«‘—.. qﬂ..&w
= S

CaHkT-lMeTepbyprckui
rocyacpCTBEHHbIN
yHUBEpCUTET

Structuring Code

Aleksandr Logunov
SPbSU




W@m crery

Objectives

Simplifying the process of debugging.

Making your code more understandable.




Managing dependencies

When your mobile phone or laptop
doesn't turn on, the problem can be in:

battery
motherboard

one of cables

power button




Managing dependencies

knowledge of structure + disassembling

N2

quick dealing with problems




W@m crery

Managing dependencies

The same holds for programming:

bad understanding of code and its structure -
need to analyze each line

good understanding, structuring -
possibility of considering each part of code separately




Managing dependencies

Example task: you have information about n people.
Your goals are:
1 Compute the number of people employed.

2 Compute the sum of ages of all people.




Managing dependencies

person a[n];
int employed = 0O;
for (inti=0;i<n;i++) {

read(ali]);

if (a[i].isEmployed) employed++;
}
int sumAges = 0; write(employed);
for (inti=0;i < n;i++)

sumAges += a[i].age;
write(sumAges);




Managing dependencies

person a[n];
int employed = 0O;
for (inti=0;i<n;i++) {

read(ali]);

if (a[i].isEmployed) employed++;
}
int sumAges = 0; write(employed);
for (inti=0;i < n;i++)

sumAges += a[i].age;
write(sumAges);

Non-structured code




Managing dependencies

person a[n];
int employed = 0O;
int sumAges = 0;
for (inti=0;i < n;i++)
read(a[i]);
for (inti=0;i < n;i++)
if (a[i].isEmployed) employed++;
for (inti=0;i < n;i++)
sumAges += a[i].age;
write(employed);
write(sumAges);

Well structured code




Managing dependencies

person a[n];
int employed = 0O;
int sumAges = 0;
for (inti=0;i < n;i++)
read(a[i]);
for (inti=0;i < n;i++)
if (a[i].isEmployed) employed++;
for (inti=0;i < n;i++)
sumAges += a[i].age;
write(employed);
write(sumAges);

initData()
readData()
countEmployed()
countSumAges()

writeAnswers()




Managing dependencies

person a[n];

int employed, sumAges;
initData();

readData();
countEmployed();
countSumAges();
writeAnswers();




Managing dependencies

Observations:

code is more readable when logical blocks
of code don't mix;




Managing dependencies

Observations:

code is more readable when logical blocks
of code don't mix;

number of blocks depends on a lot of factors;




Managing dependencies

Observations:

code is more readable when logical blocks
of code don't mix;

number of blocks depends on a lot of factors;

often solution is not unique;




W@m crery

Managing dependencies

Observations:

code is more readable when logical blocks
of code don't mix;

number of blocks depends on a lot of factors;
often solution is not unique;

sometimes code is not working just because
its idea is not correct.




Readability

Consider the following line of code:




Readability

Consider the following line of code:
P=q*60+rm;

What do you think this line does?




Readability

Consider the following line of code:
P=q*60+rm;

What do you think this line does?

Answer: computes time (in minutes) from the midnight.




W@m crery

Readability

Consider the following line of code:

read(q, r);
P=q*60+rm;
write(“Time = *, p);

Certainly, other lines could help you.

But why not to make the line of code readable on its own?




Readability

Consider the following line of code:
time = hours * 60 + minutes;

Now, it is immediate what this line does.




Invariants and conditions

Task: compute the sum of all integers i such that 1 =< i®< 5000.




Invariants and conditions

Task: compute the sum of all integers i such that 1 =< i®< 5000.

Solution: use loops!




Pre-condition loop

sum = 0;

i=1;

while (i *i * i < 5000) {
sum = sum + i;
=i+ 1;

Property: pre-condition states what must
be true before entering a loop.




W@m crery

Post-condition loop

sum = 0;

i=1;

do {
sum = sum + i;
=i+ 1;

} while (i *i*i < 5000);

Property: post-condition states what must be true before
continuing a loop (so at least one iteration is performed!).




W@m crery

Loop invariants

What happens if 5000 - 1?

There are no numbers i such that 1 = ¥< 1,
so the answer equals 0.




Loop invariants

What happens if 5000 - 1?

There are no numbers i such that 1 = < 1,
so the answer equals 0.

Pre-condition: sum =0
Post-condition: sum =1




Loop invariants

The second program fails because loop invariant is violated.

Loop invariant: assertion that is always preserved
in the loop body.




W@m crery

Loop invariants

In our task it makes sense to consider two invariants:
1 1=i<5000
2 sum equals sum of all i’s seen so far.

What if 5000 - 1?




Loop invariants

Type Pre-cond Post-cond
Invariant
l1=i2<1 OK FAIL

sum = ... OK OK




Loop invariants: conclusion

We should set invariants carefully and keep an eye on them.




W@m crery

Summary

We wanted to:
understand code better;

simplify debugging.

Ways to do it:
divide your code into blocks;
give meaningful names to variables;

preserve invariants.




