
Technical Slide

Module 3: Common Struggles

1 Lesson 1: 3.2. Greedy Algorithms
Video 1.1: Warm-up
Video 1.2: Proving Correctness
Video 1.3: Activity Selection
Video 1.4: Maximum Scalar Product
Video 1.5: Greedy Ordering

Greedy Algorithm

Build a solution piece by piece
At each step, choose the most profitable piece

Largest Number
Largest number

Input: A sequence of digits d0, . . . , dn−1(i.e.,
integers from 0 to 9).

Output: The largest number that can be obtained
by concatenating the given digits in some
order.

Example

Input: 2, 3, 9, 3, 2
Output: 93322

Largest Number
Largest number

Input: A sequence of digits d0, . . . , dn−1(i.e.,
integers from 0 to 9).

Output: The largest number that can be obtained
by concatenating the given digits in some
order.

Example

Input: 2, 3, 9, 3, 2
Output: 93322

Idea

Start with the largest digit

What is left is the same problem: concatenate
the remaining digits to get as large number as
possible

Idea

Start with the largest digit
What is left is the same problem: concatenate
the remaining digits to get as large number as
possible

Code

1 def l a r g e s t (d i g i t s) :
2 r e s u l t = []
3
4 while len (d i g i t s) > 0 :
5 max_dig it = max(d i g i t s)
6 d i g i t s . remove (max_dig it)
7 r e s u l t . append (max_dig it)
8
9 return "" . j o i n (map(str , r e s u l t))

Running time: O(n2)

Code

1 def l a r g e s t (d i g i t s) :
2 r e s u l t = []
3
4 while len (d i g i t s) > 0 :
5 max_dig it = max(d i g i t s)
6 d i g i t s . remove (max_dig it)
7 r e s u l t . append (max_dig it)
8
9 return "" . j o i n (map(str , r e s u l t))

Running time: O(n2)

Money Change

Money change

Input: Non-negative integer m.
Output: The minimum number of coins with

denominations 1, 5, and 10 that
changes m.

Example

Input: 28
Output: 6 (10+ 10+ 5+ 1+ 1+ 1)

Money Change

Money change

Input: Non-negative integer m.
Output: The minimum number of coins with

denominations 1, 5, and 10 that
changes m.

Example

Input: 28
Output: 6 (10+ 10+ 5+ 1+ 1+ 1)

Idea

Take a coin c with the largest denomination
that does not exceed m

What is left is the same problem: change
(m − c) with the minimum number of coins

Code
1 def change (m, c o i n s) :
2 r e s u l t = []
3
4 while m > 0 :
5 max_coin = max(c for c in c o i n s
6 i f c <= m)
7 m −= max_coin
8 r e s u l t . append (max_coin)
9

10 return "+" . j o i n (map(str , r e s u l t))

change (28 , [1 , 5 , 1 0])

10+10+5+1+1+1

Running time: O(m · |coins|)

Code
1 def change (m, c o i n s) :
2 r e s u l t = []
3
4 while m > 0 :
5 max_coin = max(c for c in c o i n s
6 i f c <= m)
7 m −= max_coin
8 r e s u l t . append (max_coin)
9

10 return "+" . j o i n (map(str , r e s u l t))

change (28 , [1 , 5 , 1 0])

10+10+5+1+1+1

Running time: O(m · |coins|)

Code
1 def change (m, c o i n s) :
2 r e s u l t = []
3
4 while m > 0 :
5 max_coin = max(c for c in c o i n s
6 i f c <= m)
7 m −= max_coin
8 r e s u l t . append (max_coin)
9

10 return "+" . j o i n (map(str , r e s u l t))

change (28 , [1 , 5 , 1 0])

10+10+5+1+1+1

Running time: O(m · |coins|)

Analysis

Compact and efficient solutions

But it is more of a coincidence that they work
correctly!

largest([2, 21]) returns 212 instead of 221
change(8, [1, 4, 6]) returns 6+1+1 instead of
4+4

A priori, there should be no reason why
a sequence of locally optimal moves leads to
a global optimum
In rare cases when a greedy strategy works, one
should be able to prove its correctness

Analysis

Compact and efficient solutions
But it is more of a coincidence that they work
correctly!

largest([2, 21]) returns 212 instead of 221
change(8, [1, 4, 6]) returns 6+1+1 instead of
4+4

A priori, there should be no reason why
a sequence of locally optimal moves leads to
a global optimum
In rare cases when a greedy strategy works, one
should be able to prove its correctness

Analysis

Compact and efficient solutions
But it is more of a coincidence that they work
correctly!

largest([2, 21]) returns 212 instead of 221

change(8, [1, 4, 6]) returns 6+1+1 instead of
4+4

A priori, there should be no reason why
a sequence of locally optimal moves leads to
a global optimum
In rare cases when a greedy strategy works, one
should be able to prove its correctness

Analysis

Compact and efficient solutions
But it is more of a coincidence that they work
correctly!

largest([2, 21]) returns 212 instead of 221
change(8, [1, 4, 6]) returns 6+1+1 instead of
4+4

A priori, there should be no reason why
a sequence of locally optimal moves leads to
a global optimum
In rare cases when a greedy strategy works, one
should be able to prove its correctness

Analysis

Compact and efficient solutions
But it is more of a coincidence that they work
correctly!

largest([2, 21]) returns 212 instead of 221
change(8, [1, 4, 6]) returns 6+1+1 instead of
4+4

A priori, there should be no reason why
a sequence of locally optimal moves leads to
a global optimum

In rare cases when a greedy strategy works, one
should be able to prove its correctness

Analysis

Compact and efficient solutions
But it is more of a coincidence that they work
correctly!

largest([2, 21]) returns 212 instead of 221
change(8, [1, 4, 6]) returns 6+1+1 instead of
4+4

A priori, there should be no reason why
a sequence of locally optimal moves leads to
a global optimum
In rare cases when a greedy strategy works, one
should be able to prove its correctness

Technical Slide

Module 3: Common Struggles

1 Lesson 1: 3.2. Greedy Algorithms
Video 1.1: Warm-up
Video 1.2: Proving Correctness
Video 1.3: Activity Selection
Video 1.4: Maximum Scalar Product
Video 1.5: Greedy Ordering

Proving Correctness

At each step a greedy algorithm restricts the
search space by selecting the most profitable
piece of a solution

Largest number: instead of considering all numbers
that can be obtained by concatenating the given
digits, let’s consider only number starting with the
maximum digit
Change problem: instead of considering all ways of
changing the given amount, let’s consider only
ways including a coin with the largest denomination

One needs to show that the restricted search
space contains at least one optimum solution

Proving Correctness

At each step a greedy algorithm restricts the
search space by selecting the most profitable
piece of a solution

Largest number: instead of considering all numbers
that can be obtained by concatenating the given
digits, let’s consider only number starting with the
maximum digit

Change problem: instead of considering all ways of
changing the given amount, let’s consider only
ways including a coin with the largest denomination

One needs to show that the restricted search
space contains at least one optimum solution

Proving Correctness

At each step a greedy algorithm restricts the
search space by selecting the most profitable
piece of a solution

Largest number: instead of considering all numbers
that can be obtained by concatenating the given
digits, let’s consider only number starting with the
maximum digit
Change problem: instead of considering all ways of
changing the given amount, let’s consider only
ways including a coin with the largest denomination

One needs to show that the restricted search
space contains at least one optimum solution

Proving Correctness

At each step a greedy algorithm restricts the
search space by selecting the most profitable
piece of a solution

Largest number: instead of considering all numbers
that can be obtained by concatenating the given
digits, let’s consider only number starting with the
maximum digit
Change problem: instead of considering all ways of
changing the given amount, let’s consider only
ways including a coin with the largest denomination

One needs to show that the restricted search
space contains at least one optimum solution

Template for Proving Correctness

Take some optimum solution

If it belongs to the restricted search space, then
we are done
If it does not belong to the restricted search
space, tweak it so that it is still optimum (or
even better) and belongs to the restricted search
space

Template for Proving Correctness

Take some optimum solution
If it belongs to the restricted search space, then
we are done

If it does not belong to the restricted search
space, tweak it so that it is still optimum (or
even better) and belongs to the restricted search
space

Template for Proving Correctness

Take some optimum solution
If it belongs to the restricted search space, then
we are done
If it does not belong to the restricted search
space, tweak it so that it is still optimum (or
even better) and belongs to the restricted search
space

Largest Number: Correctness

Lemma
Let N be the largest number that can be obtained by
concatenating digits d0, . . . , dn−1 in some order.
Then N starts with the largest digit di .

Proof
Assume the contrary: N = dj𝛼di𝛽, where dj < di
and 𝛼, 𝛽 are sequences of digits. But then
N ′ = dj𝛼di𝛽 is greater than N , a contradiction. (It is
essential here that di and dj are single digit
integers!)

Largest Number: Correctness

Lemma
Let N be the largest number that can be obtained by
concatenating digits d0, . . . , dn−1 in some order.
Then N starts with the largest digit di .

Proof
Assume the contrary: N = dj𝛼di𝛽, where dj < di
and 𝛼, 𝛽 are sequences of digits. But then
N ′ = dj𝛼di𝛽 is greater than N , a contradiction. (It is
essential here that di and dj are single digit
integers!)

Money Change: Correctness

Lemma
For any positive integer m, there exists an optimal
way of changing m using a coin with the largest
denomination D ∈ {1, 5, 10} that does not exceed m.

Proof

m < 5, D = 1: m is changed using 1’s only

5 ≤ m < 10, D = 5: if 5 is not used, then there are
at least five 1’s; replace them with 5

10 ≤ m, D = 10: if there are at least two 5’s, replace
them with 10; if there is just one 5, then
there must be at least five 1’s, replace
them with 10; if there are no 5’s, there
must be ten 1’s, replace them with 10

Observation
It is the last case where the analysis breaks for
{1, 4, 6}

Proof

m < 5, D = 1: m is changed using 1’s only
5 ≤ m < 10, D = 5: if 5 is not used, then there are

at least five 1’s; replace them with 5

10 ≤ m, D = 10: if there are at least two 5’s, replace
them with 10; if there is just one 5, then
there must be at least five 1’s, replace
them with 10; if there are no 5’s, there
must be ten 1’s, replace them with 10

Observation
It is the last case where the analysis breaks for
{1, 4, 6}

Proof

m < 5, D = 1: m is changed using 1’s only
5 ≤ m < 10, D = 5: if 5 is not used, then there are

at least five 1’s; replace them with 5
10 ≤ m, D = 10: if there are at least two 5’s, replace

them with 10; if there is just one 5, then
there must be at least five 1’s, replace
them with 10; if there are no 5’s, there
must be ten 1’s, replace them with 10

Observation
It is the last case where the analysis breaks for
{1, 4, 6}

Proof

m < 5, D = 1: m is changed using 1’s only
5 ≤ m < 10, D = 5: if 5 is not used, then there are

at least five 1’s; replace them with 5
10 ≤ m, D = 10: if there are at least two 5’s, replace

them with 10; if there is just one 5, then
there must be at least five 1’s, replace
them with 10; if there are no 5’s, there
must be ten 1’s, replace them with 10

Observation
It is the last case where the analysis breaks for
{1, 4, 6}

Technical Slide

Module 3: Common Struggles

1 Lesson 1: 3.2. Greedy Algorithms
Video 1.1: Warm-up
Video 1.2: Proving Correctness
Video 1.3: Activity Selection
Video 1.4: Maximum Scalar Product
Video 1.5: Greedy Ordering

Activity Selection

Activity selection

Input: A set of n segments on a line.
Output: The maximum number of non-overlapping

segments.

Example

Input: [2, 6], [1, 4], [7, 9], [3, 8]
Output: 2 ([1, 4], [7, 9])

Activity Selection

Activity selection

Input: A set of n segments on a line.
Output: The maximum number of non-overlapping

segments.

Example

Input: [2, 6], [1, 4], [7, 9], [3, 8]
Output: 2 ([1, 4], [7, 9])

Example

Example

Greedy Strategy

Unlike the previous two problems, in this case it
is not immediate what the most profitable
move is

Wild guesses:

Take the shortest segment
Take the segment with the minimal left endpoint
Take the segment with the minimal right endpoint

Greedy Strategy

Unlike the previous two problems, in this case it
is not immediate what the most profitable
move is
Wild guesses:

Take the shortest segment
Take the segment with the minimal left endpoint
Take the segment with the minimal right endpoint

Greedy Strategy

Unlike the previous two problems, in this case it
is not immediate what the most profitable
move is
Wild guesses:

Take the shortest segment

Take the segment with the minimal left endpoint
Take the segment with the minimal right endpoint

Greedy Strategy

Unlike the previous two problems, in this case it
is not immediate what the most profitable
move is
Wild guesses:

Take the shortest segment
Take the segment with the minimal left endpoint

Take the segment with the minimal right endpoint

Greedy Strategy

Unlike the previous two problems, in this case it
is not immediate what the most profitable
move is
Wild guesses:

Take the shortest segment
Take the segment with the minimal left endpoint
Take the segment with the minimal right endpoint

Counterexamples

Taking the shortest segment does not work:

Taking the segment with the minimal left
endpoint does not work:

Counterexamples

Taking the shortest segment does not work:

Taking the segment with the minimal left
endpoint does not work:

Correct Greedy Strategy

Lemma
There exists an optimal solution containing the
segment with the smallest right endpoint.

Proof
Proof

Let [a, b] be a segment with the smallest right
endpoint and let S be an optimal solution such
that [c , d] is its segment with the minimal right
endpoint.

b ≤ d . If b = d , nothing needs to be done, so
assume that b < d

Replace [c , d] with [a, b] in S . Then, it is still a
solution (if [c , d] does not intersect any other
segment in S , then neither does [a, b]) and it is
optimal

Proof
Proof

Let [a, b] be a segment with the smallest right
endpoint and let S be an optimal solution such
that [c , d] is its segment with the minimal right
endpoint.
b ≤ d . If b = d , nothing needs to be done, so
assume that b < d

Replace [c , d] with [a, b] in S . Then, it is still a
solution (if [c , d] does not intersect any other
segment in S , then neither does [a, b]) and it is
optimal

Proof
Proof

Let [a, b] be a segment with the smallest right
endpoint and let S be an optimal solution such
that [c , d] is its segment with the minimal right
endpoint.
b ≤ d . If b = d , nothing needs to be done, so
assume that b < d

Replace [c , d] with [a, b] in S . Then, it is still a
solution (if [c , d] does not intersect any other
segment in S , then neither does [a, b]) and it is
optimal

Visually

Visually

Visually

Algorithm

Algorithm

Take the segment with the minimal right
endpoint into a solution

Remove all segments that intersect it
Repeat

Algorithm

Algorithm

Take the segment with the minimal right
endpoint into a solution
Remove all segments that intersect it

Repeat

Algorithm

Algorithm

Take the segment with the minimal right
endpoint into a solution
Remove all segments that intersect it
Repeat

Algorithm

Algorithm

Take the segment with the minimal right
endpoint into a solution
Remove all segments that intersect it
Repeat

Running time
O(n2)

Technical Slide

Module 3: Common Struggles

1 Lesson 1: 3.2. Greedy Algorithms
Video 1.1: Warm-up
Video 1.2: Proving Correctness
Video 1.3: Activity Selection
Video 1.4: Maximum Scalar Product
Video 1.5: Greedy Ordering

Maximum Scalar Product
Maximum Scalar Product

Input: Two sequences of n integers:
A = [a0, . . . , an−1] and
B = [b0, . . . , bn−1].

Output: The maximum value of
a0c0 + . . .+ an−1cn−1, where c0, . . . , cn−1
is a permutation of b0, . . . , bn−1.

Example

Input: [2, 3, 9], [7, 4, 2]
Output: 79 (79 = 2 · 2+ 3 · 4+ 9 · 7)

Maximum Scalar Product
Maximum Scalar Product

Input: Two sequences of n integers:
A = [a0, . . . , an−1] and
B = [b0, . . . , bn−1].

Output: The maximum value of
a0c0 + . . .+ an−1cn−1, where c0, . . . , cn−1
is a permutation of b0, . . . , bn−1.

Example

Input: [2, 3, 9], [7, 4, 2]
Output: 79 (79 = 2 · 2+ 3 · 4+ 9 · 7)

Greedy Strategy

Lemma
There exists an optimal solution where the maximum
element ai of A is paired with the maximum element
bj of B .

Proof
Proof

Consider an optimal solution S

If it pairs ai and bj , then we are done
Otherwise S = aibp + aqbj + · · ·
Let’s swap these two pairs:
S ′ = aibj + aqbp + · · ·
S ′ is not worse than S :

S ′ − S = aibj + aqbp − aibp − aqbj
= (ai − aq)(bj − bp) ≥ 0

Proof
Proof

Consider an optimal solution S

If it pairs ai and bj , then we are done

Otherwise S = aibp + aqbj + · · ·
Let’s swap these two pairs:
S ′ = aibj + aqbp + · · ·
S ′ is not worse than S :

S ′ − S = aibj + aqbp − aibp − aqbj
= (ai − aq)(bj − bp) ≥ 0

Proof
Proof

Consider an optimal solution S

If it pairs ai and bj , then we are done
Otherwise S = aibp + aqbj + · · ·

Let’s swap these two pairs:
S ′ = aibj + aqbp + · · ·
S ′ is not worse than S :

S ′ − S = aibj + aqbp − aibp − aqbj
= (ai − aq)(bj − bp) ≥ 0

Proof
Proof

Consider an optimal solution S

If it pairs ai and bj , then we are done
Otherwise S = aibp + aqbj + · · ·
Let’s swap these two pairs:
S ′ = aibj + aqbp + · · ·

S ′ is not worse than S :

S ′ − S = aibj + aqbp − aibp − aqbj
= (ai − aq)(bj − bp) ≥ 0

Proof
Proof

Consider an optimal solution S

If it pairs ai and bj , then we are done
Otherwise S = aibp + aqbj + · · ·
Let’s swap these two pairs:
S ′ = aibj + aqbp + · · ·
S ′ is not worse than S :

S ′ − S = aibj + aqbp − aibp − aqbj
= (ai − aq)(bj − bp) ≥ 0

Code

1 def s c a l a r_p roduc t (A, B) :
2 a s s e r t len (A) == len (B)
3 r e s u l t = 0
4 while len (A) > 0 :
5 am, bm = max(A) , max(B)
6 r e s u l t += am * bm
7 A. remove (am)
8 B. remove (bm)
9 return r e s u l t

Running time: O(n2)

Code

1 def s c a l a r_p roduc t (A, B) :
2 a s s e r t len (A) == len (B)
3 r e s u l t = 0
4 while len (A) > 0 :
5 am, bm = max(A) , max(B)
6 r e s u l t += am * bm
7 A. remove (am)
8 B. remove (bm)
9 return r e s u l t

Running time: O(n2)

Technical Slide

Module 3: Common Struggles

1 Lesson 1: 3.2. Greedy Algorithms
Video 1.1: Warm-up
Video 1.2: Proving Correctness
Video 1.3: Activity Selection
Video 1.4: Maximum Scalar Product
Video 1.5: Greedy Ordering

Greedy Ordering

A greedy strategy usually defines a greedy
ordering in a natural way

Largest number: the larger digit is better
Money change: the larger denomination is better
Activity selection: the activity with a smaller
ending time is better
Scalar product: the larger bi is better

Then, everything boils down to sorting with
respect to this ordering

Greedy Ordering

A greedy strategy usually defines a greedy
ordering in a natural way

Largest number: the larger digit is better

Money change: the larger denomination is better
Activity selection: the activity with a smaller
ending time is better
Scalar product: the larger bi is better

Then, everything boils down to sorting with
respect to this ordering

Greedy Ordering

A greedy strategy usually defines a greedy
ordering in a natural way

Largest number: the larger digit is better
Money change: the larger denomination is better

Activity selection: the activity with a smaller
ending time is better
Scalar product: the larger bi is better

Then, everything boils down to sorting with
respect to this ordering

Greedy Ordering

A greedy strategy usually defines a greedy
ordering in a natural way

Largest number: the larger digit is better
Money change: the larger denomination is better
Activity selection: the activity with a smaller
ending time is better

Scalar product: the larger bi is better

Then, everything boils down to sorting with
respect to this ordering

Greedy Ordering

A greedy strategy usually defines a greedy
ordering in a natural way

Largest number: the larger digit is better
Money change: the larger denomination is better
Activity selection: the activity with a smaller
ending time is better
Scalar product: the larger bi is better

Then, everything boils down to sorting with
respect to this ordering

Greedy Ordering

A greedy strategy usually defines a greedy
ordering in a natural way

Largest number: the larger digit is better
Money change: the larger denomination is better
Activity selection: the activity with a smaller
ending time is better
Scalar product: the larger bi is better

Then, everything boils down to sorting with
respect to this ordering

Compact Code

1 def l a r g e s t (d i g i t s) :
2 re tu rn "" . j o i n (map(s t r , sor ted (d i g i t s , r e v e r s e=True)))

1 def change (m) :
2 re tu rn m // 10 + (m % 10) // 5 + (m % 5)

1 def s c a l a r_p roduc t (A, B) :
2 a s s e r t l en (A) == l en (B)
3 A, B = sor ted (A) , sor ted (B)
4 re tu rn sum(A[i] * B[i] f o r i i n range (l en (A)))

Ordering Correctness

Proving that a specific ordering leads to a correct
greedy strategy: if in a solution a1, a2, . . . , an,
ai ̸⪯ ai+1 for some i , then swapping ai and ai+1 can
only improve this solution

Summary

Construct a solution piece by piece, always
choosing the most profitable piece

Pros: efficient, easy to implement
Cons: rarely work, not so easy to prove
correctness

Summary

Construct a solution piece by piece, always
choosing the most profitable piece
Pros: efficient, easy to implement

Cons: rarely work, not so easy to prove
correctness

Summary

Construct a solution piece by piece, always
choosing the most profitable piece
Pros: efficient, easy to implement
Cons: rarely work, not so easy to prove
correctness

	Lesson 1: 3.2. Greedy Algorithms
	Video 1.1: Warm-up
	Video 1.2: Proving Correctness
	Video 1.3: Activity Selection
	Video 1.4: Maximum Scalar Product
	Video 1.5: Greedy Ordering

