Big-O notation

Competitive Programming: Core Skills

Artur Riazanov

SPbSU

Artur Riazanov (SPbSU) Big-O notation 1/1

Introduction

@ In this video we will master powerful technique for
measuring the number of atomic operations an
algorithm does.

Artur Riazanov (SPbSU) Big-O notation 2/1

Introduction

@ In this video we will master powerful technique for
measuring the number of atomic operations an
algorithm does.

@ The problem is that the number of operations
depends on input.

Artur Riazanov (SPbSU) Big-O notation 2/1

Introduction

@ In this video we will master powerful technique for
measuring the number of atomic operations an
algorithm does.

@ The problem is that the number of operations
depends on input.

@ We will learn how to measure the dependence.

Artur Riazanov (SPbSU) Big-O notation 2/1

What is atomic operation?

When we estimate the number of operation it's useful to
define what operation is.

Artur Riazanov (SPbSU) Big-O notation

What is atomic operation?

When we estimate the number of operation it's useful to
define what operation is.

@ Arithmetic operations (+, -, *, /, %, <, >, =)

Artur Riazanov (SPbSU) Big-O notation

What is atomic operation?

When we estimate the number of operation it's useful to
define what operation is.

@ Arithmetic operations (+, -, *, /, %, <, >, =)
@ Logical operations (or, and, not, xor)

Artur Riazanov (SPbSU) Big-O notation

What is atomic operation?

When we estimate the number of operation it's useful to
define what operation is.

@ Arithmetic operations (+, -, *, /, %, <, >, =)
@ Logical operations (or, and, not, xor)
@ Accessing a value from an array

Artur Riazanov (SPbSU) Big-O notation 3/1

What is atomic operation?

When we estimate the number of operation it's useful to
define what operation is.

o Arithmetic operations (+, -, *, /, %, <, >, =)
@ Logical operations (or, and, not, xor)

@ Accessing a value from an array

@ Defining a new variable

Artur Riazanov (SPbSU) Big-O notation 3/1

What is atomic operation?

When we estimate the number of operation it's useful to
define what operation is.

o Arithmetic operations (+, -, *, /, %, <, >, =)
@ Logical operations (or, and, not, xor)

@ Accessing a value from an array

@ Defining a new variable

Artur Riazanov (SPbSU) Big-O notation 3/1

Which operations are not atomic?

Some operations seem simple but in fact they are pretty
complicated and require much more time that atomic
operations do.

e Comparing strings, vectors (C++) or lists (Python)

Artur Riazanov (SPbSU) Big-O notation

Which operations are not atomic?

Some operations seem simple but in fact they are pretty
complicated and require much more time that atomic
operations do.

e Comparing strings, vectors (C++) or lists (Python)
@ Defining a vector or list with many elements

Artur Riazanov (SPbSU) Big-O notation

Which operations are not atomic?

Some operations seem simple but in fact they are pretty
complicated and require much more time that atomic
operations do.

e Comparing strings, vectors (C++) or lists (Python)
@ Defining a vector or list with many elements
e Concatenating two strings

Artur Riazanov (SPbSU) Big-O notation

Which operations are not atomic?

Some operations seem simple but in fact they are pretty
complicated and require much more time that atomic
operations do.

e Comparing strings, vectors (C++) or lists (Python)
@ Defining a vector or list with many elements
e Concatenating two strings

Strings, vectors and lists consists of small elements
therefore the operations above are applied for each
elements of a big object (each symbol of a string, each
element of a vector/list).

Artur Riazanov (SPbSU) Big-O notation

4/1

n = length(s); m = length(t)

for i in range(m-n+1): (0,1,...,m—n)

match = True
for j in range(n):
if s[j] != t[i+j]: contradiction!
match = False
break no need to check latter symbols
if match:

break

Artur Riazanov (SPbSU)

