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Introduction

@ In this video we will master powerful technique for
measuring the number of atomic operations an
algorithm does.
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Introduction

@ In this video we will master powerful technique for
measuring the number of atomic operations an
algorithm does.

@ The problem is that the number of operations
depends on input.

@ We will learn how to measure the dependence.
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What is atomic operation?

When we estimate the number of operation it's useful to
define what operation is.
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Which operations are not atomic?

Some operations seem simple but in fact they are pretty
complicated and require much more time that atomic
operations do.

e Comparing strings, vectors (C++) or lists (Python)
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Which operations are not atomic?

Some operations seem simple but in fact they are pretty
complicated and require much more time that atomic
operations do.

e Comparing strings, vectors (C++) or lists (Python)
@ Defining a vector or list with many elements
e Concatenating two strings

Strings, vectors and lists consists of small elements
therefore the operations above are applied for each
elements of a big object (each symbol of a string, each
element of a vector/list).
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n = length(s); m = length(t)

for i in range(m-n+1): (0,1,...,m—n)

match = True
for j in range(n):
if s[j] != t[i+j]: contradiction!
match = False
break no need to check latter symbols
if match:

break
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