
Technical Slide

Lesson: Insiduous numbers

Video: Integer types and overflow

Integer overflow

int a = 50000;
int b = 50000;
cout << a * b;

-1794967296

Integer overflow

int a = 50000;
int b = 50000;
cout << a * b;

-1794967296

Integer overflow

int a = 50000;
int b = 50000;
cout << a * b;

-1794967296

Numbers inside a computer

Memory — a sequence of binary digits — bits
01011110100100111000100001111010. . .

A number must come in binary
13

Bits come in chunks of 8 — bytes
01011110 10010011 10001000 01111010 . . .
int a = 13;
00000000 00000000 00000000 00001101

Numbers inside a computer

Memory — a sequence of binary digits — bits
01011110100100111000100001111010. . .
A number must come in binary
13 = 11012

Bits come in chunks of 8 — bytes
01011110 10010011 10001000 01111010 . . .
int a = 13;
00000000 00000000 00000000 00001101

Numbers inside a computer

Memory — a sequence of binary digits — bits
01011110100100111000100001111010. . .
A number must come in binary
13 = 11012 = 1 · 1+ 0 · 2+ 1 · 4+ 1 · 8

Bits come in chunks of 8 — bytes
01011110 10010011 10001000 01111010 . . .
int a = 13;
00000000 00000000 00000000 00001101

Numbers inside a computer

Memory — a sequence of binary digits — bits
01011110100100111000100001111010. . .
A number must come in binary
13 = 11012 = 1 · 1+ 0 · 2+ 1 · 4+ 1 · 8
Bits come in chunks of 8 — bytes
01011110 10010011 10001000 01111010 . . .

int a = 13;
00000000 00000000 00000000 00001101

Numbers inside a computer

Memory — a sequence of binary digits — bits
01011110100100111000100001111010. . .
A number must come in binary
13 = 11012 = 1 · 1+ 0 · 2+ 1 · 4+ 1 · 8
Bits come in chunks of 8 — bytes
01011110 10010011 10001000 01111010 . . .
int a = 13;
00000000 00000000 00000000 00001101

int type

4 bytes, or 32 bits

Only 232 different values!
From −231 to 231 − 1
231 = 2 147 483 648
Slightly more than 2 billion
50 000 · 50 000 = 2.5 billion — couldn’t fit!

int type

4 bytes, or 32 bits
Only 232 different values!

From −231 to 231 − 1
231 = 2 147 483 648
Slightly more than 2 billion
50 000 · 50 000 = 2.5 billion — couldn’t fit!

int type

4 bytes, or 32 bits
Only 232 different values!
From −231 to 231 − 1
231 = 2 147 483 648
Slightly more than 2 billion

50 000 · 50 000 = 2.5 billion — couldn’t fit!

int type

4 bytes, or 32 bits
Only 232 different values!
From −231 to 231 − 1
231 = 2 147 483 648
Slightly more than 2 billion
50 000 · 50 000 = 2.5 billion — couldn’t fit!

Python

In C++ and Java basic integers have fixed size
— 4 bytes in int, for example

In Python they grow as needed
So no overflow there
But larger values — more space and time

Python

In C++ and Java basic integers have fixed size
— 4 bytes in int, for example
In Python they grow as needed

So no overflow there
But larger values — more space and time

Python

In C++ and Java basic integers have fixed size
— 4 bytes in int, for example
In Python they grow as needed
So no overflow there
But larger values — more space and time

long type

8 bytes, or 64 bits

long long or int64_t in C++, long in Java
264 different values
From −263 to 263 − 1
Slightly more than 9 · 1018

231 · 231 = 231+31 = 262 < 263

Product of two ints always fits!
109 · 109 = 1018 < 9 · 1018

long type

8 bytes, or 64 bits
long long or int64_t in C++, long in Java

264 different values
From −263 to 263 − 1
Slightly more than 9 · 1018

231 · 231 = 231+31 = 262 < 263

Product of two ints always fits!
109 · 109 = 1018 < 9 · 1018

long type

8 bytes, or 64 bits
long long or int64_t in C++, long in Java
264 different values

From −263 to 263 − 1
Slightly more than 9 · 1018

231 · 231 = 231+31 = 262 < 263

Product of two ints always fits!
109 · 109 = 1018 < 9 · 1018

long type

8 bytes, or 64 bits
long long or int64_t in C++, long in Java
264 different values
From −263 to 263 − 1
Slightly more than 9 · 1018

231 · 231 = 231+31 = 262 < 263

Product of two ints always fits!
109 · 109 = 1018 < 9 · 1018

long type

8 bytes, or 64 bits
long long or int64_t in C++, long in Java
264 different values
From −263 to 263 − 1
Slightly more than 9 · 1018

231 · 231 = 231+31 = 262 < 263

Product of two ints always fits!

109 · 109 = 1018 < 9 · 1018

long type

8 bytes, or 64 bits
long long or int64_t in C++, long in Java
264 different values
From −263 to 263 − 1
Slightly more than 9 · 1018

231 · 231 = 231+31 = 262 < 263

Product of two ints always fits!
109 · 109 = 1018 < 9 · 1018

Technical Slide

Lesson: Insiduous numbers

Video: Dealing with overflow

How to beat overflow

int a = 50000;
int b = 50000;
long long c = a * b;

long long c = 50000 * 50000;

Also wrong!
Integer constants are 32 bit almost everywhere

How to beat overflow

int a = 50000;
int b = 50000;
long long c = a * b;

long long c = 50000 * 50000;

Also wrong!
Integer constants are 32 bit almost everywhere

How to beat overflow

int a = 50000;
int b = 50000;
long long c = a * b;

Wrong!

long long c = 50000 * 50000;

Also wrong!
Integer constants are 32 bit almost
everywhere

How to beat overflow

int a = 50000;
int b = 50000;
long long c = a * b;

long long c = 50000 * 50000;

Also wrong!
Integer constants are 32 bit almost everywhere

How to beat overflow

int a = 50000;
int b = 50000;
long long c = a * b;

long long c = 50000 * 50000;

Also wrong!
Integer constants are 32 bit almost everywhere

How to beat overflow correctly

Have at least one factor of long type

long long a = 50000;
long long b = 50000;
long long c = a * b;

Cast explicitly

int a = 50000;
int b = 50000;
long long c = (long long)a * b;

How to beat overflow correctly

Have at least one factor of long type

long long a = 50000;
long long b = 50000;
long long c = a * b;

Cast explicitly

int a = 50000;
int b = 50000;
long long c = (long long)a * b;

How to beat overflow correctly

Have at least one factor of long type

long long a = 50000;
long long b = 50000;
long long c = a * b;

Cast explicitly

int a = 50000;
int b = 50000;
long long c = (long long)a * b;

Keep in mind
Long type — twice the memory, most likely
slower

Always check products for overflow using the
limits from the statement
Sums could lead to overflow just as easily

int a = 50000;
int b = 50000;
res = 0;

for (int i = 0; i < b; ++i) {
res += a;

}

If even 64 bits is not enough — think again

Keep in mind
Long type — twice the memory, most likely
slower
Always check products for overflow using the
limits from the statement

Sums could lead to overflow just as easily

int a = 50000;
int b = 50000;
res = 0;

for (int i = 0; i < b; ++i) {
res += a;

}

If even 64 bits is not enough — think again

Keep in mind
Long type — twice the memory, most likely
slower
Always check products for overflow using the
limits from the statement
Sums could lead to overflow just as easily

int a = 50000;
int b = 50000;
int res = 0;
for (int i = 0; i < b; ++i) {

res += a;
}

If even 64 bits is not enough — think again

Keep in mind
Long type — twice the memory, most likely
slower
Always check products for overflow using the
limits from the statement
Sums could lead to overflow just as easily
int a = 50000;
int b = 50000;
int res = 0;
for (int i = 0; i < b; ++i) {

res += a;
}

Wrong!

If even 64 bits is not enough — think
again

Keep in mind
Long type — twice the memory, most likely
slower
Always check products for overflow using the
limits from the statement
Sums could lead to overflow just as easily

int a = 50000;
int b = 50000;
long long res = 0;
for (int i = 0; i < b; ++i) {

res += a;
}

If even 64 bits is not enough — think again

Keep in mind
Long type — twice the memory, most likely
slower
Always check products for overflow using the
limits from the statement
Sums could lead to overflow just as easily

int a = 50000;
int b = 50000;
long long res = 0;
for (int i = 0; i < b; ++i) {

res += a;
}

If even 64 bits is not enough — think again

Summary

Always check products and sums for overflow
Estimate magnitude using worst-case input
values
Use 64 bit type when needed

Summary

Always check products and sums for overflow

Estimate magnitude using worst-case input
values
Use 64 bit type when needed

Summary

Always check products and sums for overflow
Estimate magnitude using worst-case input
values

Use 64 bit type when needed

Summary

Always check products and sums for overflow
Estimate magnitude using worst-case input
values
Use 64 bit type when needed

Technical Slide

Lesson: Insiduous numbers

Video: Non-integers

Non-integer arithmetic

Simple arithmetics:
a/b · b = a
1/49 · 49
Close enough to one, but not exactly one

Non-integer arithmetic

Simple arithmetics:
a/b · b = a

1/49 · 49 = ?
Close enough to one, but not exactly one

Non-integer arithmetic

Simple arithmetics:
a/b · b = a
1/49 · 49 ̸= 1
0.99999999999999988898

Close enough to one, but not exactly one

Non-integer arithmetic

Simple arithmetics:
a/b · b = a
1/49 · 49 ̸= 1
0.99999999999999988898
Close enough to one, but not exactly one

Rational numbers
As fractions A

B where A, B are integers

Easy to store — just a pair of integers
Could do arithmetical operations:

A
B

+
C
D

=
A · D + C · B

B · D
A
B

· C
D

=
A · C
B · D

Exact value:
different fractions ⇐⇒ different pairs (A,B)
(if irreducible)
1
49 · 49 = 49

49 = 1

Rational numbers
As fractions A

B where A, B are integers
Easy to store — just a pair of integers

Could do arithmetical operations:

A
B

+
C
D

=
A · D + C · B

B · D
A
B

· C
D

=
A · C
B · D

Exact value:
different fractions ⇐⇒ different pairs (A,B)
(if irreducible)
1
49 · 49 = 49

49 = 1

Rational numbers
As fractions A

B where A, B are integers
Easy to store — just a pair of integers
Could do arithmetical operations:

A
B

+
C
D

=
A · D + C · B

B · D
A
B

· C
D

=
A · C
B · D

Exact value:
different fractions ⇐⇒ different pairs (A,B)
(if irreducible)
1
49 · 49 = 49

49 = 1

Rational numbers
As fractions A

B where A, B are integers
Easy to store — just a pair of integers
Could do arithmetical operations:

A
B

+
C
D

=
A · D + C · B

B · D
A
B

· C
D

=
A · C
B · D

Exact value:
different fractions ⇐⇒ different pairs (A,B)
(if irreducible)
1
49 · 49 = 49

49 = 1

Rational numbers

Not only the magnitude is bound — A < 2k , but
also the precision — the smallest positive
number we could store is 1

2k−1

No way of storing arbitrarily small positive
numbers — infinitely many numbers of form 1

k
A and B have to fit in an integer type, but

1
1
+

1
2
+ · · ·+ 1

25
=

34 052 522 467
8 923 714 800

— values grow fast even in sums!
Irrational numbers:

√
2, 𝜋, e

Rational numbers

Not only the magnitude is bound — A < 2k , but
also the precision — the smallest positive
number we could store is 1

2k−1
No way of storing arbitrarily small positive
numbers — infinitely many numbers of form 1

k

A and B have to fit in an integer type, but

1
1
+

1
2
+ · · ·+ 1

25
=

34 052 522 467
8 923 714 800

— values grow fast even in sums!
Irrational numbers:

√
2, 𝜋, e

Rational numbers

Not only the magnitude is bound — A < 2k , but
also the precision — the smallest positive
number we could store is 1

2k−1
No way of storing arbitrarily small positive
numbers — infinitely many numbers of form 1

k
A and B have to fit in an integer type, but

1
1
+

1
2
+ · · ·+ 1

25
=

34 052 522 467
8 923 714 800

— values grow fast even in sums!

Irrational numbers:
√
2, 𝜋, e

Rational numbers

Not only the magnitude is bound — A < 2k , but
also the precision — the smallest positive
number we could store is 1

2k−1
No way of storing arbitrarily small positive
numbers — infinitely many numbers of form 1

k
A and B have to fit in an integer type, but

1
1
+

1
2
+ · · ·+ 1

25
=

34 052 522 467
8 923 714 800

— values grow fast even in sums!
Irrational numbers:

√
2, 𝜋, e

Decimal fractions

2.37
0.125

whole number without the point
10how many digits after the point√
2 = 1.41421356 . . .

2
3 = 0.66666666 . . .
√
2 → 1.414

2
3 → 0.667
Error ≤ 10−3

2

Decimal fractions

2.37 = 237
100

0.125 = 125
1000

whole number without the point
10how many digits after the point

√
2 = 1.41421356 . . .

2
3 = 0.66666666 . . .
√
2 → 1.414

2
3 → 0.667
Error ≤ 10−3

2

Decimal fractions

2.37 = 237
100

0.125 = 125
1000

whole number without the point
10how many digits after the point√
2 = 1.41421356 . . .

2
3 = 0.66666666 . . .

√
2 → 1.414

2
3 → 0.667
Error ≤ 10−3

2

Decimal fractions

2.37 = 237
100

0.125 = 125
1000

whole number without the point
10how many digits after the point√
2 = 1.41421356 . . .

2
3 = 0.66666666 . . .
√
2 → 1.414

2
3 → 0.667
Error ≤ 10−3

2

Binary fractions

1.012 =
1012

4 = 5
4

0.0012 =
12
8 = 1

8

whole number without the point
2how many digits after the point

2
3 = 0.10101010 . . .2
2
3 → 0.1012

Error ≤ 2−3

2 = 2−4

Binary fractions

1.012 =
1012

4 = 5
4

0.0012 =
12
8 = 1

8
whole number without the point
2how many digits after the point

2
3 = 0.10101010 . . .2
2
3 → 0.1012

Error ≤ 2−3

2 = 2−4

Binary fractions

1.012 =
1012

4 = 5
4

0.0012 =
12
8 = 1

8
whole number without the point
2how many digits after the point

2
3 = 0.10101010 . . .2
2
3 → 0.1012

Error ≤ 2−3

2 = 2−4

Technical Slide

Lesson: Insiduous numbers

Video: Fixed point numbers and errors

Fixed point

Idea: always keep some fixed number of digits after
the point

integer part (32 bits) fractional part (32 bits)

Fixed point

Idea: always keep some fixed number of digits after
the point

integer A (64 bits)

integer part (32 bits) fractional part (32 bits)

Actually store integer A, but think of it as A
232

Fixed point
Maximum value:

max int 1111111. . . 11111

263 − 1
232 = 231 − 1

232 ≃ 2000000000

Minimum value:

min int 0000000. . . 00000

−263

232 = −231 ≃ −2000000000

Fixed point
Maximum value:

max int 1111111. . . 11111

263 − 1
232 = 231 − 1

232 ≃ 2000000000

Minimum value:

min int 0000000. . . 00000

−263

232 = −231 ≃ −2000000000

Fixed point

We could store any real number from −231 to
231 − 1

232 with error ≤ 1
233

Addition:
A
232 +

B
232 =

A + B
232

A

B
+

A + B

overflow is possible!

Fixed point

We could store any real number from −231 to
231 − 1

232 with error ≤ 1
233

Addition:
A
232 +

B
232 =

A + B
232

A

B
+

A + B

overflow is possible!

Fixed point

Multiplication:

A
232 · B

232 =
A · B
264 =

A · B/232

232

A

B
×

A · B

overflow rounding error

Absolute error

The absolute error — the absolute difference
between the value we have and the value we
want

Storage: some real number a → our 64-bit
fixed-point representation ̂︀a: |a − ̂︀a| ≤ 2−33

Addition: |(a+ b)− (̂︀a+ ̂︀b)| ≤ |a−̂︀a|+ |b − ̂︀b|̂︀a and ̂︀b just rounded from a and b, then
error ≤ 2 · 2−33 = 2−32

More operations — larger error

Absolute error

The absolute error — the absolute difference
between the value we have and the value we
want
Storage: some real number a → our 64-bit
fixed-point representation ̂︀a: |a − ̂︀a| ≤ 2−33

Addition: |(a+ b)− (̂︀a+ ̂︀b)| ≤ |a−̂︀a|+ |b − ̂︀b|̂︀a and ̂︀b just rounded from a and b, then
error ≤ 2 · 2−33 = 2−32

More operations — larger error

Absolute error

The absolute error — the absolute difference
between the value we have and the value we
want
Storage: some real number a → our 64-bit
fixed-point representation ̂︀a: |a − ̂︀a| ≤ 2−33

Addition: |(a+ b)− (̂︀a+ ̂︀b)| ≤ |a−̂︀a|+ |b − ̂︀b|̂︀a and ̂︀b just rounded from a and b, then
error ≤ 2 · 2−33 = 2−32

More operations — larger error

Absolute error

Multiplication:

|a · b − ̂︀a · ̂︀b| ≤
|a · b − ̂︀a · b + ̂︀a · b − ̂︀a · ̂︀b| ≤

|b| · |a − ̂︀a|+ |̂︀a| · |b − ̂︀b|

a = ̂︀a = 109, b = 1, ̂︀b = 1+ 10−9

a · b = 109, ̂︀a · ̂︀b = 109 + 1
So the error’s grown from 10−9 to 1!

Absolute error

Multiplication:

|a · b − ̂︀a · ̂︀b| ≤
|a · b − ̂︀a · b + ̂︀a · b − ̂︀a · ̂︀b| ≤

|b| · |a − ̂︀a|+ |̂︀a| · |b − ̂︀b|
a = ̂︀a = 109, b = 1, ̂︀b = 1+ 10−9

a · b = 109, ̂︀a · ̂︀b = 109 + 1
So the error’s grown from 10−9 to 1!

Relative error
The relative error — the absolute error divided
by the magnitude of the exact value

|a − ̂︀a|
|a|

Multiplication:

|a · b − ̂︀a · ̂︀b|
|a · b|

≤ |b| · |a − ̂︀a|+ |̂︀a| · |b − ̂︀b|
|a · b|

≃ |a − ̂︀a|
|a|

+
|b − ̂︀b|
|b|

Relative error
The relative error — the absolute error divided
by the magnitude of the exact value

|a − ̂︀a|
|a|

Multiplication:

|a · b − ̂︀a · ̂︀b|
|a · b|

≤ |b| · |a − ̂︀a|+ |̂︀a| · |b − ̂︀b|
|a · b|

≃ |a − ̂︀a|
|a|

+
|b − ̂︀b|
|b|

a = ̂︀a = 109, b = 1, ̂︀b = 1+ 10−9

a · b = 109, ̂︀a · ̂︀b = 109 + 1
Relative error

|109 − (109 + 1)|
109 = 10−9

Addition: a = ̂︀a = 109, b = −109 + 1,̂︀b = −109

|(a + b)− (̂︀a + ̂︀b)|
|a + b|

=
1
1
= 1,

from

|a − ̂︀a|
|a|

= 0,
|b − ̂︀b|
|b|

≃ 10−9

a = ̂︀a = 109, b = 1, ̂︀b = 1+ 10−9

a · b = 109, ̂︀a · ̂︀b = 109 + 1
Relative error

|109 − (109 + 1)|
109 = 10−9

Addition: a = ̂︀a = 109, b = −109 + 1,̂︀b = −109

|(a + b)− (̂︀a + ̂︀b)|
|a + b|

=
1
1
= 1,

from

|a − ̂︀a|
|a|

= 0,
|b − ̂︀b|
|b|

≃ 10−9

Fixed point

Fixed point behaves well with the absolute error

But the relative error depends on the magnitude!
a ≃ 231 — 64 correct binary digits
a ≃ 2−32 — only one correct binary digit!
On “average” number a ≃ 1 first half of digits is
not used
We can do better!

Fixed point

Fixed point behaves well with the absolute error
But the relative error depends on the magnitude!

a ≃ 231 — 64 correct binary digits
a ≃ 2−32 — only one correct binary digit!
On “average” number a ≃ 1 first half of digits is
not used
We can do better!

Fixed point

Fixed point behaves well with the absolute error
But the relative error depends on the magnitude!
a ≃ 231 — 64 correct binary digits

a ≃ 2−32 — only one correct binary digit!
On “average” number a ≃ 1 first half of digits is
not used
We can do better!

Fixed point

Fixed point behaves well with the absolute error
But the relative error depends on the magnitude!
a ≃ 231 — 64 correct binary digits
a ≃ 2−32 — only one correct binary digit!

On “average” number a ≃ 1 first half of digits is
not used
We can do better!

Fixed point

Fixed point behaves well with the absolute error
But the relative error depends on the magnitude!
a ≃ 231 — 64 correct binary digits
a ≃ 2−32 — only one correct binary digit!
On “average” number a ≃ 1 first half of digits is
not used
We can do better!

Technical Slide

Lesson: Insiduous numbers

Video: Floating point numbers

Floating point
Idea: Each number has its own most important
digits

. . . 000101001.0100110 . . .

The space is limited
So it’s natural to store some fixed number of
first digits

1.01001010 · 25

and the distance between the first one and the
point — to know the actual position of the point

01001010 0101

Floating point
Idea: Each number has its own most important
digits

. . . 000101001.0100110 . . .
The space is limited
So it’s natural to store some fixed number of
first digits

1.01001010 · 25

and the distance between the first one and the
point — to know the actual position of the point

01001010 0101

We could store any fraction between 1.00000000
and 1.11111111 with any shift from -8 to 7

Maximum value

1.11111111 · 27

11111111.1 = 255.5

Minimum positive value

1.00000000 · 2−8 =
1

256

For any number, we round to first 9 digits, so
the relative error ≤ 2−9

We could store any fraction between 1.00000000
and 1.11111111 with any shift from -8 to 7
Maximum value

1.11111111 · 27

11111111.1 = 255.5

Minimum positive value

1.00000000 · 2−8 =
1

256

For any number, we round to first 9 digits, so
the relative error ≤ 2−9

We could store any fraction between 1.00000000
and 1.11111111 with any shift from -8 to 7
Maximum value

1.11111111 · 27

11111111.1 = 255.5

Minimum positive value

1.00000000 · 2−8 =
1

256

For any number, we round to first 9 digits, so
the relative error ≤ 2−9

We could store any fraction between 1.00000000
and 1.11111111 with any shift from -8 to 7
Maximum value

1.11111111 · 27

11111111.1 = 255.5

Minimum positive value

1.00000000 · 2−8 =
1

256

For any number, we round to first 9 digits, so
the relative error ≤ 2−9

Floating point addition

1.01110101 · 23 + 1.10010110 · 2−1

1011.10101
+ 0.110010110

1100.011100110

1.10001110 · 23

Tail of the smaller gets rounded!

Floating point addition

1.01110101 · 23 + 1.10010110 · 2−1

1011.10101
+ 0.110010110

1100.011100110

1.10001110 · 23

Tail of the smaller gets rounded!

Floating point multiplication

1.01110101 · 23 × 1.10010110 · 2−1 =

1.01110101× 1.10010110 · 23+(−1) =

1.100100111110001110 · 22

1.10010100 · 22

The product has more digits, need to round!

Floating point multiplication

1.01110101 · 23 × 1.10010110 · 2−1 =

1.01110101× 1.10010110 · 23+(−1) =

1.100100111110001110 · 22

1.10010100 · 22

The product has more digits, need to round!

Double type
fraction (52 bits)exponent (11 bits)

sign bit

(−1)s(1.f0f1 . . . f51)2 · 2e

Maximum value 2210 ≃ 10309

Minimum positive value 2−210 ≃ 10−309

Huge range of magnitude for 11 bits
Would be 2 kilobytes for fixed point
Each number with 53 accurate binary digits,
about 16 decimal digits

Double type
fraction (52 bits)exponent (11 bits)

sign bit

(−1)s(1.f0f1 . . . f51)2 · 2e

Maximum value 2210 ≃ 10309

Minimum positive value 2−210 ≃ 10−309

Huge range of magnitude for 11 bits
Would be 2 kilobytes for fixed point
Each number with 53 accurate binary digits,
about 16 decimal digits

Double type
fraction (52 bits)exponent (11 bits)

sign bit

(−1)s(1.f0f1 . . . f51)2 · 2e

Maximum value 2210 ≃ 10309

Minimum positive value 2−210 ≃ 10−309

Huge range of magnitude for 11 bits
Would be 2 kilobytes for fixed point
Each number with 53 accurate binary digits,
about 16 decimal digits

Double type
fraction (52 bits)exponent (11 bits)

sign bit

(−1)s(1.f0f1 . . . f51)2 · 2e

Maximum value 2210 ≃ 10309

Minimum positive value 2−210 ≃ 10−309

Huge range of magnitude for 11 bits
Would be 2 kilobytes for fixed point

Each number with 53 accurate binary digits,
about 16 decimal digits

Double type
fraction (52 bits)exponent (11 bits)

sign bit

(−1)s(1.f0f1 . . . f51)2 · 2e

Maximum value 2210 ≃ 10309

Minimum positive value 2−210 ≃ 10−309

Huge range of magnitude for 11 bits
Would be 2 kilobytes for fixed point
Each number with 53 accurate binary digits,
about 16 decimal digits

Technical Slide

Lesson: Insiduous numbers

Video: Where and how to use doubles

Double vs 64 bit integer

Less actual digits: 53 vs 64 — no exponents in
integers
More time on computations — doubles could be
1.5-2 times slower
No overflow in doubles
Fractional part is always first digits
Possible overflow in exponent, but only at 10300

Errors everywhere
1.0 / 49, sqrt(2)
>>> 0.1 + 0.2
0.30000000000000004
and they grow!

Double vs 64 bit integer
Less actual digits: 53 vs 64 — no exponents in
integers

More time on computations — doubles could be
1.5-2 times slower
No overflow in doubles
Fractional part is always first digits
Possible overflow in exponent, but only at 10300

Errors everywhere
1.0 / 49, sqrt(2)
>>> 0.1 + 0.2
0.30000000000000004
and they grow!

Double vs 64 bit integer
Less actual digits: 53 vs 64 — no exponents in
integers
More time on computations — doubles could be
1.5-2 times slower

No overflow in doubles
Fractional part is always first digits
Possible overflow in exponent, but only at 10300

Errors everywhere
1.0 / 49, sqrt(2)
>>> 0.1 + 0.2
0.30000000000000004
and they grow!

Double vs 64 bit integer
Less actual digits: 53 vs 64 — no exponents in
integers
More time on computations — doubles could be
1.5-2 times slower
No overflow in doubles
Fractional part is always first digits
Possible overflow in exponent, but only at 10300

Errors everywhere
1.0 / 49, sqrt(2)
>>> 0.1 + 0.2
0.30000000000000004
and they grow!

Double vs 64 bit integer
Less actual digits: 53 vs 64 — no exponents in
integers
More time on computations — doubles could be
1.5-2 times slower
No overflow in doubles
Fractional part is always first digits
Possible overflow in exponent, but only at 10300

Errors everywhere
1.0 / 49, sqrt(2)
>>> 0.1 + 0.2
0.30000000000000004
and they grow!

Integers wherever possible

Rational numbers 9
13

Decimal fractions $2.49 = 249¢
Roots:
while i < sqrt(n) → while i * i < n
Comparing lengths:
|(x , y)| =

√︀
x2 + y 2

√
a <

√
b ⇐⇒ a < b

Integers wherever possible

Rational numbers 9
13

Decimal fractions $2.49 = 249¢
Roots:
while i < sqrt(n) → while i * i < n
Comparing lengths:
|(x , y)| =

√︀
x2 + y 2

√
a <

√
b ⇐⇒ a < b

Integers wherever possible

Rational numbers 9
13

Decimal fractions $2.49 = 249¢

Roots:
while i < sqrt(n) → while i * i < n
Comparing lengths:
|(x , y)| =

√︀
x2 + y 2

√
a <

√
b ⇐⇒ a < b

Integers wherever possible

Rational numbers 9
13

Decimal fractions $2.49 = 249¢
Roots:
while i < sqrt(n) → while i * i < n

Comparing lengths:
|(x , y)| =

√︀
x2 + y 2

√
a <

√
b ⇐⇒ a < b

Integers wherever possible

Rational numbers 9
13

Decimal fractions $2.49 = 249¢
Roots:
while i < sqrt(n) → while i * i < n
Comparing lengths:
|(x , y)| =

√︀
x2 + y 2

√
a <

√
b ⇐⇒ a < b

Doubles are needed

Most common case: floating point in output
"Output ... with absolute or relative error no
more than 10−6."

Print answer with some fixed large number of
digits after the point
cout << fixed << setprecision(20) << ans;
System.out.format("%.20f", ans);
print("%.20f" % ans)

Doubles are needed

Most common case: floating point in output
"Output ... with absolute or relative error no
more than 10−6."
Print answer with some fixed large number of
digits after the point
cout << fixed << setprecision(20) << ans;
System.out.format("%.20f", ans);
print("%.20f" % ans)

Integers as long as possible

11
7 + 1

2 +
5
14 = 34

14
five floating point operations vs one
1/2/3/5 = 1/(2 · 3 · 5)
three floating point operations vs one√
5 · 2 · 3 =

√
22 · 32 · 5

three floating point operations vs one
But watch for integer overflow!

Integers as long as possible

11
7 + 1

2 +
5
14 = 34

14
five floating point operations vs one

1/2/3/5 = 1/(2 · 3 · 5)
three floating point operations vs one√
5 · 2 · 3 =

√
22 · 32 · 5

three floating point operations vs one
But watch for integer overflow!

Integers as long as possible

11
7 + 1

2 +
5
14 = 34

14
five floating point operations vs one
1/2/3/5 = 1/(2 · 3 · 5)
three floating point operations vs one

√
5 · 2 · 3 =

√
22 · 32 · 5

three floating point operations vs one
But watch for integer overflow!

Integers as long as possible

11
7 + 1

2 +
5
14 = 34

14
five floating point operations vs one
1/2/3/5 = 1/(2 · 3 · 5)
three floating point operations vs one√
5 · 2 · 3 =

√
22 · 32 · 5

three floating point operations vs one

But watch for integer overflow!

Integers as long as possible

11
7 + 1

2 +
5
14 = 34

14
five floating point operations vs one
1/2/3/5 = 1/(2 · 3 · 5)
three floating point operations vs one√
5 · 2 · 3 =

√
22 · 32 · 5

three floating point operations vs one
But watch for integer overflow!

How to live with errors

Consider values of small difference equal

statement integers doubles
a is equal to b a == b abs(a - b) < eps

a is strictly less than b a < b a < b - eps
a is less than or equal to b a <= b a < b + eps

−∞ ∞
less equal greater

b

How to live with errors

Consider values of small difference equal

statement integers doubles
a is equal to b a == b abs(a - b) < eps

a is strictly less than b a < b a < b - eps
a is less than or equal to b a <= b a < b + eps

−∞ ∞
less equal greater

b

How to live with errors

If strictness is not important, usual a < b is still
better (e.g. while sorting)

Truncate carefully with floor and ceil:
instead of floor(a), better floor(a + eps)
or else if a should be 1, but has an error of 10−9,
floor(0.999999999) is zero

How to live with errors

If strictness is not important, usual a < b is still
better (e.g. while sorting)
Truncate carefully with floor and ceil:
instead of floor(a), better floor(a + eps)
or else if a should be 1, but has an error of 10−9,
floor(0.999999999) is zero

How to choose eps

It could be proven, that certain value of eps is
enough
Knowing how errors grow while

storing
summing
multiplying
...

numbers, you could bound the difference from
the exact value and use it as eps

But this is rarely done on contests
Usually it’s enough to take some feasible value
like 1e-8 or 1e-9

How to choose eps

It could be proven, that certain value of eps is
enough
Knowing how errors grow while

storing
summing
multiplying
...

numbers, you could bound the difference from
the exact value and use it as eps
But this is rarely done on contests

Usually it’s enough to take some feasible value
like 1e-8 or 1e-9

How to choose eps

It could be proven, that certain value of eps is
enough
Knowing how errors grow while

storing
summing
multiplying
...

numbers, you could bound the difference from
the exact value and use it as eps
But this is rarely done on contests
Usually it’s enough to take some feasible value
like 1e-8 or 1e-9

How to choose eps
What if your eps doesn’t work?

By usual means of debugging, find where errors
appear firstly
If indeed eps is guilty then either
eps is too big, and unequal values are treated as
equal
then you should decrease eps — take the next
power of 10, e.g. 10−8 → 10−9

or eps is too small, and equal values are treated
as unequal
then you should increase eps — e.g.
10−8 → 10−7

How to choose eps
What if your eps doesn’t work?
By usual means of debugging, find where errors
appear firstly

If indeed eps is guilty then either
eps is too big, and unequal values are treated as
equal
then you should decrease eps — take the next
power of 10, e.g. 10−8 → 10−9

or eps is too small, and equal values are treated
as unequal
then you should increase eps — e.g.
10−8 → 10−7

How to choose eps
What if your eps doesn’t work?
By usual means of debugging, find where errors
appear firstly
If indeed eps is guilty then either

eps is too big, and unequal values are treated as
equal
then you should decrease eps — take the next
power of 10, e.g. 10−8 → 10−9

or eps is too small, and equal values are treated
as unequal
then you should increase eps — e.g.
10−8 → 10−7

How to choose eps
What if your eps doesn’t work?
By usual means of debugging, find where errors
appear firstly
If indeed eps is guilty then either
eps is too big, and unequal values are treated as
equal
then you should decrease eps — take the next
power of 10, e.g. 10−8 → 10−9

or eps is too small, and equal values are treated
as unequal
then you should increase eps — e.g.
10−8 → 10−7

How to choose eps
What if your eps doesn’t work?
By usual means of debugging, find where errors
appear firstly
If indeed eps is guilty then either
eps is too big, and unequal values are treated as
equal
then you should decrease eps — take the next
power of 10, e.g. 10−8 → 10−9

or eps is too small, and equal values are treated
as unequal
then you should increase eps — e.g.
10−8 → 10−7

Technical Slide

Lesson: Insiduous numbers

Video: More on floating point

Order of computations

>>> (1e18 + 1) - 1e18
0.0
Values of different magnitude sum up with large
errors! Try to avoid that
x2 − y 2 = (x − y) · (x + y)
>>> y = 1e9
>>> x = y + 1
>>> x**2 - y**2
2000000000.0
>>> (x - y) * (x + y)
2000000001.0
(1018 + 2 · 109 + 1)− 1018

(109+1−109) · (109+1+109) = 1 · (2 ·109+1)

Order of computations
>>> (1e18 + 1) - 1e18
0.0
Values of different magnitude sum up with large
errors! Try to avoid that

x2 − y 2 = (x − y) · (x + y)
>>> y = 1e9
>>> x = y + 1
>>> x**2 - y**2
2000000000.0
>>> (x - y) * (x + y)
2000000001.0
(1018 + 2 · 109 + 1)− 1018

(109+1−109) · (109+1+109) = 1 · (2 ·109+1)

Order of computations
>>> (1e18 + 1) - 1e18
0.0
Values of different magnitude sum up with large
errors! Try to avoid that
x2 − y 2 = (x − y) · (x + y)

>>> y = 1e9
>>> x = y + 1
>>> x**2 - y**2
2000000000.0
>>> (x - y) * (x + y)
2000000001.0
(1018 + 2 · 109 + 1)− 1018

(109+1−109) · (109+1+109) = 1 · (2 ·109+1)

Order of computations
>>> (1e18 + 1) - 1e18
0.0
Values of different magnitude sum up with large
errors! Try to avoid that
x2 − y 2 = (x − y) · (x + y)
>>> y = 1e9
>>> x = y + 1
>>> x**2 - y**2
2000000000.0
>>> (x - y) * (x + y)
2000000001.0

(1018 + 2 · 109 + 1)− 1018

(109+1−109) · (109+1+109) = 1 · (2 ·109+1)

Order of computations
>>> (1e18 + 1) - 1e18
0.0
Values of different magnitude sum up with large
errors! Try to avoid that
x2 − y 2 = (x − y) · (x + y)
>>> y = 1e9
>>> x = y + 1
>>> x**2 - y**2
2000000000.0
>>> (x - y) * (x + y)
2000000001.0
(1018 + 2 · 109 + 1)− 1018

(109+1−109) · (109+1+109) = 1 · (2 ·109+1)

Other types

Single precision float — 32 bit analogue of
double
Do not use!
C++: long double — 80 or 64 bit, depending
on the compiler
cout << numeric_limits<long double>::digits;
64 or 53
Java/Python: BigDecimal/decimal — as
many leading digits as needed
but costs space and time

Other types

Single precision float — 32 bit analogue of
double
Do not use!

C++: long double — 80 or 64 bit, depending
on the compiler
cout << numeric_limits<long double>::digits;
64 or 53
Java/Python: BigDecimal/decimal — as
many leading digits as needed
but costs space and time

Other types

Single precision float — 32 bit analogue of
double
Do not use!
C++: long double — 80 or 64 bit, depending
on the compiler

cout << numeric_limits<long double>::digits;
64 or 53
Java/Python: BigDecimal/decimal — as
many leading digits as needed
but costs space and time

Other types

Single precision float — 32 bit analogue of
double
Do not use!
C++: long double — 80 or 64 bit, depending
on the compiler
cout << numeric_limits<long double>::digits;
64 or 53

Java/Python: BigDecimal/decimal — as
many leading digits as needed
but costs space and time

Other types

Single precision float — 32 bit analogue of
double
Do not use!
C++: long double — 80 or 64 bit, depending
on the compiler
cout << numeric_limits<long double>::digits;
64 or 53
Java/Python: BigDecimal/decimal — as
many leading digits as needed
but costs space and time

Special values of double

cout << 1.0 / 0;
inf
Positive infinity

cout << 1.0 / 0 - 1.0 / 0 << ’\n’;
-nan
Not a number
You want to avoid inf and nan in output
cout << sqrt(-1e-9);
-nan
sqrt(x) — could lead to nan
sqrt(max(x, 0)) — good

Special values of double

cout << 1.0 / 0;
inf
Positive infinity
cout << 1.0 / 0 - 1.0 / 0 << ’\n’;
-nan
Not a number

You want to avoid inf and nan in output
cout << sqrt(-1e-9);
-nan
sqrt(x) — could lead to nan
sqrt(max(x, 0)) — good

Special values of double

cout << 1.0 / 0;
inf
Positive infinity
cout << 1.0 / 0 - 1.0 / 0 << ’\n’;
-nan
Not a number
You want to avoid inf and nan in output
cout << sqrt(-1e-9);
-nan

sqrt(x) — could lead to nan
sqrt(max(x, 0)) — good

Special values of double

cout << 1.0 / 0;
inf
Positive infinity
cout << 1.0 / 0 - 1.0 / 0 << ’\n’;
-nan
Not a number
You want to avoid inf and nan in output
cout << sqrt(-1e-9);
-nan
sqrt(x) — could lead to nan
sqrt(max(x, 0)) — good

Summary

Doubles always come with errors

Use integers where possible
Always compare doubles with eps
Never use ==
Reorder computations — try not to add values
of different magnitude
Watch out for inf and nan

Summary

Doubles always come with errors
Use integers where possible

Always compare doubles with eps
Never use ==
Reorder computations — try not to add values
of different magnitude
Watch out for inf and nan

Summary

Doubles always come with errors
Use integers where possible
Always compare doubles with eps
Never use ==

Reorder computations — try not to add values
of different magnitude
Watch out for inf and nan

Summary

Doubles always come with errors
Use integers where possible
Always compare doubles with eps
Never use ==
Reorder computations — try not to add values
of different magnitude

Watch out for inf and nan

Summary

Doubles always come with errors
Use integers where possible
Always compare doubles with eps
Never use ==
Reorder computations — try not to add values
of different magnitude
Watch out for inf and nan

	Lesson: Insiduous numbers
	Video: Integer types and overflow
	Video: Dealing with overflow
	Video: Non-integers
	Video: Fixed point numbers and errors
	Video: Floating point numbers
	Video: Where and how to use doubles
	Video: More on floating point

