example: Sum Downwards

int sum (int x, int y, int l, int r, int v) {
if (r < x || y < l) return 0;
if (x <= l && r <= y) return b[v];
int m = (l + r) / 2;
return sum (x, y, l, m, 2 * v) +

sum (x, y, m + 1, r, 2 * v + 1);
}



Here is a Picture

1 : [0, 15]

2 : [0, 7]

4 : [0, 3] 5 : [4, 7]

8 9

18 19

3 : [8, 15]

6 : [8, 11] 7 : [12, 15]

14 15
b19

b19

b5

0

b14

b6 + b14

0

0

b19

b14

b6

b19 + b5

b19 + b5 + b6 + b14
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Modification Of An Element
But what about modification? To modify an
element, one needs to modify the values of all
segments that contain this element.

Let’s consider the case that we need to add the
value p to some element x . If we need just to
assign some value q to the element, let’s
calculate the difference between new value and
the old value and assume p = q − ax .
Modification can be easily done in two ways:
upwards and downwards.
To modify an element upwards, one needs to
start from the corresponding leaf and then
process the path of cells from this leaf to the
root.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15
a0 a1 a2 a3 a4 a5 a6 a7
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Modifying Element Upwards

The process starts from the cell v = x + N
which is the leaf corresponding to the modified
element.

On each step, you double the size of the
segment by moving v → ⌈v/2⌉. There is
exactly one segment on each level that contains
the given element.
You must stop after processing the root of the
tree.
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Here is Code

while (x > 0) {
b[x] += p;
x /= 2;

}



Here is a Picture (path of modifying)

b1 += p

b2 += p

b5 += p

b10 += p
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Modifying Element Downwards

To modify an element downwards, one needs to
do the same as if you calculate the sum of the
segment. But now, if the intersection is
non-empty, you should add the value p to the
cell.

The similar method will be to add the value p to
the cell only if the segment is fully covered
(i.e. only in a leaf). If we are in general case
(neither empty intersection nor fully covered
segment), we just restore the sum in cell v by
evaluating bv ← b2v + b2v+1. In this case you
can do assignment directly.

b1 += p

b2 += p

b5 += p

b10 += p
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Modifying Element Downwards

To modify an element downwards, one needs to
do the same as if you calculate the sum of the
segment. But now, if the intersection is
non-empty, you should add the value p to the
cell.
The similar method will be to add the value p to
the cell only if the segment is fully covered
(i.e. only in a leaf). If we are in general case
(neither empty intersection nor fully covered
segment), we just restore the sum in cell v by
evaluating bv ← b2v + b2v+1. In this case you
can do assignment directly.

b1 := b2 + b3

b2 := b4 + b5

b5 := b10 + b11

b10 += p
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Here is Code

int assign (int x, int y, int l, int r,
int v, int q) {

if (r < x || y < l) return 0;
if (x <= l && r <= y) {

b[v] = q;
return;

}
int m = (l + r) / 2;
assign (x, y, l, m, 2 * v, q);
assign (x, y, m + 1, r, 2 * v + 1, q);
b[v] = b[2 * v] + b[2 * v + 1];

}



Here is a Picture (path of modifying)

b1 := b2 + b3

b2 := b4 + b5

b5 := b10 + b11

b10 := q
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Summary

We built a segment tree and now we can modify
elements in array and calculate sum of any
segment in logarithmic time.

There are two ways of traversing the tree:
upwards and downwards.
We only need the tree if you have some
modification operations (otherwise use prefix
sums).
Exercise: The sum can be replaced by minimum
or maximum or some other operations with a
few tricks.
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