Solution to the Problem 4.4: Maximal Sum Subarray

Main Idea

Given an array A[l..n], we need to find, for each 1 < i < n, the maximum sum of
a subarray that covers the position i.

Assume that a subarray A[l..r] has the maximum sum among those that cover the
position i. Its sum is equal to A[l]+ A[l +1]+---+ A[r] = ;:lA[j]. At the same time,
this sum can also be computed as the sum of the elements of the whole array minus
its prefix sum and minus its suffix sum:

n -

S A=Y A=Y Aljl- Y Al
j=1 '

1
j=1 j=1 j=r+1

Since we want the sum of the subarray to be as large as possible, we need to make the
corresponding prefix and suffix sums as small as possible. Thus, for each i, we need
to be ably to find quickly the smallest prefix sum on A[1..i — 1] and the smallest suffix
sum on A[i + 1..n]. For this, we first compute all prefix and suffix sums, we then find
the corresponding minimums. Overall, this gives an O(n) algorithm.

Implementation Details

Let prefixSumlk] = ZleA[k]. Then, prefixSum[k] for all 1 < k < n can be computed
by a single scan of the array A:

prefixSum|[1] « A[1]
for k from 2 to n:
prefixSum|[k] « prefixSuml[k — 1]+ A[k]

An array suffixSum defined by suffixSum =) " , A[i] can be computed in a similar
fashion (but by scanning A from right to left).

Let now minPrefixSum[k] = min{prefixSum[i]: 1 < i < k}. This array can be also
computed in time O(n):
minPrefixSum|[1] « prefixSum][1]
for k from 2 to n:

minPrefixSum[k] <~ min(minPrefixSum[k — 1], prefixSum|k])

An array minSuffixSum defined by minSuffixSum = min{suffixSum(i]: k <i < n}is
computed similarly.

Finally, let sum = )} | A[i] (can be computed in time O(#n)). Then, the maximum
sum of a subarray covering a position 1 <i < nis equal to

sum — minPrefixSum(i — 1] — minSuffixSum[i + 1]

The cases i =1 and i = n are treated similarly.



