
Technical Slide

1 Lesson 1: Testing
Video 1.1: Testing, sample tests, min/max tests
Video 1.2: Custom cases and testing workflow
Video 1.3: Stress-testing

Testing

Run your program locally on some inputs

Incorrect attempts are penalized
You need a test for debug
In this lesson:

Common types of test cases
Testing workflow
Stress-testing

Testing

Run your program locally on some inputs
Incorrect attempts are penalized

You need a test for debug
In this lesson:

Common types of test cases
Testing workflow
Stress-testing

Testing

Run your program locally on some inputs
Incorrect attempts are penalized
You need a test for debug

In this lesson:
Common types of test cases
Testing workflow
Stress-testing

Testing

Run your program locally on some inputs
Incorrect attempts are penalized
You need a test for debug
In this lesson:

Common types of test cases
Testing workflow
Stress-testing

What to check

Correctness: compare your output with the
correct answer

Need to know the answer — get it manually or
otherwise
Reliability: make sure that your program
doesn’t crash
Asserts help — check invariants without correct
answer
Limits: check working time and memory on
large inputs
Locally — detailed information on perfomance

What to check

Correctness: compare your output with the
correct answer
Need to know the answer — get it manually or
otherwise

Reliability: make sure that your program
doesn’t crash
Asserts help — check invariants without correct
answer
Limits: check working time and memory on
large inputs
Locally — detailed information on perfomance

What to check

Correctness: compare your output with the
correct answer
Need to know the answer — get it manually or
otherwise
Reliability: make sure that your program
doesn’t crash

Asserts help — check invariants without correct
answer
Limits: check working time and memory on
large inputs
Locally — detailed information on perfomance

What to check

Correctness: compare your output with the
correct answer
Need to know the answer — get it manually or
otherwise
Reliability: make sure that your program
doesn’t crash
Asserts help — check invariants without correct
answer

Limits: check working time and memory on
large inputs
Locally — detailed information on perfomance

What to check

Correctness: compare your output with the
correct answer
Need to know the answer — get it manually or
otherwise
Reliability: make sure that your program
doesn’t crash
Asserts help — check invariants without correct
answer
Limits: check working time and memory on
large inputs

Locally — detailed information on perfomance

What to check

Correctness: compare your output with the
correct answer
Need to know the answer — get it manually or
otherwise
Reliability: make sure that your program
doesn’t crash
Asserts help — check invariants without correct
answer
Limits: check working time and memory on
large inputs
Locally — detailed information on perfomance

Sample tests

Always are given, with the answer

Test your understanding of the statement
You could’ve gotten it wrong
Test your solution before implementing
Save time by realizing you’re wrong earlier
Samples check general correctness and
sometimes special cases
Do not rely on samples only!

Sample tests

Always are given, with the answer
Test your understanding of the statement

You could’ve gotten it wrong
Test your solution before implementing
Save time by realizing you’re wrong earlier
Samples check general correctness and
sometimes special cases
Do not rely on samples only!

Sample tests

Always are given, with the answer
Test your understanding of the statement
You could’ve gotten it wrong

Test your solution before implementing
Save time by realizing you’re wrong earlier
Samples check general correctness and
sometimes special cases
Do not rely on samples only!

Sample tests

Always are given, with the answer
Test your understanding of the statement
You could’ve gotten it wrong
Test your solution before implementing

Save time by realizing you’re wrong earlier
Samples check general correctness and
sometimes special cases
Do not rely on samples only!

Sample tests

Always are given, with the answer
Test your understanding of the statement
You could’ve gotten it wrong
Test your solution before implementing
Save time by realizing you’re wrong earlier

Samples check general correctness and
sometimes special cases
Do not rely on samples only!

Sample tests

Always are given, with the answer
Test your understanding of the statement
You could’ve gotten it wrong
Test your solution before implementing
Save time by realizing you’re wrong earlier
Samples check general correctness and
sometimes special cases

Do not rely on samples only!

Sample tests

Always are given, with the answer
Test your understanding of the statement
You could’ve gotten it wrong
Test your solution before implementing
Save time by realizing you’re wrong earlier
Samples check general correctness and
sometimes special cases
Do not rely on samples only!

Minimal test

Test of minimal size/minimal input values

Given: integer N (1 ≤ N ≤ 106), then a
sequence of N nonnegative integers, each not
greater than 109

1
0

Often is “special”
Easy to construct
Something else could be minimized, e.g. answer
size

Minimal test

Test of minimal size/minimal input values
Given: integer N (1 ≤ N ≤ 106), then a
sequence of N nonnegative integers, each not
greater than 109

1
0

Often is “special”
Easy to construct
Something else could be minimized, e.g. answer
size

Minimal test

Test of minimal size/minimal input values
Given: integer N (1 ≤ N ≤ 106), then a
sequence of N nonnegative integers, each not
greater than 109

1
0

Often is “special”
Easy to construct
Something else could be minimized, e.g. answer
size

Minimal test

Test of minimal size/minimal input values
Given: integer N (1 ≤ N ≤ 106), then a
sequence of N nonnegative integers, each not
greater than 109

1
0

Often is “special”

Easy to construct
Something else could be minimized, e.g. answer
size

Minimal test

Test of minimal size/minimal input values
Given: integer N (1 ≤ N ≤ 106), then a
sequence of N nonnegative integers, each not
greater than 109

1
0

Often is “special”
Easy to construct

Something else could be minimized, e.g. answer
size

Minimal test

Test of minimal size/minimal input values
Given: integer N (1 ≤ N ≤ 106), then a
sequence of N nonnegative integers, each not
greater than 109

1
0

Often is “special”
Easy to construct
Something else could be minimized, e.g. answer
size

Maximal test
Maximal size/maximal input values

Given: integer N (1 ≤ N ≤ 106), then a
sequence of N nonnegative integers, each not
greater than 109

1000000
1000000000 1000000000 1000000000 ...

Hard to compute the answer
Checks crashes (e.g. array sizes)
TL/ML — but max time not always on any max
size test
Integer overflow — if negative answer when
should be nonnegative

Maximal test
Maximal size/maximal input values
Given: integer N (1 ≤ N ≤ 106), then a
sequence of N nonnegative integers, each not
greater than 109

1000000
1000000000 1000000000 1000000000 ...

Hard to compute the answer
Checks crashes (e.g. array sizes)
TL/ML — but max time not always on any max
size test
Integer overflow — if negative answer when
should be nonnegative

Maximal test
Maximal size/maximal input values
Given: integer N (1 ≤ N ≤ 106), then a
sequence of N nonnegative integers, each not
greater than 109

1000000
1000000000 1000000000 1000000000 ...

Hard to compute the answer

Checks crashes (e.g. array sizes)
TL/ML — but max time not always on any max
size test
Integer overflow — if negative answer when
should be nonnegative

Maximal test
Maximal size/maximal input values
Given: integer N (1 ≤ N ≤ 106), then a
sequence of N nonnegative integers, each not
greater than 109

1000000
1000000000 1000000000 1000000000 ...

Hard to compute the answer
Checks crashes (e.g. array sizes)

TL/ML — but max time not always on any max
size test
Integer overflow — if negative answer when
should be nonnegative

Maximal test
Maximal size/maximal input values
Given: integer N (1 ≤ N ≤ 106), then a
sequence of N nonnegative integers, each not
greater than 109

1000000
1000000000 1000000000 1000000000 ...

Hard to compute the answer
Checks crashes (e.g. array sizes)
TL/ML — but max time not always on any max
size test

Integer overflow — if negative answer when
should be nonnegative

Maximal test
Maximal size/maximal input values
Given: integer N (1 ≤ N ≤ 106), then a
sequence of N nonnegative integers, each not
greater than 109

1000000
1000000000 1000000000 1000000000 ...

Hard to compute the answer
Checks crashes (e.g. array sizes)
TL/ML — but max time not always on any max
size test
Integer overflow — if negative answer when
should be nonnegative

How to obtain max test

Generate by another program
1 i n t n = 1000000;
2 cout << n << ’ \n ’ ;
3 for (i n t i = 0 ; i < n ; ++i) {
4 cout << i n t (1 e9) << ’ ␣ ’ ;
5 }

Plug in inside your code
1 i n t n ;
2 // c i n >> n ;
3 n = 1000000;
4 for (i n t i = 0 ; i < n ; ++i) {
5 // c i n >> a [i] ;
6 a [i] = i n t (1 e9) ;
7 }

How to obtain max test
Generate by another program

1 i n t n = 1000000;
2 cout << n << ’ \n ’ ;
3 for (i n t i = 0 ; i < n ; ++i) {
4 cout << i n t (1 e9) << ’ ␣ ’ ;
5 }

Plug in inside your code
1 i n t n ;
2 // c i n >> n ;
3 n = 1000000;
4 for (i n t i = 0 ; i < n ; ++i) {
5 // c i n >> a [i] ;
6 a [i] = i n t (1 e9) ;
7 }

How to obtain max test
Generate by another program

1 i n t n = 1000000;
2 cout << n << ’ \n ’ ;
3 for (i n t i = 0 ; i < n ; ++i) {
4 cout << i n t (1 e9) << ’ ␣ ’ ;
5 }

Plug in inside your code
1 i n t n ;
2 // c i n >> n ;
3 n = 1000000;
4 for (i n t i = 0 ; i < n ; ++i) {
5 // c i n >> a [i] ;
6 a [i] = i n t (1 e9) ;
7 }

Better to have special function for reading data,
to replace it as a whole

1 vo i d r e a d I n pu t () {
2 c i n >> n ;
3 for (i n t i = 0 ; i < n ; ++i) {
4 c i n >> a [i] ;
5 }
6 }
7 vo i d s e t I n p u t () {
8 n = 1000000;
9 for (i n t i = 0 ; i < n ; ++i) {

10 a [i] = i n t (1 e9) ;
11 }
12 }
13 i n t main () {
14 // r e ad I n pu t () ;
15 s e t I n p u t () ;
16 }

Technical Slide

1 Lesson 1: Testing
Video 1.1: Testing, sample tests, min/max tests
Video 1.2: Custom cases and testing workflow
Video 1.3: Stress-testing

Specific problem types

String problems
aaaaaa
abcdef

Problems about divisibility — prime numbers,
numbers with many divisors
2, 3, 11, 31, 997, 109 + 7 are prime
48 has 10 divisors, 931 170 240 has 1344
Graphs, geometry, . . .

Specific problem types

String problems
aaaaaa
abcdef
Problems about divisibility — prime numbers,
numbers with many divisors
2, 3, 11, 31, 997, 109 + 7 are prime
48 has 10 divisors, 931 170 240 has 1344

Graphs, geometry, . . .

Specific problem types

String problems
aaaaaa
abcdef
Problems about divisibility — prime numbers,
numbers with many divisors
2, 3, 11, 31, 997, 109 + 7 are prime
48 has 10 divisors, 931 170 240 has 1344
Graphs, geometry, . . .

Program structure

Test all branches in your code
1 i f (c o n d i t i o n) {
2 . . .
3 } e l se {
4 . . .
5 }

Include test with condition true, and
condition false

Different answer types (YES/NO, -1 for there is
no answer, etc)
Test different parts separately, each right after
it’s finished

Program structure

Test all branches in your code
1 i f (c o n d i t i o n) {
2 . . .
3 } e l se {
4 . . .
5 }

Include test with condition true, and
condition false
Different answer types (YES/NO, -1 for there is
no answer, etc)

Test different parts separately, each right after
it’s finished

Program structure

Test all branches in your code
1 i f (c o n d i t i o n) {
2 . . .
3 } e l se {
4 . . .
5 }

Include test with condition true, and
condition false
Different answer types (YES/NO, -1 for there is
no answer, etc)
Test different parts separately, each right after
it’s finished

Custom tests

Make “interesting” tests — but note that they
are not necessarily interesting for your solution

Test different run patterns, special cases,
pathological cases — depends on the solution
and its proof
Combine all of the above

Custom tests

Make “interesting” tests — but note that they
are not necessarily interesting for your solution
Test different run patterns, special cases,
pathological cases — depends on the solution
and its proof

Combine all of the above

Custom tests

Make “interesting” tests — but note that they
are not necessarily interesting for your solution
Test different run patterns, special cases,
pathological cases — depends on the solution
and its proof
Combine all of the above

Testing stages

1 Before submission — to not waste attempts
2 After submission — to find a test case for
debugging

Testing stages

1 Before submission — to not waste attempts

2 After submission — to find a test case for
debugging

Testing stages

1 Before submission — to not waste attempts
2 After submission — to find a test case for
debugging

How long to test before submitting

Time is limited, so there is always a trade-off
between “test well” and “test fast”

Depends on the rules
Depends on complexity and how sure you are in
your solution
Always check on samples — that your program
works at all, and that the format is correct
Nearly always test on cases other than samples

How long to test before submitting

Time is limited, so there is always a trade-off
between “test well” and “test fast”
Depends on the rules

Depends on complexity and how sure you are in
your solution
Always check on samples — that your program
works at all, and that the format is correct
Nearly always test on cases other than samples

How long to test before submitting

Time is limited, so there is always a trade-off
between “test well” and “test fast”
Depends on the rules
Depends on complexity and how sure you are in
your solution

Always check on samples — that your program
works at all, and that the format is correct
Nearly always test on cases other than samples

How long to test before submitting

Time is limited, so there is always a trade-off
between “test well” and “test fast”
Depends on the rules
Depends on complexity and how sure you are in
your solution
Always check on samples — that your program
works at all, and that the format is correct

Nearly always test on cases other than samples

How long to test before submitting

Time is limited, so there is always a trade-off
between “test well” and “test fast”
Depends on the rules
Depends on complexity and how sure you are in
your solution
Always check on samples — that your program
works at all, and that the format is correct
Nearly always test on cases other than samples

Testing workflow

After fixing a bug, start testing from the
beginning
Save all tests you’ve come up with — so you
don’t need to invent them again
Check on all your tests on one run

All tests are saved in one file one after another,
and your program solves input cases repeatedly
until the end of file, not just one test
Tests are saved with special extension (e.g. 01.in,
02.in, ...), and you have a script to run your
program on all files with it (like *.in)
Use some unit-testing software to manage tests,
like JUnit

Testing workflow

After fixing a bug, start testing from the
beginning

Save all tests you’ve come up with — so you
don’t need to invent them again
Check on all your tests on one run

All tests are saved in one file one after another,
and your program solves input cases repeatedly
until the end of file, not just one test
Tests are saved with special extension (e.g. 01.in,
02.in, ...), and you have a script to run your
program on all files with it (like *.in)
Use some unit-testing software to manage tests,
like JUnit

Testing workflow

After fixing a bug, start testing from the
beginning
Save all tests you’ve come up with — so you
don’t need to invent them again

Check on all your tests on one run
All tests are saved in one file one after another,
and your program solves input cases repeatedly
until the end of file, not just one test
Tests are saved with special extension (e.g. 01.in,
02.in, ...), and you have a script to run your
program on all files with it (like *.in)
Use some unit-testing software to manage tests,
like JUnit

Testing workflow

After fixing a bug, start testing from the
beginning
Save all tests you’ve come up with — so you
don’t need to invent them again
Check on all your tests on one run

All tests are saved in one file one after another,
and your program solves input cases repeatedly
until the end of file, not just one test
Tests are saved with special extension (e.g. 01.in,
02.in, ...), and you have a script to run your
program on all files with it (like *.in)
Use some unit-testing software to manage tests,
like JUnit

Testing workflow

After fixing a bug, start testing from the
beginning
Save all tests you’ve come up with — so you
don’t need to invent them again
Check on all your tests on one run

All tests are saved in one file one after another,
and your program solves input cases repeatedly
until the end of file, not just one test

Tests are saved with special extension (e.g. 01.in,
02.in, ...), and you have a script to run your
program on all files with it (like *.in)
Use some unit-testing software to manage tests,
like JUnit

Testing workflow

After fixing a bug, start testing from the
beginning
Save all tests you’ve come up with — so you
don’t need to invent them again
Check on all your tests on one run

All tests are saved in one file one after another,
and your program solves input cases repeatedly
until the end of file, not just one test
Tests are saved with special extension (e.g. 01.in,
02.in, ...), and you have a script to run your
program on all files with it (like *.in)

Use some unit-testing software to manage tests,
like JUnit

Testing workflow

After fixing a bug, start testing from the
beginning
Save all tests you’ve come up with — so you
don’t need to invent them again
Check on all your tests on one run

All tests are saved in one file one after another,
and your program solves input cases repeatedly
until the end of file, not just one test
Tests are saved with special extension (e.g. 01.in,
02.in, ...), and you have a script to run your
program on all files with it (like *.in)
Use some unit-testing software to manage tests,
like JUnit

Technical Slide

1 Lesson 1: Testing
Video 1.1: Testing, sample tests, min/max tests
Video 1.2: Custom cases and testing workflow
Video 1.3: Stress-testing

Stress-testing

You can make the computer invent tests for you!

Write a generator program, which outputs some
random input
Repeatedly:

Generate a random input
Run your solution on it
Check if the output is correct
If not — stop and output the test case

Fully automated, thousands tests per second!

Stress-testing

You can make the computer invent tests for you!
Write a generator program, which outputs some
random input

Repeatedly:
Generate a random input
Run your solution on it
Check if the output is correct
If not — stop and output the test case

Fully automated, thousands tests per second!

Stress-testing

You can make the computer invent tests for you!
Write a generator program, which outputs some
random input
Repeatedly:

Generate a random input
Run your solution on it
Check if the output is correct
If not — stop and output the test case

Fully automated, thousands tests per second!

Stress-testing

You can make the computer invent tests for you!
Write a generator program, which outputs some
random input
Repeatedly:

Generate a random input
Run your solution on it
Check if the output is correct
If not — stop and output the test case

Fully automated, thousands tests per second!

How to check correctness

No need if only interested in crashes, so utilize
asserts
Trivial solution — as simple as possible
It’s correct, and maybe slow — so small tests
Obtain the correct answer via the trivial solution
Tests outputs for equality or use custom checker
In total — a small version of a testing system

How to check correctness

No need if only interested in crashes, so utilize
asserts

Trivial solution — as simple as possible
It’s correct, and maybe slow — so small tests
Obtain the correct answer via the trivial solution
Tests outputs for equality or use custom checker
In total — a small version of a testing system

How to check correctness

No need if only interested in crashes, so utilize
asserts
Trivial solution — as simple as possible

It’s correct, and maybe slow — so small tests
Obtain the correct answer via the trivial solution
Tests outputs for equality or use custom checker
In total — a small version of a testing system

How to check correctness

No need if only interested in crashes, so utilize
asserts
Trivial solution — as simple as possible
It’s correct, and maybe slow — so small tests

Obtain the correct answer via the trivial solution
Tests outputs for equality or use custom checker
In total — a small version of a testing system

How to check correctness

No need if only interested in crashes, so utilize
asserts
Trivial solution — as simple as possible
It’s correct, and maybe slow — so small tests
Obtain the correct answer via the trivial solution

Tests outputs for equality or use custom checker
In total — a small version of a testing system

How to check correctness

No need if only interested in crashes, so utilize
asserts
Trivial solution — as simple as possible
It’s correct, and maybe slow — so small tests
Obtain the correct answer via the trivial solution
Tests outputs for equality or use custom checker

In total — a small version of a testing system

How to check correctness

No need if only interested in crashes, so utilize
asserts
Trivial solution — as simple as possible
It’s correct, and maybe slow — so small tests
Obtain the correct answer via the trivial solution
Tests outputs for equality or use custom checker
In total — a small version of a testing system

Generators

Generate small tests — faster (esp. for trivial
solution), easier debuging
Make parameters to easily tweak test size
Example:

Fails only on aaaaa, zzz, . . .
Random ’a’–’z’ strings of length 10: probability of
26−9 ≃ 2 · 10−13

Only ’a’, ’b’, ’c’ and length 5: 3−4 ≃ 0.01

Do not lose generality
Strings of ’a’ far less interesting than strings of
’a’ and ’b’
Correctly initialize random to get different tests

Generators

Generate small tests — faster (esp. for trivial
solution), easier debuging

Make parameters to easily tweak test size
Example:

Fails only on aaaaa, zzz, . . .
Random ’a’–’z’ strings of length 10: probability of
26−9 ≃ 2 · 10−13

Only ’a’, ’b’, ’c’ and length 5: 3−4 ≃ 0.01

Do not lose generality
Strings of ’a’ far less interesting than strings of
’a’ and ’b’
Correctly initialize random to get different tests

Generators

Generate small tests — faster (esp. for trivial
solution), easier debuging
Make parameters to easily tweak test size

Example:
Fails only on aaaaa, zzz, . . .
Random ’a’–’z’ strings of length 10: probability of
26−9 ≃ 2 · 10−13

Only ’a’, ’b’, ’c’ and length 5: 3−4 ≃ 0.01

Do not lose generality
Strings of ’a’ far less interesting than strings of
’a’ and ’b’
Correctly initialize random to get different tests

Generators

Generate small tests — faster (esp. for trivial
solution), easier debuging
Make parameters to easily tweak test size
Example:

Fails only on aaaaa, zzz, . . .

Random ’a’–’z’ strings of length 10: probability of
26−9 ≃ 2 · 10−13

Only ’a’, ’b’, ’c’ and length 5: 3−4 ≃ 0.01

Do not lose generality
Strings of ’a’ far less interesting than strings of
’a’ and ’b’
Correctly initialize random to get different tests

Generators

Generate small tests — faster (esp. for trivial
solution), easier debuging
Make parameters to easily tweak test size
Example:

Fails only on aaaaa, zzz, . . .
Random ’a’–’z’ strings of length 10: probability of
26−9 ≃ 2 · 10−13

Only ’a’, ’b’, ’c’ and length 5: 3−4 ≃ 0.01

Do not lose generality
Strings of ’a’ far less interesting than strings of
’a’ and ’b’
Correctly initialize random to get different tests

Generators

Generate small tests — faster (esp. for trivial
solution), easier debuging
Make parameters to easily tweak test size
Example:

Fails only on aaaaa, zzz, . . .
Random ’a’–’z’ strings of length 10: probability of
26−9 ≃ 2 · 10−13

Only ’a’, ’b’, ’c’ and length 5: 3−4 ≃ 0.01

Do not lose generality
Strings of ’a’ far less interesting than strings of
’a’ and ’b’
Correctly initialize random to get different tests

Generators

Generate small tests — faster (esp. for trivial
solution), easier debuging
Make parameters to easily tweak test size
Example:

Fails only on aaaaa, zzz, . . .
Random ’a’–’z’ strings of length 10: probability of
26−9 ≃ 2 · 10−13

Only ’a’, ’b’, ’c’ and length 5: 3−4 ≃ 0.01

Do not lose generality
Strings of ’a’ far less interesting than strings of
’a’ and ’b’

Correctly initialize random to get different tests

Generators

Generate small tests — faster (esp. for trivial
solution), easier debuging
Make parameters to easily tweak test size
Example:

Fails only on aaaaa, zzz, . . .
Random ’a’–’z’ strings of length 10: probability of
26−9 ≃ 2 · 10−13

Only ’a’, ’b’, ’c’ and length 5: 3−4 ≃ 0.01

Do not lose generality
Strings of ’a’ far less interesting than strings of
’a’ and ’b’
Correctly initialize random to get different tests

Stress-test for crashes

1 for ((test=1; ; test++))
2 do
3 echo Test $ t e s t
4 . / g en e r a t e > in
5 . / s o l u t i o n < in > out
6 i f [$? −ne 0]
7 then
8 echo Runtime e r r o r
9 break

10 f i
11 done

Terminates on error, so error test is in the in file
afterwards

Stress-test for correctness

1 for ((test=1; ; test++))
2 do
3 echo Test $ t e s t
4 . / g en e r a t e > in
5 . / s o l u t i o n < in > out
6 . / s o l u t i o n _ t r i v i a l < in > ans
7 d i f f out ans
8 i f [$? −ne 0]
9 then

10 echo Wrong answer
11 break
12 f i
13 done

Stress-testing workflow

Stress-test after manual testing
No point if generator/trivial solution/checker is
too complex
Start with very small test sizes
Couple of minutes running is usually enough
While running do something else useful
If nothing is found, generate larger tests
Or rethink the generator

Stress-testing workflow

Stress-test after manual testing

No point if generator/trivial solution/checker is
too complex
Start with very small test sizes
Couple of minutes running is usually enough
While running do something else useful
If nothing is found, generate larger tests
Or rethink the generator

Stress-testing workflow

Stress-test after manual testing
No point if generator/trivial solution/checker is
too complex

Start with very small test sizes
Couple of minutes running is usually enough
While running do something else useful
If nothing is found, generate larger tests
Or rethink the generator

Stress-testing workflow

Stress-test after manual testing
No point if generator/trivial solution/checker is
too complex
Start with very small test sizes

Couple of minutes running is usually enough
While running do something else useful
If nothing is found, generate larger tests
Or rethink the generator

Stress-testing workflow

Stress-test after manual testing
No point if generator/trivial solution/checker is
too complex
Start with very small test sizes
Couple of minutes running is usually enough

While running do something else useful
If nothing is found, generate larger tests
Or rethink the generator

Stress-testing workflow

Stress-test after manual testing
No point if generator/trivial solution/checker is
too complex
Start with very small test sizes
Couple of minutes running is usually enough
While running do something else useful

If nothing is found, generate larger tests
Or rethink the generator

Stress-testing workflow

Stress-test after manual testing
No point if generator/trivial solution/checker is
too complex
Start with very small test sizes
Couple of minutes running is usually enough
While running do something else useful
If nothing is found, generate larger tests
Or rethink the generator

Summary

Test your solution before and after submitting
Start with samples
“Interesting” manual cases — min/max, problem
type specific, and anything you could imagine
Test different parts separately
If everything else fails, run a stress-test
Watch out for the generator
Generate small tests

Summary

Test your solution before and after submitting

Start with samples
“Interesting” manual cases — min/max, problem
type specific, and anything you could imagine
Test different parts separately
If everything else fails, run a stress-test
Watch out for the generator
Generate small tests

Summary

Test your solution before and after submitting
Start with samples

“Interesting” manual cases — min/max, problem
type specific, and anything you could imagine
Test different parts separately
If everything else fails, run a stress-test
Watch out for the generator
Generate small tests

Summary

Test your solution before and after submitting
Start with samples
“Interesting” manual cases — min/max, problem
type specific, and anything you could imagine

Test different parts separately
If everything else fails, run a stress-test
Watch out for the generator
Generate small tests

Summary

Test your solution before and after submitting
Start with samples
“Interesting” manual cases — min/max, problem
type specific, and anything you could imagine
Test different parts separately

If everything else fails, run a stress-test
Watch out for the generator
Generate small tests

Summary

Test your solution before and after submitting
Start with samples
“Interesting” manual cases — min/max, problem
type specific, and anything you could imagine
Test different parts separately
If everything else fails, run a stress-test

Watch out for the generator
Generate small tests

Summary

Test your solution before and after submitting
Start with samples
“Interesting” manual cases — min/max, problem
type specific, and anything you could imagine
Test different parts separately
If everything else fails, run a stress-test
Watch out for the generator
Generate small tests

	Lesson 1: Testing
	Video 1.1: Testing, sample tests, min/max tests
	Video 1.2: Custom cases and testing workflow
	Video 1.3: Stress-testing

