Technical Slide

Module 3: Common Struggles

o Lesson 1: 3.2. Greedy Algorithms
Video 1.1: Warm-up

Greedy Algorithm

m Build a solution piece by piece
m At each step, choose the most profitable piece

Largest Number

Largest number

Input: A sequence of digits db, ..., d,_1(i.e.,
integers from 0 to 9).
Output: The largest number that can be obtained

by concatenating the given digits in some
order.

Largest Number

Largest number

Input: A sequence of digits db, ..., d,_1(i.e.,
integers from 0 to 9).

Output: The largest number that can be obtained
by concatenating the given digits in some
order.

Example

Input: 2, 3,9, 3, 2
Output: 93322

|dea

m Start with the largest digit

|dea

m Start with the largest digit

m What is left is the same problem: concatenate
the remaining digits to get as large number as
possible

O© 00 NO O WN

Code

def largest(digits):
result = []

while len(digits) > 0:

max _digit = max(digits)
digits.remove(max_digit)
result .append(max_digit)

return .join (map(str,

result))

O o0 ~NOOTL P WN

Code

def largest(digits):
result = []

while len(digits) > 0:

max _digit = max(digits)
digits.remove(max_digit)
result .append(max_digit)

return .join (map(str,

Running time: O(n?)

result))

Money Change

Money change

Input: Non-negative integer m.

Output: The minimum number of coins with
denominations 1, 5, and 10 that
changes m.

Money Change
Money change

Input: Non-negative integer m.

Output: The minimum number of coins with
denominations 1, 5, and 10 that
changes m.

Example

Input: 28
Output: 6 (104+104+5+1+1+41)

|dea

m Take a coin ¢ with the largest denomination
that does not exceed m

m What is left is the same problem: change
(m — ¢) with the minimum number of coins

—

QO OWoO~NOOTL P WN

def change(m,

result = []

while m > 0:

max_ coin

Code

coins):

max(c for c in coins
if ¢ <=m)

m —= max_ coin
result .append(max_coin)

return "+" join (map(str, result))

—

QO OWoO~NOOTL P WN

def change(m,
result = []

while m > 0:

max_ coin

Code

coins):

max(c for c in coins
if ¢ <=m)

m —= max_ coin
result .append(max_coin)

return "+" join (map(str, result))

change (28, [1,

10+10+5+1+1+1

5, 10])

—

QO OWoO~NOOTL P WN

def change(m,
result = []

while m > 0:

max_ coin

Code

coins):

max(c for c in coins
if ¢ <=m)

m —= max_ coin
result .append(max_coin)

return "+" join (map(str, result))

change (28, [1,

10+10+5+1+1+1

5, 10])

Running time: O(m - |coins|)

Analysis

m Compact and efficient solutions

Analysis

m Compact and efficient solutions

m But it is more of a coincidence that they work
correctly!

Analysis

m Compact and efficient solutions

m But it is more of a coincidence that they work
correctly!

m largest([2, 21]) returns 212 instead of 221

Analysis

m Compact and efficient solutions

m But it is more of a coincidence that they work
correctly!
m largest([2, 21]) returns 212 instead of 221

m change(8, [1, 4, 6]) returns 6+1+1 instead of
4+4

Analysis

m Compact and efficient solutions

m But it is more of a coincidence that they work
correctly!
m largest([2, 21]) returns 212 instead of 221

m change(8, [1, 4, 6]) returns 6+1+1 instead of
4+4

m A priori, there should be no reason why
a sequence of locally optimal moves leads to
a global optimum

Analysis

m Compact and efficient solutions

m But it is more of a coincidence that they work
correctly!
m largest([2, 21]) returns 212 instead of 221
m change(8, [1, 4, 6]) returns 6+1+1 instead of
4+4
m A priori, there should be no reason why
a sequence of locally optimal moves leads to
a global optimum

m In rare cases when a greedy strategy works, one
should be able to prove its correctness

Technical Slide

Module 3: Common Struggles

o Lesson 1: 3.2. Greedy Algorithms

Video 1.2: Proving Correctness

Proving Correctness

m At each step a greedy algorithm restricts the
search space by selecting the most profitable
piece of a solution

Proving Correctness

m At each step a greedy algorithm restricts the
search space by selecting the most profitable
piece of a solution

m Largest number: instead of considering all numbers

that can be obtained by concatenating the given
digits, let's consider only number starting with the

maximum digit

Proving Correctness

m At each step a greedy algorithm restricts the
search space by selecting the most profitable
piece of a solution

m Largest number: instead of considering all numbers
that can be obtained by concatenating the given
digits, let's consider only number starting with the
maximum digit

m Change problem: instead of considering all ways of
changing the given amount, let's consider only
ways including a coin with the largest denomination

Proving Correctness

m At each step a greedy algorithm restricts the
search space by selecting the most profitable
piece of a solution

m Largest number: instead of considering all numbers
that can be obtained by concatenating the given
digits, let's consider only number starting with the
maximum digit

m Change problem: instead of considering all ways of
changing the given amount, let's consider only
ways including a coin with the largest denomination

m One needs to show that the restricted search
space contains at least one optimum solution

Template for Proving Correctness

m Take some optimum solution

Template for Proving Correctness

m Take some optimum solution

m If it belongs to the restricted search space, then
we are done

Template for Proving Correctness

m Take some optimum solution

m If it belongs to the restricted search space, then
we are done

m If it does not belong to the restricted search
space, tweak it so that it is still optimum (or
even better) and belongs to the restricted search
space

Largest Number: Correctness

Lemma
Let N be the largest number that can be obtained by
concatenating digits dy, ..., d,_1 in some order.

Then N starts with the largest digit d;.

Largest Number: Correctness

Lemma

Let N be the largest number that can be obtained by
concatenating digits dp, ..., d,_1 in some order.
Then N starts with the largest digit d;.

Proof

Assume the contrary: N = d;ad;3, where d; < d
and «, 3 are sequences of digits. But then

N' = djad;f3 is greater than N, a contradiction. (It is
essential here that d; and d; are single digit
integers!) O

Money Change: Correctness

Lemma

For any positive integer m, there exists an optimal
way of changing m using a coin with the largest
denomination D € {1,5,10} that does not exceed m.

Proof

m <5, D =1: mis changed using 1's only

Proof

m <5, D =1: mis changed using 1's only
5<m< 10, D=05: if 5is not used, then there are
at least five 1's; replace them with 5

Proof

m <5, D =1: mis changed using 1's only
5<m< 10, D=05: if 5is not used, then there are
at least five 1's; replace them with 5

10 < m, D = 10: if there are at least two b's, replace
them with 10; if there is just one 5, then
there must be at least five 1's, replace
them with 10: if there are no 5's, there
must be ten 1's, replace them with 10 [

Proof

m <5, D= 1. mis changed using 1's only
5<m< 10, D=05: if 5is not used, then there are
at least five 1's; replace them with 5

10 < m, D = 10: if there are at least two b's, replace
them with 10; if there is just one 5, then
there must be at least five 1's, replace
them with 10: if there are no 5's, there
must be ten 1's, replace them with 10 [

Observation

It is the last case where the analysis breaks for
{1,4,6}

Technical Slide

Module 3: Common Struggles

o Lesson 1: 3.2. Greedy Algorithms

Video 1.3: Activity Selection

Activity Selection

Activity selection

Input: A set of n segments on a line.

Output: The maximum number of non-overlapping
segments.

Activity Selection

Activity selection

Input: A set of n segments on a line.

Output: The maximum number of non-overlapping
segments.

Example

Input: [2,6], [1,4], [7,9]. [3, 8]
Output: 2 ([1,4], [7,9])

Example

Example

Greedy Strategy

m Unlike the previous two problems, in this case it
is not immediate what the most profitable
move is

Greedy Strategy

m Unlike the previous two problems, in this case it
is not immediate what the most profitable
move is

m Wild guesses:

Greedy Strategy

m Unlike the previous two problems, in this case it
is not immediate what the most profitable
move is

m Wild guesses:

m Take the shortest segment

Greedy Strategy

m Unlike the previous two problems, in this case it
is not immediate what the most profitable
move is

m Wild guesses:

m Take the shortest segment
m Take the segment with the minimal left endpoint

Greedy Strategy

m Unlike the previous two problems, in this case it
is not immediate what the most profitable
move is

m Wild guesses:

m Take the shortest segment
m Take the segment with the minimal left endpoint
m Take the segment with the minimal right endpoint

Counterexamples

m Taking the shortest segment does not work:

P

Counterexamples

m Taking the shortest segment does not work:

—

m Taking the segment with the minimal left
endpoint does not work:

Correct Greedy Strategy

Lemma

There exists an optimal solution containing the
segment with the smallest right endpoint.

Proof
Proof

m Let [a, b] be a segment with the smallest right
endpoint and let S be an optimal solution such
that [c, d] is its segment with the minimal right

endpoint.

Proof
Proof

m Let [a, b] be a segment with the smallest right
endpoint and let S be an optimal solution such
that [c, d] is its segment with the minimal right
endpoint.

m b <d. If b=d, nothing needs to be done, so
assume that b < d

Proof
Proof

m Let [a, b] be a segment with the smallest right
endpoint and let S be an optimal solution such
that [c, d] is its segment with the minimal right
endpoint.

m b <d. If b=d, nothing needs to be done, so
assume that b < d

m Replace [c, d] with [a, b] in S. Then, it is still a
solution (if [c, d] does not intersect any other
segment in S, then neither does [a, b]) and it is
optimal O

Visually

Visually

Visually

Algorithm

Algorithm

m Take the segment with the minimal right
endpoint into a solution

Algorithm

Algorithm

m Take the segment with the minimal right
endpoint into a solution

m Remove all segments that intersect it

Algorithm

Algorithm

m Take the segment with the minimal right
endpoint into a solution

m Remove all segments that intersect it
m Repeat

Algorithm

Algorithm

m Take the segment with the minimal right
endpoint into a solution

m Remove all segments that intersect it
m Repeat

Running time
O(n?)

Technical Slide

Module 3: Common Struggles

o Lesson 1: 3.2. Greedy Algorithms

Video 1.4: Maximum Scalar Product

Maximum Scalar Product

Maximum Scalar Product

Input: Two sequences of n integers:
A= lag,...,a,-1] and
B = [by, ..., bnr1].

Output: The maximum value of

agCo + ...+ ap_1¢h—1, Where ¢, . ..

is a permutation of by, ..., b,_1.

Maximum Scalar Product
Maximum Scalar Product

Input: Two sequences of n integers:
A= [ao, 500 an_l] and
B = [by, ..., bnr1].
Output: The maximum value of
agCy + ...+ ap_1¢h—1, Where ¢p, ..., Ch_q
is a permutation of by, ..., b,_1.

Example

Input: [2,3,9], [7,4,2]
Output: 79 (79=2-24+3-44+9-7)

Greedy Strategy

Lemma

There exists an optimal solution where the maximum
element a; of A is paired with the maximum element

bj Of B.

Proof
Proof

m Consider an optimal solution S

Proof
Proof

m Consider an optimal solution S
m If it pairs a; and bj, then we are done

Proof
Proof
m Consider an optimal solution S

m If it pairs a; and bj, then we are done
m Otherwise S = ajb, + agh; + - - -

Proof
Proof

m Consider an optimal solution S

m If it pairs a; and bj, then we are done

m Otherwise S = ajb, + agh; + - - -

m Let's swap these two pairs:
S'=aibj+ aghy, + - -

Proof
Proof

Consider an optimal solution S

If it pairs a; and b;, then we are done
Otherwise S = ajb, + agh; + - - -
Let's swap these two pairs:
S'=aibj+agb, + - -

m S’ is not worse than S:

5/ - S5 = a,-bj + aqbp — a,-bp — aqu
= (aj — aq)(bj — by) = 0

O© 00 NO O WN

Code

def scalar product(A, B):
assert len(A) = len(B)
result =0
while len(A) > 0:
am, bm = max(A), max(B)
result 4= am * bm
A.remove (am)
B.remove (bm)

return result

O o0 ~NOOTL P WN

Code

def scalar product(A, B):
assert len(A) = len(B)
result =0
while len(A) > 0:
am, bm = max(A), max(B)
result 4= am * bm
A.remove (am)
B.remove (bm)

return result

Running time: O(n?)

Technical Slide

Module 3: Common Struggles

o Lesson 1: 3.2. Greedy Algorithms

Video 1.5: Greedy Ordering

Greedy Ordering

m A greedy strategy usually defines a greedy
ordering in a natural way

Greedy Ordering

m A greedy strategy usually defines a greedy
ordering in a natural way

m Largest number: the larger digit is better

Greedy Ordering

m A greedy strategy usually defines a greedy
ordering in a natural way

m Largest number: the larger digit is better
m Money change: the larger denomination is better

Greedy Ordering

m A greedy strategy usually defines a greedy
ordering in a natural way

m Largest number: the larger digit is better

m Money change: the larger denomination is better

m Activity selection: the activity with a smaller
ending time is better

Greedy Ordering

m A greedy strategy usually defines a greedy
ordering in a natural way

m Largest number: the larger digit is better

m Money change: the larger denomination is better

m Activity selection: the activity with a smaller
ending time is better

m Scalar product: the larger b; is better

Greedy Ordering

m A greedy strategy usually defines a greedy
ordering in a natural way
m Largest number: the larger digit is better
m Money change: the larger denomination is better
m Activity selection: the activity with a smaller

ending time is better
m Scalar product: the larger b; is better

m Then, everything boils down to sorting with
respect to this ordering

N

N =

A WN =

Compact Code

def largest(digits):
return "" . join(map(str, sorted(digits, reverse=True)))

def change(m):
return m // 10 + (m % 10) // 5 + (m % 5)

def scalar product(A, B):
assert len(A) = len(B)
A, B = sorted(A), sorted(B)
return sum(A[i] = B[i] for i in range(len(A)))

Ordering Correctness

Proving that a specific ordering leads to a correct
greedy strategy: if in a solution ay, ap, ..., an,

a; 2 ajy1 for some 7, then swapping a; and a;;1 can
only improve this solution

Summary

m Construct a solution piece by piece, always
choosing the most profitable piece

Summary

m Construct a solution piece by piece, always
choosing the most profitable piece

m Pros: efficient, easy to implement

Summary

m Construct a solution piece by piece, always
choosing the most profitable piece

m Pros: efficient, easy to implement

m Cons: rarely work, not so easy to prove
correctness

	Lesson 1: 3.2. Greedy Algorithms
	Video 1.1: Warm-up
	Video 1.2: Proving Correctness
	Video 1.3: Activity Selection
	Video 1.4: Maximum Scalar Product
	Video 1.5: Greedy Ordering

