
Brute force solutions
Competitive Programming: Core Skills

Artur Riazanov

SPbSU

Artur Riazanov (SPbSU) Brute force solutions 1 / 40

Outline

1 Intuitive solutions

2 Search space

3 Backtracking

Artur Riazanov (SPbSU) Brute force solutions 2 / 40

Introduction

Sometimes the first solution you come up with is the
correct one.

But sometimes it’s not.
In this lesson we are going to develop a method for
designing solutions which are always correct.
The catch is they are going to be slow.

Artur Riazanov (SPbSU) Brute force solutions 3 / 40

Introduction

Sometimes the first solution you come up with is the
correct one.
But sometimes it’s not.

In this lesson we are going to develop a method for
designing solutions which are always correct.
The catch is they are going to be slow.

Artur Riazanov (SPbSU) Brute force solutions 3 / 40

Introduction

Sometimes the first solution you come up with is the
correct one.
But sometimes it’s not.
In this lesson we are going to develop a method for
designing solutions which are always correct.

The catch is they are going to be slow.

Artur Riazanov (SPbSU) Brute force solutions 3 / 40

Introduction

Sometimes the first solution you come up with is the
correct one.
But sometimes it’s not.
In this lesson we are going to develop a method for
designing solutions which are always correct.
The catch is they are going to be slow.

Artur Riazanov (SPbSU) Brute force solutions 3 / 40

Digits ordering

Largest number
Input: list of digits.
Output: the largest number that can be made of the
digits.

Sample input: 3,7,5
Sample output: 735.
The solution is to order the digits from the biggest one to
the smallest one.

Artur Riazanov (SPbSU) Brute force solutions 4 / 40

Digits ordering

Largest number
Input: list of digits.
Output: the largest number that can be made of the
digits.

Sample input: 3,7,5
Sample output: 735.

The solution is to order the digits from the biggest one to
the smallest one.

Artur Riazanov (SPbSU) Brute force solutions 4 / 40

Digits ordering

Largest number
Input: list of digits.
Output: the largest number that can be made of the
digits.

Sample input: 3,7,5
Sample output: 735.
The solution is to order the digits from the biggest one to
the smallest one.

Artur Riazanov (SPbSU) Brute force solutions 4 / 40

Robber’s problem (aka knapsack problem)

Robber’s problem
Input: a list of items with
weights (kg) and costs ($) as
well as the capacity of a bag
(kg).
Output: the maximum total
cost of items that fit in the
bag.

Artur Riazanov (SPbSU) Brute force solutions 5 / 40

Tempting Approach

It’s natural to process items in order of decreasing
$ per kg.

Let’s calculate utility cost
weight for each item.

The better the utility the better the item.
Therefore we should try to put items with maximum
utility first.
Nice and easy. But, unfortunately, wrong.

Artur Riazanov (SPbSU) Brute force solutions 6 / 40

Tempting Approach

It’s natural to process items in order of decreasing
$ per kg.
Let’s calculate utility cost

weight for each item.

The better the utility the better the item.
Therefore we should try to put items with maximum
utility first.
Nice and easy. But, unfortunately, wrong.

Artur Riazanov (SPbSU) Brute force solutions 6 / 40

Tempting Approach

It’s natural to process items in order of decreasing
$ per kg.
Let’s calculate utility cost

weight for each item.
The better the utility the better the item.

Therefore we should try to put items with maximum
utility first.
Nice and easy. But, unfortunately, wrong.

Artur Riazanov (SPbSU) Brute force solutions 6 / 40

Tempting Approach

It’s natural to process items in order of decreasing
$ per kg.
Let’s calculate utility cost

weight for each item.
The better the utility the better the item.
Therefore we should try to put items with maximum
utility first.

Nice and easy. But, unfortunately, wrong.

Artur Riazanov (SPbSU) Brute force solutions 6 / 40

Tempting Approach

It’s natural to process items in order of decreasing
$ per kg.
Let’s calculate utility cost

weight for each item.
The better the utility the better the item.
Therefore we should try to put items with maximum
utility first.
Nice and easy. But, unfortunately, wrong.

Artur Riazanov (SPbSU) Brute force solutions 6 / 40

Example

3 kg 2 kg 5 kg
$2 $3 $6
2
3

3
2

6
5

V = 5

Artur Riazanov (SPbSU) Brute force solutions 7 / 40

Example

The Best

3 kg 2 kg 5 kg
$2 $3 $6
2
3

3
2

6
5

V = 5

Artur Riazanov (SPbSU) Brute force solutions 8 / 40

Example

3 kg 5 kg
$2 $6
2
3

6
5

V = 3; C = 3

Artur Riazanov (SPbSU) Brute force solutions 9 / 40

Example

The best

3 kg 5 kg
$2 $6
2
3

6
5

V = 3; C = 3

But the third item doesn’t fit to the knapsack.

Artur Riazanov (SPbSU) Brute force solutions 10 / 40

Example

The best

3 kg 5 kg
$2 $6
2
3

6
5

V = 3; C = 3
But the third item doesn’t fit to the knapsack.

Artur Riazanov (SPbSU) Brute force solutions 10 / 40

Example

The best

3 kg 5 kg
$2 $6
2
3

6
5

V = 3; C = 3

Artur Riazanov (SPbSU) Brute force solutions 11 / 40

Example

3 kg 5 kg
$2 $6
2
3

6
5

V = 0; C = 5

Artur Riazanov (SPbSU) Brute force solutions 12 / 40

Example

We got total cost 5.

But we could do better with the third item only:

Artur Riazanov (SPbSU) Brute force solutions 13 / 40

Example

We got total cost 5.
But we could do better with the third item only:

Artur Riazanov (SPbSU) Brute force solutions 13 / 40

How to prove

Thus, the initial intuitive idea turned out to be wrong.

Then how to convince yourself that your approach is
correct?
The simplest thing to do is to check your algorithm
with pen and paper against sample tests.
But what to do if your solution got “wrong answer”
verdict from the grader?
It’d be good to have a solution which is always
conceptually correct.
And that’s what we’ll do!

Artur Riazanov (SPbSU) Brute force solutions 14 / 40

How to prove

Thus, the initial intuitive idea turned out to be wrong.
Then how to convince yourself that your approach is
correct?

The simplest thing to do is to check your algorithm
with pen and paper against sample tests.
But what to do if your solution got “wrong answer”
verdict from the grader?
It’d be good to have a solution which is always
conceptually correct.
And that’s what we’ll do!

Artur Riazanov (SPbSU) Brute force solutions 14 / 40

How to prove

Thus, the initial intuitive idea turned out to be wrong.
Then how to convince yourself that your approach is
correct?
The simplest thing to do is to check your algorithm
with pen and paper against sample tests.

But what to do if your solution got “wrong answer”
verdict from the grader?
It’d be good to have a solution which is always
conceptually correct.
And that’s what we’ll do!

Artur Riazanov (SPbSU) Brute force solutions 14 / 40

How to prove

Thus, the initial intuitive idea turned out to be wrong.
Then how to convince yourself that your approach is
correct?
The simplest thing to do is to check your algorithm
with pen and paper against sample tests.
But what to do if your solution got “wrong answer”
verdict from the grader?

It’d be good to have a solution which is always
conceptually correct.
And that’s what we’ll do!

Artur Riazanov (SPbSU) Brute force solutions 14 / 40

How to prove

Thus, the initial intuitive idea turned out to be wrong.
Then how to convince yourself that your approach is
correct?
The simplest thing to do is to check your algorithm
with pen and paper against sample tests.
But what to do if your solution got “wrong answer”
verdict from the grader?
It’d be good to have a solution which is always
conceptually correct.

And that’s what we’ll do!

Artur Riazanov (SPbSU) Brute force solutions 14 / 40

How to prove

Thus, the initial intuitive idea turned out to be wrong.
Then how to convince yourself that your approach is
correct?
The simplest thing to do is to check your algorithm
with pen and paper against sample tests.
But what to do if your solution got “wrong answer”
verdict from the grader?
It’d be good to have a solution which is always
conceptually correct.
And that’s what we’ll do!

Artur Riazanov (SPbSU) Brute force solutions 14 / 40

Outline

1 Intuitive solutions

2 Search space

3 Backtracking

Artur Riazanov (SPbSU) Brute force solutions 15 / 40

Introduction

In this video we will develop very powerful technique
to solve problems, which works in almost all cases.

The approach yields slow solutions but it’s
conceptually correct by definition.
Therefore it could be used to verify correctness of
faster solutions for the same problem.

Artur Riazanov (SPbSU) Brute force solutions 16 / 40

Introduction

In this video we will develop very powerful technique
to solve problems, which works in almost all cases.
The approach yields slow solutions but it’s
conceptually correct by definition.

Therefore it could be used to verify correctness of
faster solutions for the same problem.

Artur Riazanov (SPbSU) Brute force solutions 16 / 40

Introduction

In this video we will develop very powerful technique
to solve problems, which works in almost all cases.
The approach yields slow solutions but it’s
conceptually correct by definition.
Therefore it could be used to verify correctness of
faster solutions for the same problem.

Artur Riazanov (SPbSU) Brute force solutions 16 / 40

Search space

Almost every combinatorial problem falls in one of the
following categories

1 Find an element of a set A satisfying some property
(or a number of such elements).

2 Find an element of a set A such that some objective
function is minimized/maximized.

We will call the set A search space.

Artur Riazanov (SPbSU) Brute force solutions 17 / 40

Search space

Almost every combinatorial problem falls in one of the
following categories

1 Find an element of a set A satisfying some property
(or a number of such elements).

2 Find an element of a set A such that some objective
function is minimized/maximized.

We will call the set A search space.

Artur Riazanov (SPbSU) Brute force solutions 17 / 40

Search space

Almost every combinatorial problem falls in one of the
following categories

1 Find an element of a set A satisfying some property
(or a number of such elements).

2 Find an element of a set A such that some objective
function is minimized/maximized.

We will call the set A search space.

Artur Riazanov (SPbSU) Brute force solutions 17 / 40

Examples

Superstring
Given m strings s1, . . . , sm consisting of letters “a” and “b”
only and an integer n. Find a string s of length n
containing each si (for all 1 ≤ i ≤ m) as a substring.

Sample
Input: m = 2; n = 3; s1 = ab, s2 = ba

Output: aba (aba, aba) (another valid output is bab)

Artur Riazanov (SPbSU) Brute force solutions 18 / 40

Examples

Superstring
Given m strings s1, . . . , sm consisting of letters “a” and “b”
only and an integer n. Find a string s of length n
containing each si (for all 1 ≤ i ≤ m) as a substring.

Sample
Input: m = 2; n = 3; s1 = ab, s2 = ba

Output: aba (aba, aba) (another valid output is bab)

Artur Riazanov (SPbSU) Brute force solutions 18 / 40

Search space

One way to solve a problem is to simply go through
all possible candidate solutions. For the superstring
problem, the search space consists of all strings of
length n over the alphabet {a, b}. For each such
string, we check whether it is indeed a superstring of
s1, . . . , sm

Let’s consider another testcase: n = 4, s1 = bab,
s2 = abb.
There are only 24 = 16 strings of four letters “a”
and “b”.

Artur Riazanov (SPbSU) Brute force solutions 19 / 40

Search space

One way to solve a problem is to simply go through
all possible candidate solutions. For the superstring
problem, the search space consists of all strings of
length n over the alphabet {a, b}. For each such
string, we check whether it is indeed a superstring of
s1, . . . , sm
Let’s consider another testcase: n = 4, s1 = bab,
s2 = abb.

There are only 24 = 16 strings of four letters “a”
and “b”.

Artur Riazanov (SPbSU) Brute force solutions 19 / 40

Search space

One way to solve a problem is to simply go through
all possible candidate solutions. For the superstring
problem, the search space consists of all strings of
length n over the alphabet {a, b}. For each such
string, we check whether it is indeed a superstring of
s1, . . . , sm
Let’s consider another testcase: n = 4, s1 = bab,
s2 = abb.
There are only 24 = 16 strings of four letters “a”
and “b”.

Artur Riazanov (SPbSU) Brute force solutions 19 / 40

Search space

Candidate bab abb Candidate bab abb
aaaa × × baaa × ×
aaab × × baab × ×
aaba × × baba baba ×
aabb × aabb babb babb babb
abaa × × bbaa × ×
abab abab × bbab bbab ×
abba × × abba × ×
abbb × abbb bbbb × ×

Artur Riazanov (SPbSU) Brute force solutions 20 / 40

Examples

Maximum subarray problem
Given an array a1, . . . , an. What is the largest possible
sum al + al+1 + . . .+ ar−1 + ar for 1 ≤ l ≤ r ≤ n?
Note that ai could be negative.

Sample
...
Input: a = (4, 1,−2, 3,−10, 5)
Output: The best subarray is (4, 1,−2, 3︸ ︷︷ ︸,−10, 5) and the

sum is 4+ 1+ (−2) + 3 = 6.

Artur Riazanov (SPbSU) Brute force solutions 21 / 40

Search space

Search space for the maximum subarray problem is
the set of all subarrays of the array a.

Subarray is determined by its first and last elements:
l and r .
For this problem understanding what the search space
is instantly provides us with the solution.
Enumerate all pairs (l , r) such that l ≤ r , for each
pair compute the sum al + · · ·+ ar , and take the
maximum.

Artur Riazanov (SPbSU) Brute force solutions 22 / 40

Search space

Search space for the maximum subarray problem is
the set of all subarrays of the array a.
Subarray is determined by its first and last elements:
l and r .

For this problem understanding what the search space
is instantly provides us with the solution.
Enumerate all pairs (l , r) such that l ≤ r , for each
pair compute the sum al + · · ·+ ar , and take the
maximum.

Artur Riazanov (SPbSU) Brute force solutions 22 / 40

Search space

Search space for the maximum subarray problem is
the set of all subarrays of the array a.
Subarray is determined by its first and last elements:
l and r .
For this problem understanding what the search space
is instantly provides us with the solution.

Enumerate all pairs (l , r) such that l ≤ r , for each
pair compute the sum al + · · ·+ ar , and take the
maximum.

Artur Riazanov (SPbSU) Brute force solutions 22 / 40

Search space

Search space for the maximum subarray problem is
the set of all subarrays of the array a.
Subarray is determined by its first and last elements:
l and r .
For this problem understanding what the search space
is instantly provides us with the solution.
Enumerate all pairs (l , r) such that l ≤ r , for each
pair compute the sum al + · · ·+ ar , and take the
maximum.

Artur Riazanov (SPbSU) Brute force solutions 22 / 40

Examples

Robber’s problem
you have a knapsack of volume W and n items of volumes
w1, . . . ,wn and costs c1, . . . , cn. What is the largest total
cost of the set of items whose total weight does not
exceed W ?

Input: V = 5; n = 3
v1 = 3 v2 = 2 v3 = 5
c1 = 2 c2 = 3 c3 = 6
Output: The best solution is to put the last item to the
knapsack and get the total cost 6.

Artur Riazanov (SPbSU) Brute force solutions 23 / 40

Examples

Robber’s problem
you have a knapsack of volume W and n items of volumes
w1, . . . ,wn and costs c1, . . . , cn. What is the largest total
cost of the set of items whose total weight does not
exceed W ?

Input: V = 5; n = 3
v1 = 3 v2 = 2 v3 = 5
c1 = 2 c2 = 3 c3 = 6
Output: The best solution is to put the last item to the
knapsack and get the total cost 6.

Artur Riazanov (SPbSU) Brute force solutions 23 / 40

Search space

What is the search space for the robber’s problem?

It’s all sets of items.
For the given example, possible sets are the following:
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.
Not all of these sets fit into the backpack, but it’s
easy to check: compute the total weight of the set
and check whether it exceeds the capacity of the
backpack.

Artur Riazanov (SPbSU) Brute force solutions 24 / 40

Search space

What is the search space for the robber’s problem?
It’s all sets of items.

For the given example, possible sets are the following:
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.
Not all of these sets fit into the backpack, but it’s
easy to check: compute the total weight of the set
and check whether it exceeds the capacity of the
backpack.

Artur Riazanov (SPbSU) Brute force solutions 24 / 40

Search space

What is the search space for the robber’s problem?
It’s all sets of items.
For the given example, possible sets are the following:
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

Not all of these sets fit into the backpack, but it’s
easy to check: compute the total weight of the set
and check whether it exceeds the capacity of the
backpack.

Artur Riazanov (SPbSU) Brute force solutions 24 / 40

Search space

What is the search space for the robber’s problem?
It’s all sets of items.
For the given example, possible sets are the following:
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.
Not all of these sets fit into the backpack, but it’s
easy to check: compute the total weight of the set
and check whether it exceeds the capacity of the
backpack.

Artur Riazanov (SPbSU) Brute force solutions 24 / 40

Search space

What is the search space for the robber’s problem?
It’s all sets of items.
For the given example, possible sets are the following:
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.
Not all of these sets fit into the backpack, but it’s
easy to check: compute the total weight of the set
and check whether it exceeds the capacity of the
backpack.

Artur Riazanov (SPbSU) Brute force solutions 24 / 40

Search space: summary

Problem Search space
Superstring strings consisting of letters “a”

and “b”

Robber’s problem
all possible sets of items

Maximum subarray
pairs (l , r) such that l ≤ r

Artur Riazanov (SPbSU) Brute force solutions 25 / 40

Search space: summary

Problem Search space
Superstring strings consisting of letters “a”

and “b”

Robber’s problem
all possible sets of items

Maximum subarray
pairs (l , r) such that l ≤ r

Artur Riazanov (SPbSU) Brute force solutions 25 / 40

Search space: summary

Problem Search space
Superstring strings consisting of letters “a”

and “b”

Robber’s problem
all possible sets of items

Maximum subarray
pairs (l , r) such that l ≤ r

Artur Riazanov (SPbSU) Brute force solutions 25 / 40

Exploring the search space

For the maximum subarray problem the search space
gives us the solution instantly.

We can try all possible pairs with two nested for
cycles.
For the substring problem we want to try all possible
strings of n symbols.
It’d be good to have n nested for cycles iterating
through letters “a” and “b”.

Artur Riazanov (SPbSU) Brute force solutions 26 / 40

Exploring the search space

For the maximum subarray problem the search space
gives us the solution instantly.
We can try all possible pairs with two nested for
cycles.

For the substring problem we want to try all possible
strings of n symbols.
It’d be good to have n nested for cycles iterating
through letters “a” and “b”.

Artur Riazanov (SPbSU) Brute force solutions 26 / 40

Exploring the search space

For the maximum subarray problem the search space
gives us the solution instantly.
We can try all possible pairs with two nested for
cycles.
For the substring problem we want to try all possible
strings of n symbols.

It’d be good to have n nested for cycles iterating
through letters “a” and “b”.

Artur Riazanov (SPbSU) Brute force solutions 26 / 40

Exploring the search space

For the maximum subarray problem the search space
gives us the solution instantly.
We can try all possible pairs with two nested for
cycles.
For the substring problem we want to try all possible
strings of n symbols.
It’d be good to have n nested for cycles iterating
through letters “a” and “b”.

Artur Riazanov (SPbSU) Brute force solutions 26 / 40

n nested for cycles

Your pseudo-Python code will look like this for the
superstring problem:

for x [0] in [’ a ’ , ’ b ’] :
for x [1] in [’ a ’ , ’ b ’] :

. . .
for x [n−1] in [’ a ’ , ’ b ’] :

check i f x c o n t a i n s
a l l s t r i n g s s [1] , . . . s [m]

Artur Riazanov (SPbSU) Brute force solutions 27 / 40

Outline

1 Intuitive solutions

2 Search space

3 Backtracking

Artur Riazanov (SPbSU) Brute force solutions 28 / 40

Introduction

In this video we will finally understand how to write
basic solution for combinatorial problems with
backtracking.

Backtracking is roughly the way how to write n
nested for cycles.

Artur Riazanov (SPbSU) Brute force solutions 29 / 40

Introduction

In this video we will finally understand how to write
basic solution for combinatorial problems with
backtracking.
Backtracking is roughly the way how to write n
nested for cycles.

Artur Riazanov (SPbSU) Brute force solutions 29 / 40

Recursion

Enumerating all strings x over {a, b} of length n:

for x [0] in [’ a ’ , ’ b ’] :
for x [1] in [’ a ’ , ’ b ’] :

. . .
for x [n−1] in [’ a ’ , ’ b ’] :

do someth ing wi th x

The simplest possible way to simulate this “code” with an
actual code is via recursion.

Artur Riazanov (SPbSU) Brute force solutions 30 / 40

Recursion

Enumerating all strings x over {a, b} of length n:

for x [0] in [’ a ’ , ’ b ’] :
for x [1] in [’ a ’ , ’ b ’] :

. . .
for x [n−1] in [’ a ’ , ’ b ’] :

do someth ing wi th x

The simplest possible way to simulate this “code” with an
actual code is via recursion.

Artur Riazanov (SPbSU) Brute force solutions 30 / 40

Artur Riazanov (SPbSU) Brute force solutions 31 / 40

a

Artur Riazanov (SPbSU) Brute force solutions 31 / 40

a

a

Artur Riazanov (SPbSU) Brute force solutions 31 / 40

Recursion

The key idea is to look at n nested for cycles like this:

for x [0] in [’ a ’ , ’ b ’] :
rema in i ng n−1 f o r c y c l e s

So we can implement the function recursively.

Artur Riazanov (SPbSU) Brute force solutions 32 / 40

Recursion

The key idea is to look at n nested for cycles like this:

for x [0] in [’ a ’ , ’ b ’] :
rema in i ng n−1 f o r c y c l e s

So we can implement the function recursively.

Artur Riazanov (SPbSU) Brute force solutions 32 / 40

Resursion
We will write the function nestedFors with additional
parameter firstFor and it’ll behave like

firstFor Behaviour
0 threeFors
1 twoFors
2 oneFor
3 print(x)

def ne s t edFo r s (n , f i r s t F o r , x) :
i f f i r s t F o r < n :

for x [f i r s t F o r] in [’ a ’ , ’ b ’] :
n e s t e dFo r s (n , f i r s t F o r + 1 , x)

e l se :
pr int (x)

This function simulates for cycles with numbers
firstFor, firstFor+ 1, . . . , n − 1.

Artur Riazanov (SPbSU) Brute force solutions 33 / 40

Resursion
We will write the function nestedFors with additional
parameter firstFor and it’ll behave like

firstFor Behaviour
0 threeFors
1 twoFors
2 oneFor
3 print(x)

def ne s t edFo r s (n , f i r s t F o r , x) :
i f f i r s t F o r < n :

for x [f i r s t F o r] in [’ a ’ , ’ b ’] :
n e s t e dFo r s (n , f i r s t F o r + 1 , x)

e l se :
pr int (x)

This function simulates for cycles with numbers
firstFor, firstFor+ 1, . . . , n − 1.

Artur Riazanov (SPbSU) Brute force solutions 33 / 40

Analyse the code

When we do have another for cycles to run:

i f f i r s t F o r < n :
for x [f i r s t F o r] in [’ a ’ , ’ b ’] :

n e s t e dFo r s (n , f i r s t F o r + 1 , x)

we call our function recursively, starting with the next for.

Or we are in the deepest level of the recursion and we just
do the job with x :

print (x)

Artur Riazanov (SPbSU) Brute force solutions 34 / 40

Analyse the code

When we do have another for cycles to run:

i f f i r s t F o r < n :
for x [f i r s t F o r] in [’ a ’ , ’ b ’] :

n e s t e dFo r s (n , f i r s t F o r + 1 , x)

we call our function recursively, starting with the next for.
Or we are in the deepest level of the recursion and we just
do the job with x :

print (x)

Artur Riazanov (SPbSU) Brute force solutions 34 / 40

Visualisation

Artur Riazanov (SPbSU) Brute force solutions 35 / 40

Robber’s problem

Search space for the robber’s problem is the set of all
sets of items.

How to enumerate all sets of n items?
Basically, it is the same as enumerating all strings
over {0, 1} of length n!

Artur Riazanov (SPbSU) Brute force solutions 36 / 40

Robber’s problem

Search space for the robber’s problem is the set of all
sets of items.
How to enumerate all sets of n items?

Basically, it is the same as enumerating all strings
over {0, 1} of length n!

Artur Riazanov (SPbSU) Brute force solutions 36 / 40

Robber’s problem

Search space for the robber’s problem is the set of all
sets of items.
How to enumerate all sets of n items?
Basically, it is the same as enumerating all strings
over {0, 1} of length n!

Artur Riazanov (SPbSU) Brute force solutions 36 / 40

Set to string

Set Items
1 2 3

∅ 0 0 0
{1} 1 0 0
{2} 0 1 0
{1, 2} 1 1 0
{3} 0 0 1
{1, 3} 1 0 1
{2, 3} 0 1 1
{1, 2, 3} 1 1 1

Artur Riazanov (SPbSU) Brute force solutions 37 / 40

Robber’s problem
Recall our example: n = 3; V = 5 and
v1 = 3 v2 = 2 v3 = 5
c1 = 2 c2 = 3 c3 = 6

Items Set Weight Cost1 2 3
0 0 0 ∅ 0 0
1 0 0 {1} 3 2
0 1 0 {2} 2 3
1 1 0 {1, 2} 2 + 3 = 5 3 + 2 = 5
0 0 1 {3} 5 6
1 0 1 {1, 3} 3 + 5 = 8 2 + 6 = 8
0 1 1 {2, 3} 2 + 5 = 7 3 + 6 = 9
1 1 1 {1, 2, 3} 2 + 3 + 5 = 10 3 + 2 + 6 = 11

Artur Riazanov (SPbSU) Brute force solutions 38 / 40

Robber’s problem

Therefore we reduced robber’s problem to the same n
nested for cycles!

Artur Riazanov (SPbSU) Brute force solutions 39 / 40

Conclusion

Designing a brute force solution:
1 Identify the search space
2 Design a way of enumerating all its elements
3 Turn it into a solution

The resulting solution is usually slow, but: it is clearly
correct and can be used for debugging

Artur Riazanov (SPbSU) Brute force solutions 40 / 40

	Intuitive solutions
	Search space
	Backtracking

