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Introduction

•	 Time limits are tight.

•	 The whole point – to do the thing quickly.

•	 Measure quickness.

•	 Predict before implementing.

•	 Make solutions faster.
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Example

Substring problem

Given two strings s and t check if s is a substring of t.
 
Input:     s = abac; t = abacabad 
Output:  Yes: abacabad 
 
Input:     s = cac; t = abacabad 
Output:  No              
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Example

Substring problem

Given two strings s and t check if s is a substring of t.
 
Input:     s = abac; t = abacabad 
Output:  Yes: abacabad 
 
Input:     s = cac; t = abacabad 
Output:  No

Input:     s = abab; t = abacabab 
Output:  Yes: abacabab  
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Algorithm

n: = length (s)
 
m: = length (t) 

For all substrings of t of length n:

•	 Compare characters of s and this substring one by one.

•	 If there is a mismatch, move on to the next substring.

•	 If all characters are equal, return Yes.

•	 If none of substrings matches, return No.
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s = abac; t = abacabad;
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Examples

s = abac; t = abacabad;

a b a b

a b a c a b a d

3 operations 
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Examples

s = abac; t = abacabad;

a b a b

a b a c a b a d

4 + 1 = 5 
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Examples

s = abac; t = abacabad;

a b a b

a b a c a b a d

4 + 1 + 2 = 7 
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Examples

s = abac; t = abacabad;

a b a b

a b a c a b a d

4 + 1 + 2 + 1 = 8 
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Examples

s = abac; t = abacabad;

a b a b

a b a c a b a d

4 + 4 + 4 + 4 = 16 
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s = abac; t = abacabad;
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Examples

s = abac; t = abacabad;

a b a c

a b a c a b a d

4 = 4 
 
We instantly got the match!
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Time could vary

•	 The number of operations could be different.

•	 If your program is fast on the samples or even on some 
custom tests, that doesn’t mean it’ ll always be this way.

•	 Your program should work quickly on the worst  
possible test.

•	 The worst possible test for our previous algorithm:

–– the answer is “No” – we will check every substring;

–– on every substring we will compare 
characters until the last.
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Examples

s = aaab; t = aaaaaaaa;
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Examples

s = aaab; t = aaaaaaaa;

a a a b

a a a a a a a a

4 = 4
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Examples

s = aaab; t = aaaaaaaa;

a a a b

a a a a a a a a

4 + 4 = 8
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Examples

s = aaab; t = aaaaaaaa;

a a a b

a a a a a a a a

4 + 4 + 4 = 12
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Examples

s = aaab; t = aaaaaaaa;

a a a b

a a a a a a a a

4 + 4 + 4 + 4 = 16
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Examples

s = aaab; t = aaaaaaaa;

4 + 4 + 4 + 4 + 4 = 20

a a a b

a a a a a a a a
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Conclusion

•	 The worst test is not just any big enough test.

•	 It could be hard to construct it.

•	 Goal – to estimate the number of operations on any test 
without finding the worst possible.
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Big-O notation
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Which operations are unit?

We’ ll count operations taking some small fixed
amount of time:

•	 number operations (+, −, *, /, %, <, >, =);

•	 logical operations (or, and, not, xor);

•	 accessing a value from an array;

•	 defining a new variable.
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Which operations are not unit?

Some operations take more time:

•	 comparing strings or lists;

•	 defining a string or a list with many elements;

•	 concatenating two strings.
 
Strings and lists consist of small elements.
The operations are applied to each element.
So if there are many of them, it could take much time.
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Substring problem

n = length (s); m = length (t) 

1.	 for i in range (m − n + 1): (0, 1, . . . , m − n)
2.	       match = True
3.	       for j in range (n):
4.	             ıf s [ j ] != t [ i + j ]: mismatch!
5.	                 match = False
6.	                 break already not equal
7.	       if match:
8.	             break
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A condition

1.	 if s [ j ] ! = t [ i + j ]:

memory access

condition checking inequality checking

addition
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Dropping constants

•	 Tedious to count all operations.

•	 The number of operations in that line  
is independent of the input.

•	 A constant number of operations –  
no need to count explicitly.
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Substring problem

1.	 for i in range (m − n + 1):
2.	       match = True
3.	       for j in range (n):
4.	                  if s [ j ] ! = t [ i + j ]:
5.	constant         match = False
6.	                          break
7.	       if match:
8.	           break

no more than m times

n times
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Substring problem

1.	 for i in range (m − n + 1):
2.	       match = True
3.	       for j in range (n):
4.	                  if s [ j ] ! = t [ i + j ]:
5.	constant         match = False
6.	                          break
7.	       if match:
8.	           break

The algorithm does no more than m · n · constant operations. 
Without checking particular tests!

no more than m times

n times
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Big-O notation

•	 Upper bounds up to a constant multiplier.

•	 Constants are similar for different solutions,  
but what matters is the dependence on input.

•	 n – some input parameter, and f (n) – some function of n.

•	 An algorithm has asymptotic time complexity of O (f (n))  
if it does no more than C · f (n) operations on any input, 
where C is some constant number.

•	 Could be several parameters.  
Our superstring algorithm is O (m · n).
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Properties of O

•	 Upper bounds: O (...) if ≤ constant · . . . operations.

•	 Could be less! 
May be O (n2), but also O (n). 
If O (n), then O (n2), as n ≤ n2.

•	 Optimal bounds may be very non-trivial.

•	 But we could get some simple bounds.
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Single statement

•	 Unit operations – O (1).

•	 Built-in functions/structures need to know in advance.
Comparing strings – O (size). 
Requires passing through elements – at least size operations.

•	 Own function – bound separately.
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Recursion

1.	 for i in range (n):
 

O (f (n)) 

•	 Inside part O (f (n)) on each iteration.

•	 O (n · f (n) + n) in total.

•	 Iterating is constant · n by itself.



66

Recursion

Enumerating all strings x over {a, b} of length n: 

1.	def nestedFors (n, firstFor, x):
2.	         if firstFor < n:
3.	            for x [ firstFor] in [ ’a’, ’b’ ]:
4.	                 nestedFors (n,
5.	                      firstFor + 1, x)
6.	         else:
7.	            print (x)
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Recursion

Enumerating all strings x over {a, b} of length n: 

1.	 for x [ 0 ] in [ ’a’, ’b’ ] :
2.	       for x [ 1 ] in [ ’a’, ’b’ ] :
3.	             . . .
4.	             for x [ n − 1 ] in [ ’a’, ’b’ ]:
5.	                    print (x)

•	 n nested for loops, each runs over 2 letters.

•	 So 2 · 2 · · · 2 = 2n iterations in total print (x) outputs  
every element of x, length is n, so it’s O (n) by itself.

•	 Overall, O (n · 2n).
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From theory to practice
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Solving a problem

Invent a solution.1
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Solving a problem

Invent a solution.

Check if it’s correct.

Get O (...) bound – could be done without implementing!

Check if it’s fast enough.

If not, invent another or get a better bound.

1

2

3

4

5
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Will it pass?

•	 O (...) operations – some function of input variables like O (n3) or O (n · m).

•	 These values are bound by the statement – plug the limits in your O estimate.

•	 O (n3), n ≤ 100 : 1003 = 106. 
O (n · m), n ≤ 104, m ≤ 106 : 104 · 106 = 1010.

•	 Compare with how many operations could be done in a second. 
Expected to be 108–109 simple operations, in C++ or Java.

•	 Less for Python, about 107.

•	 106 – will pass even with quite big constant. 
10 10 – won’t pass.
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Constants matter

•	 What if we’re somewhere in between.

•	 O (n) is better than O (n2). 
And if it’s 106 · n vs 10 · n2 and n ≤ 100?

•	 Multiply by large factors even when formally constants. 

1.	 for i in range (n):
2.	       for c in ’a’ . . ’z’:
3.	            some thing in O (1)

•	 Formally O (n) – second doesn’t depend on input.

•	 But when estimating operations, use 26 · n instead of just n.
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Operations differ

Light:

•	 +, −

•	 logical

•	 *

Heavy:

•	 %

•	 appending to strings/lists

•	 recursion

•	 math functions like sqrt

•	 I/O
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Considering constants

•	 When you’ve got the number of operations under O  
and still in doubt.

•	 Think about what constant will it be multiplied by.

•	 Few light operations per one – larger bound is still fine.

•	 Many and/or heavy – smaller, like 107, could also TL.

•	 You should consider only frequent operations sqrt  
is heavier than + but if you have 1 of sqrt and 106 of +,  
it doesn’t matter.
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Locally

1.	 for i in range (n):
2.	       . . .
3.	       for j in range (m):
4.	             . . .
5.	             doSomething ( )
6.	             . . .
7.	       . . . 

•	 Overall number of operations is O (. . .).
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Locally

1.	 for i in range (n):
2.	       . . .
3.	       for j in range (m):
4.	             . . .
5.	             doSomething ( )
6.	             . . .
7.	       . . . 

•	 Overall number of operations is O (. . .).

•	 Our contribution: O (n · m · time (doSomething)). 
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Locally

•	 May be a bottleneck: if overall O (n2 · m)  
and time (doSomething) = O (n),  
it contributes O (n · m · n) = O (n2 · m). So up to a constant 
this line has as much operations, as the entire program. 
If you want faster solution, you need to optimize that.
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Locally

•	 May be a bottleneck: if overall O (n2 · m)  
and time (doSomething) = O (n),  
it contributes O (n · m · n) = O (n2 · m). So up to a constant 
this line has as much operations, as the entire program. 
If you want faster solution, you need to optimize that.

•	 Or not: if overall O (n3 · m), then no sense making 
doSomething faster it alredy contributes only O (n2 · m) –  
n times smaller than something else.
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Making a solution faster

•	 Your solution is too slow.
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Making a solution faster

•	 Your solution is too slow.

•	 First, try to improve asymptotically.

•	 Only in bottleneck parts.

•	 If you couldn’t get better asymptotically and your solution  
is just above the TL, try to optimize constants, but only then.

•	 Get rid of heavy operations.

•	 Especially of large debug output.

•	 Do not recompute.
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Measure actual time

•	 O (. . .) – theoretical bounds.

•	 If you have a program – you could measure actual time.

•	 Remotely submit to a testing system. Could be a remote  
run interface, like in Codeforces.

•	 Locally – need max test, could be different. But could 
measure different parts and do not waste attempts.

•	 How many times a function is called: 

1.	def someFunction ( ):
2.	        counter + = 1
3.	        . . .
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Measure locally

•	 Whole program  
time [command] – UNIX-like systems.

•	 See how much time has elapsed inside the program: 

1.	 start = getTime ( )
2.	 . . .
3.	 print (getTime ( ) − start)

Could measure the whole program, or just some parts,  
and see how much do they actually contribute.
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Measure locally

•	 Whole program  
time [command] – UNIX-like systems.

•	 See how much time has elapsed inside the program: 

1.	 start = getTime ( )
2.	 . . .
3.	 print (getTime ( ) − start)

Could measure the whole program, or just some parts,  
and see how much do they actually contribute.

•	 Profilers measure running time and number of calls for each 
function. Only a structured code benefits! 
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Memory

•	 Aside from time, your program should also fit  
in the memory limit.

•	 But it’s usually weaker than TL. Too much appends  
to lists nearly always TL, not ML.

•	 The most common cause of ML – large arrays. 
But their size is easy to calculate explicitly. 
Only need to know sizes of variables.
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Summary

•	 Your program is expected to work fast on worst-case inputs.

•	 You should always get O bound before implementing.

•	 To check, plug limits in the bound and compare  
with possible number of operations.

•	 Speed up only in bottlenecks.

•	 First optimize asymptotically. Only if this fails and you need 
very little optimize constants.

•	 Could be useful to measure actual time.


