
Kirill Simonov
Leading Researcher

Worst cases

2

Introduction

•	 Time limits are tight.

3

Introduction

•	 Time limits are tight.

•	 The whole point – to do the thing quickly.

4

Introduction

•	 Time limits are tight.

•	 The whole point – to do the thing quickly.

•	 Measure quickness.

5

Introduction

•	 Time limits are tight.

•	 The whole point – to do the thing quickly.

•	 Measure quickness.

•	 Predict before implementing.

6

Introduction

•	 Time limits are tight.

•	 The whole point – to do the thing quickly.

•	 Measure quickness.

•	 Predict before implementing.

•	 Make solutions faster.

7

Example

Substring problem

Given two strings s and t check if s is a substring of t.

8

Example

Substring problem

Given two strings s and t check if s is a substring of t.

Input: s = abac; t = abacabad
Output: Yes: abacabad

9

Example

Substring problem

Given two strings s and t check if s is a substring of t.

Input: s = abac; t = abacabad
Output: Yes: abacabad

Input: s = cac; t = abacabad
Output: No

10

Example

Substring problem

Given two strings s and t check if s is a substring of t.

Input: s = abac; t = abacabad
Output: Yes: abacabad

Input: s = cac; t = abacabad
Output: No

Input: s = abab; t = abacabab
Output: Yes: abacabab

11

Algorithm

n: = length (s)

m: = length (t)

For all substrings of t of length n:

•	 Compare characters of s and this substring one by one.

•	 If there is a mismatch, move on to the next substring.

•	 If all characters are equal, return Yes.

•	 If none of substrings matches, return No.

12

Examples

s = abac; t = abacabad;

13

Examples

s = abac; t = abacabad;

a b a b

a b a c a b a d

0 operations

14

Examples

s = abac; t = abacabad;

a b a b

a b a c a b a d

1 operations

15

Examples

s = abac; t = abacabad;

a b a b

a b a c a b a d

2 operations

16

Examples

s = abac; t = abacabad;

a b a b

a b a c a b a d

3 operations

17

Examples

s = abac; t = abacabad;

a b a b

a b a c a b a d

4 = 4

18

Examples

s = abac; t = abacabad;

a b a b

a b a c a b a d

4 + 1 = 5

19

Examples

s = abac; t = abacabad;

a b a b

a b a c a b a d

4 + 1 + 2 = 7

20

Examples

s = abac; t = abacabad;

a b a b

a b a c a b a d

4 + 1 + 2 + 1 = 8

21

Examples

s = abac; t = abacabad;

a b a b

a b a c a b a d

4 + 4 + 4 + 4 = 16

22

Examples

s = abac; t = abacabad;

23

Examples

s = abac; t = abacabad;

a b a c

a b a c a b a d

4 = 4

We instantly got the match!

24

Time could vary

•	 The number of operations could be different.

25

Time could vary

•	 The number of operations could be different.

•	 If your program is fast on the samples or even on some
custom tests, that doesn’t mean it’ ll always be this way.

26

Time could vary

•	 The number of operations could be different.

•	 If your program is fast on the samples or even on some
custom tests, that doesn’t mean it’ ll always be this way.

•	 Your program should work quickly on the worst
possible test.

27

Time could vary

•	 The number of operations could be different.

•	 If your program is fast on the samples or even on some
custom tests, that doesn’t mean it’ ll always be this way.

•	 Your program should work quickly on the worst
possible test.

•	 The worst possible test for our previous algorithm:

28

Time could vary

•	 The number of operations could be different.

•	 If your program is fast on the samples or even on some
custom tests, that doesn’t mean it’ ll always be this way.

•	 Your program should work quickly on the worst
possible test.

•	 The worst possible test for our previous algorithm:

–– the answer is “No” – we will check every substring;

29

Time could vary

•	 The number of operations could be different.

•	 If your program is fast on the samples or even on some
custom tests, that doesn’t mean it’ ll always be this way.

•	 Your program should work quickly on the worst
possible test.

•	 The worst possible test for our previous algorithm:

–– the answer is “No” – we will check every substring;

–– on every substring we will compare
characters until the last.

30

Examples

s = aaab; t = aaaaaaaa;

31

Examples

s = aaab; t = aaaaaaaa;

a a a b

a a a a a a a a

4 = 4

32

Examples

s = aaab; t = aaaaaaaa;

a a a b

a a a a a a a a

4 + 4 = 8

33

Examples

s = aaab; t = aaaaaaaa;

a a a b

a a a a a a a a

4 + 4 + 4 = 12

34

Examples

s = aaab; t = aaaaaaaa;

a a a b

a a a a a a a a

4 + 4 + 4 + 4 = 16

35

Examples

s = aaab; t = aaaaaaaa;

4 + 4 + 4 + 4 + 4 = 20

a a a b

a a a a a a a a

36

Conclusion

•	 The worst test is not just any big enough test.

37

Conclusion

•	 The worst test is not just any big enough test.

•	 It could be hard to construct it.

38

Conclusion

•	 The worst test is not just any big enough test.

•	 It could be hard to construct it.

•	 Goal – to estimate the number of operations on any test
without finding the worst possible.

Kirill Simonov
Leading Researcher

Big-O notation

40

Which operations are unit?

We’ ll count operations taking some small fixed
amount of time:

41

Which operations are unit?

We’ ll count operations taking some small fixed
amount of time:

•	 number operations (+, −, *, /, %, <, >, =);

•	 logical operations (or, and, not, xor);

•	 accessing a value from an array;

•	 defining a new variable.

42

Which operations are not unit?

Some operations take more time:

43

Which operations are not unit?

Some operations take more time:

•	 comparing strings or lists;

•	 defining a string or a list with many elements;

•	 concatenating two strings.

44

Which operations are not unit?

Some operations take more time:

•	 comparing strings or lists;

•	 defining a string or a list with many elements;

•	 concatenating two strings.

Strings and lists consist of small elements.
The operations are applied to each element.
So if there are many of them, it could take much time.

45

Substring problem

n = length (s); m = length (t)

1.	 for i in range (m − n + 1): (0, 1, . . . , m − n)
2.	  match = True
3.	  for j in range (n):
4.	    ıf s [ j ] != t [ i + j ]: mismatch!
5.	 match = False
6.	 break already not equal
7.	  if match:
8.	    break

46

A condition

1.	 if s [ j ] ! = t [ i + j ]:

memory access

condition checking inequality checking

addition

47

Dropping constants

•	 Tedious to count all operations.

48

Dropping constants

•	 Tedious to count all operations.

•	 The number of operations in that line
is independent of the input.

49

Dropping constants

•	 Tedious to count all operations.

•	 The number of operations in that line
is independent of the input.

•	 A constant number of operations –
no need to count explicitly.

50

Substring problem

1.	 for i in range (m − n + 1):
2.	  match = True
3.	  for j in range (n):
4.	   if s [ j ] ! = t [ i + j ]:
5.	constant match = False
6.	   break
7.	  if match:
8.	   break

no more than m times

n times

51

Substring problem

1.	 for i in range (m − n + 1):
2.	  match = True
3.	  for j in range (n):
4.	   if s [ j ] ! = t [ i + j ]:
5.	constant match = False
6.	   break
7.	  if match:
8.	   break

The algorithm does no more than m · n · constant operations.
Without checking particular tests!

no more than m times

n times

52

Big-O notation

•	 Upper bounds up to a constant multiplier.

53

Big-O notation

•	 Upper bounds up to a constant multiplier.

•	 Constants are similar for different solutions,
but what matters is the dependence on input.

54

Big-O notation

•	 Upper bounds up to a constant multiplier.

•	 Constants are similar for different solutions,
but what matters is the dependence on input.

•	 n – some input parameter, and f (n) – some function of n.

55

Big-O notation

•	 Upper bounds up to a constant multiplier.

•	 Constants are similar for different solutions,
but what matters is the dependence on input.

•	 n – some input parameter, and f (n) – some function of n.

•	 An algorithm has asymptotic time complexity of O (f (n))
if it does no more than C · f (n) operations on any input,
where C is some constant number.

56

Big-O notation

•	 Upper bounds up to a constant multiplier.

•	 Constants are similar for different solutions,
but what matters is the dependence on input.

•	 n – some input parameter, and f (n) – some function of n.

•	 An algorithm has asymptotic time complexity of O (f (n))
if it does no more than C · f (n) operations on any input,
where C is some constant number.

•	 Could be several parameters.
Our superstring algorithm is O (m · n).

57

Properties of O

58

Properties of O

•	 Upper bounds: O (...) if ≤ constant · . . . operations.

59

Properties of O

•	 Upper bounds: O (...) if ≤ constant · . . . operations.

•	 Could be less!
May be O (n2), but also O (n).
If O (n), then O (n2), as n ≤ n2.

60

Properties of O

•	 Upper bounds: O (...) if ≤ constant · . . . operations.

•	 Could be less!
May be O (n2), but also O (n).
If O (n), then O (n2), as n ≤ n2.

•	 Optimal bounds may be very non-trivial.

61

Properties of O

•	 Upper bounds: O (...) if ≤ constant · . . . operations.

•	 Could be less!
May be O (n2), but also O (n).
If O (n), then O (n2), as n ≤ n2.

•	 Optimal bounds may be very non-trivial.

•	 But we could get some simple bounds.

62

Single statement

•	 Unit operations – O (1).

63

Single statement

•	 Unit operations – O (1).

•	 Built-in functions/structures need to know in advance.
Comparing strings – O (size).
Requires passing through elements – at least size operations.

64

Single statement

•	 Unit operations – O (1).

•	 Built-in functions/structures need to know in advance.
Comparing strings – O (size).
Requires passing through elements – at least size operations.

•	 Own function – bound separately.

65

Recursion

1.	 for i in range (n):

O (f (n))

•	 Inside part O (f (n)) on each iteration.

•	 O (n · f (n) + n) in total.

•	 Iterating is constant · n by itself.

66

Recursion

Enumerating all strings x over {a, b} of length n:

1.	def nestedFors (n, firstFor, x):
2.	   if firstFor < n:
3.	  for x [ firstFor] in [ ’a’, ’b’ ]:
4.	   nestedFors (n,
5.	 firstFor + 1, x)
6.	   else:
7.	  print (x)

67

Recursion

Enumerating all strings x over {a, b} of length n:

1.	 for x [ 0 ] in [ ’a’, ’b’ ] :
2.	 for x [ 1 ] in [ ’a’, ’b’ ] :
3.	   . . .
4.	 for x [ n − 1 ] in [ ’a’, ’b’ ]:
5.	   print (x)

•	 n nested for loops, each runs over 2 letters.

•	 So 2 · 2 · · · 2 = 2n iterations in total print (x) outputs
every element of x, length is n, so it’s O (n) by itself.

•	 Overall, O (n · 2n).

Kirill Simonov
Leading Researcher

From theory to practice

69

Solving a problem

Invent a solution.1

70

Solving a problem

Invent a solution.

Check if it’s correct.

1

2

71

Solving a problem

Invent a solution.

Check if it’s correct.

Get O (...) bound – could be done without implementing!

1

2

3

72

Solving a problem

Invent a solution.

Check if it’s correct.

Get O (...) bound – could be done without implementing!

Check if it’s fast enough.

1

2

3

4

73

Solving a problem

Invent a solution.

Check if it’s correct.

Get O (...) bound – could be done without implementing!

Check if it’s fast enough.

If not, invent another or get a better bound.

1

2

3

4

5

74

Will it pass?

•	 O (...) operations – some function of input variables like O (n3) or O (n · m).

75

Will it pass?

•	 O (...) operations – some function of input variables like O (n3) or O (n · m).

•	 These values are bound by the statement – plug the limits in your O estimate.

76

Will it pass?

•	 O (...) operations – some function of input variables like O (n3) or O (n · m).

•	 These values are bound by the statement – plug the limits in your O estimate.

•	 O (n3), n ≤ 100 : 1003 = 106.
O (n · m), n ≤ 104, m ≤ 106 : 104 · 106 = 1010.

77

Will it pass?

•	 O (...) operations – some function of input variables like O (n3) or O (n · m).

•	 These values are bound by the statement – plug the limits in your O estimate.

•	 O (n3), n ≤ 100 : 1003 = 106.
O (n · m), n ≤ 104, m ≤ 106 : 104 · 106 = 1010.

•	 Compare with how many operations could be done in a second.
Expected to be 108–109 simple operations, in C++ or Java.

78

Will it pass?

•	 O (...) operations – some function of input variables like O (n3) or O (n · m).

•	 These values are bound by the statement – plug the limits in your O estimate.

•	 O (n3), n ≤ 100 : 1003 = 106.
O (n · m), n ≤ 104, m ≤ 106 : 104 · 106 = 1010.

•	 Compare with how many operations could be done in a second.
Expected to be 108–109 simple operations, in C++ or Java.

•	 Less for Python, about 107.

79

Will it pass?

•	 O (...) operations – some function of input variables like O (n3) or O (n · m).

•	 These values are bound by the statement – plug the limits in your O estimate.

•	 O (n3), n ≤ 100 : 1003 = 106.
O (n · m), n ≤ 104, m ≤ 106 : 104 · 106 = 1010.

•	 Compare with how many operations could be done in a second.
Expected to be 108–109 simple operations, in C++ or Java.

•	 Less for Python, about 107.

•	 106 – will pass even with quite big constant.
10 10 – won’t pass.

80

Constants matter

•	 What if we’re somewhere in between.

81

Constants matter

•	 What if we’re somewhere in between.

•	 O (n) is better than O (n2).
And if it’s 106 · n vs 10 · n2 and n ≤ 100?

82

Constants matter

•	 What if we’re somewhere in between.

•	 O (n) is better than O (n2).
And if it’s 106 · n vs 10 · n2 and n ≤ 100?

•	 Multiply by large factors even when formally constants.

1.	 for i in range (n):
2.	  for c in ’a’ . . ’z’:
3.	  some thing in O (1)

•	 Formally O (n) – second doesn’t depend on input.

•	 But when estimating operations, use 26 · n instead of just n.

83

Operations differ

Light:

•	 +, −

•	 logical

•	 *

Heavy:

•	 %

•	 appending to strings/lists

•	 recursion

•	 math functions like sqrt

•	 I/O

84

Considering constants

•	 When you’ve got the number of operations under O
and still in doubt.

85

Considering constants

•	 When you’ve got the number of operations under O
and still in doubt.

•	 Think about what constant will it be multiplied by.

86

Considering constants

•	 When you’ve got the number of operations under O
and still in doubt.

•	 Think about what constant will it be multiplied by.

•	 Few light operations per one – larger bound is still fine.

87

Considering constants

•	 When you’ve got the number of operations under O
and still in doubt.

•	 Think about what constant will it be multiplied by.

•	 Few light operations per one – larger bound is still fine.

•	 Many and/or heavy – smaller, like 107, could also TL.

88

Considering constants

•	 When you’ve got the number of operations under O
and still in doubt.

•	 Think about what constant will it be multiplied by.

•	 Few light operations per one – larger bound is still fine.

•	 Many and/or heavy – smaller, like 107, could also TL.

•	 You should consider only frequent operations sqrt
is heavier than + but if you have 1 of sqrt and 106 of +,
it doesn’t matter.

Kirill Simonov
Leading Researcher

Making a solution faster

90

Locally

91

Locally

1.	 for i in range (n):
2.	  . . .
3.	  for j in range (m):
4.	    . . .
5.	    doSomething ( )
6.	    . . .
7.	  . . .

•	 Overall number of operations is O (. . .).

92

Locally

1.	 for i in range (n):
2.	  . . .
3.	  for j in range (m):
4.	    . . .
5.	    doSomething ( )
6.	    . . .
7.	  . . .

•	 Overall number of operations is O (. . .).

•	 Our contribution: O (n · m · time (doSomething)).

93

Locally

•	 May be a bottleneck: if overall O (n2 · m)
and time (doSomething) = O (n),
it contributes O (n · m · n) = O (n2 · m). So up to a constant
this line has as much operations, as the entire program.
If you want faster solution, you need to optimize that.

94

Locally

•	 May be a bottleneck: if overall O (n2 · m)
and time (doSomething) = O (n),
it contributes O (n · m · n) = O (n2 · m). So up to a constant
this line has as much operations, as the entire program.
If you want faster solution, you need to optimize that.

•	 Or not: if overall O (n3 · m), then no sense making
doSomething faster it alredy contributes only O (n2 · m) –
n times smaller than something else.

95

Making a solution faster

•	 Your solution is too slow.

96

Making a solution faster

•	 Your solution is too slow.

•	 First, try to improve asymptotically.

97

Making a solution faster

•	 Your solution is too slow.

•	 First, try to improve asymptotically.

•	 Only in bottleneck parts.

98

Making a solution faster

•	 Your solution is too slow.

•	 First, try to improve asymptotically.

•	 Only in bottleneck parts.

•	 If you couldn’t get better asymptotically and your solution
is just above the TL, try to optimize constants, but only then.

99

Making a solution faster

•	 Your solution is too slow.

•	 First, try to improve asymptotically.

•	 Only in bottleneck parts.

•	 If you couldn’t get better asymptotically and your solution
is just above the TL, try to optimize constants, but only then.

•	 Get rid of heavy operations.

100

Making a solution faster

•	 Your solution is too slow.

•	 First, try to improve asymptotically.

•	 Only in bottleneck parts.

•	 If you couldn’t get better asymptotically and your solution
is just above the TL, try to optimize constants, but only then.

•	 Get rid of heavy operations.

•	 Especially of large debug output.

101

Making a solution faster

•	 Your solution is too slow.

•	 First, try to improve asymptotically.

•	 Only in bottleneck parts.

•	 If you couldn’t get better asymptotically and your solution
is just above the TL, try to optimize constants, but only then.

•	 Get rid of heavy operations.

•	 Especially of large debug output.

•	 Do not recompute.

102

Measure actual time

•	 O (. . .) – theoretical bounds.

103

Measure actual time

•	 O (. . .) – theoretical bounds.

•	 If you have a program – you could measure actual time.

104

Measure actual time

•	 O (. . .) – theoretical bounds.

•	 If you have a program – you could measure actual time.

•	 Remotely submit to a testing system. Could be a remote
run interface, like in Codeforces.

105

Measure actual time

•	 O (. . .) – theoretical bounds.

•	 If you have a program – you could measure actual time.

•	 Remotely submit to a testing system. Could be a remote
run interface, like in Codeforces.

•	 Locally – need max test, could be different. But could
measure different parts and do not waste attempts.

106

Measure actual time

•	 O (. . .) – theoretical bounds.

•	 If you have a program – you could measure actual time.

•	 Remotely submit to a testing system. Could be a remote
run interface, like in Codeforces.

•	 Locally – need max test, could be different. But could
measure different parts and do not waste attempts.

•	 How many times a function is called:

1.	def someFunction ( ):
2.	   counter + = 1
3.	   . . .

107

Measure locally

•	 Whole program
time [command] – UNIX-like systems.

108

Measure locally

•	 Whole program
time [command] – UNIX-like systems.

•	 See how much time has elapsed inside the program:

1.	 start = getTime ()
2.	 . . .
3.	 print (getTime () − start)

Could measure the whole program, or just some parts,
and see how much do they actually contribute.

109

Measure locally

•	 Whole program
time [command] – UNIX-like systems.

•	 See how much time has elapsed inside the program:

1.	 start = getTime ()
2.	 . . .
3.	 print (getTime () − start)

Could measure the whole program, or just some parts,
and see how much do they actually contribute.

•	 Profilers measure running time and number of calls for each
function. Only a structured code benefits!

110

Memory

•	 Aside from time, your program should also fit
in the memory limit.

111

Memory

•	 Aside from time, your program should also fit
in the memory limit.

•	 But it’s usually weaker than TL. Too much appends
to lists nearly always TL, not ML.

112

Memory

•	 Aside from time, your program should also fit
in the memory limit.

•	 But it’s usually weaker than TL. Too much appends
to lists nearly always TL, not ML.

•	 The most common cause of ML – large arrays.
But their size is easy to calculate explicitly.
Only need to know sizes of variables.

113

Summary

•	 Your program is expected to work fast on worst-case inputs.

114

Summary

•	 Your program is expected to work fast on worst-case inputs.

•	 You should always get O bound before implementing.

115

Summary

•	 Your program is expected to work fast on worst-case inputs.

•	 You should always get O bound before implementing.

•	 To check, plug limits in the bound and compare
with possible number of operations.

116

Summary

•	 Your program is expected to work fast on worst-case inputs.

•	 You should always get O bound before implementing.

•	 To check, plug limits in the bound and compare
with possible number of operations.

•	 Speed up only in bottlenecks.

117

Summary

•	 Your program is expected to work fast on worst-case inputs.

•	 You should always get O bound before implementing.

•	 To check, plug limits in the bound and compare
with possible number of operations.

•	 Speed up only in bottlenecks.

•	 First optimize asymptotically. Only if this fails and you need
very little optimize constants.

118

Summary

•	 Your program is expected to work fast on worst-case inputs.

•	 You should always get O bound before implementing.

•	 To check, plug limits in the bound and compare
with possible number of operations.

•	 Speed up only in bottlenecks.

•	 First optimize asymptotically. Only if this fails and you need
very little optimize constants.

•	 Could be useful to measure actual time.

