
Technical Slide

1 Lesson 1: Programming competitions
Video 1.1: Introduction and course structure
Video 1.2: Specifics of programming competitions
Video 1.3: Problem example
Video 1.4: Steps in solving a problem
Video 1.5: Soft skills
Video 1.6: Competitions review



Why competitive programming?

Write reliable and efficient programs

Learn and practice algorithms
Manage time when it’s very limited
Do well at job interviews
Join the community of highly motivated and
smart people
Have fun :)



Why competitive programming?

Write reliable and efficient programs
Learn and practice algorithms

Manage time when it’s very limited
Do well at job interviews
Join the community of highly motivated and
smart people
Have fun :)



Why competitive programming?

Write reliable and efficient programs
Learn and practice algorithms
Manage time when it’s very limited

Do well at job interviews
Join the community of highly motivated and
smart people
Have fun :)



Why competitive programming?

Write reliable and efficient programs
Learn and practice algorithms
Manage time when it’s very limited
Do well at job interviews

Join the community of highly motivated and
smart people
Have fun :)



Why competitive programming?

Write reliable and efficient programs
Learn and practice algorithms
Manage time when it’s very limited
Do well at job interviews
Join the community of highly motivated and
smart people

Have fun :)



Why competitive programming?

Write reliable and efficient programs
Learn and practice algorithms
Manage time when it’s very limited
Do well at job interviews
Join the community of highly motivated and
smart people
Have fun :)



In this course

Basic skills and algorithmic ideas

Week 1: Programming competitions, testing
Week 2: Code correctness, brute force solutions,
running time
Week 3: Struggles with numbers and how to get
unstuck
Week 4: Greedy algorithms, language specifics
Weeks 5 and 6: Dynamic programming: edit
distance, knapsack, and other common problems

Programming assignments — just like problems on
real competitions



In this course

Basic skills and algorithmic ideas
Week 1: Programming competitions, testing

Week 2: Code correctness, brute force solutions,
running time
Week 3: Struggles with numbers and how to get
unstuck
Week 4: Greedy algorithms, language specifics
Weeks 5 and 6: Dynamic programming: edit
distance, knapsack, and other common problems

Programming assignments — just like problems on
real competitions



In this course

Basic skills and algorithmic ideas
Week 1: Programming competitions, testing
Week 2: Code correctness, brute force solutions,
running time

Week 3: Struggles with numbers and how to get
unstuck
Week 4: Greedy algorithms, language specifics
Weeks 5 and 6: Dynamic programming: edit
distance, knapsack, and other common problems

Programming assignments — just like problems on
real competitions



In this course

Basic skills and algorithmic ideas
Week 1: Programming competitions, testing
Week 2: Code correctness, brute force solutions,
running time
Week 3: Struggles with numbers and how to get
unstuck

Week 4: Greedy algorithms, language specifics
Weeks 5 and 6: Dynamic programming: edit
distance, knapsack, and other common problems

Programming assignments — just like problems on
real competitions



In this course

Basic skills and algorithmic ideas
Week 1: Programming competitions, testing
Week 2: Code correctness, brute force solutions,
running time
Week 3: Struggles with numbers and how to get
unstuck
Week 4: Greedy algorithms, language specifics

Weeks 5 and 6: Dynamic programming: edit
distance, knapsack, and other common problems

Programming assignments — just like problems on
real competitions



In this course

Basic skills and algorithmic ideas
Week 1: Programming competitions, testing
Week 2: Code correctness, brute force solutions,
running time
Week 3: Struggles with numbers and how to get
unstuck
Week 4: Greedy algorithms, language specifics
Weeks 5 and 6: Dynamic programming: edit
distance, knapsack, and other common problems

Programming assignments — just like problems on
real competitions



In this course

Basic skills and algorithmic ideas
Week 1: Programming competitions, testing
Week 2: Code correctness, brute force solutions,
running time
Week 3: Struggles with numbers and how to get
unstuck
Week 4: Greedy algorithms, language specifics
Weeks 5 and 6: Dynamic programming: edit
distance, knapsack, and other common problems

Programming assignments — just like problems on
real competitions



Technical Slide

1 Lesson 1: Programming competitions
Video 1.1: Introduction and course structure
Video 1.2: Specifics of programming competitions
Video 1.3: Problem example
Video 1.4: Steps in solving a problem
Video 1.5: Soft skills
Video 1.6: Competitions review



Competitions

Timed — 2–5 hours
Individual or team
Several problems, solving each adds to the score
Solutions are checked by an automated testing
system



Competitions

Timed — 2–5 hours

Individual or team
Several problems, solving each adds to the score
Solutions are checked by an automated testing
system



Competitions

Timed — 2–5 hours
Individual or team

Several problems, solving each adds to the score
Solutions are checked by an automated testing
system



Competitions

Timed — 2–5 hours
Individual or team
Several problems, solving each adds to the score

Solutions are checked by an automated testing
system



Competitions

Timed — 2–5 hours
Individual or team
Several problems, solving each adds to the score
Solutions are checked by an automated testing
system



Algorithmic problems

Precisely formulated, although often through
some real-world legend

Input/output exactly of certain format
Have tight time/memory limits
Efficiency is key
Often require knowledge of some
algorithms/ideas



Algorithmic problems

Precisely formulated, although often through
some real-world legend
Input/output exactly of certain format

Have tight time/memory limits
Efficiency is key
Often require knowledge of some
algorithms/ideas



Algorithmic problems

Precisely formulated, although often through
some real-world legend
Input/output exactly of certain format
Have tight time/memory limits

Efficiency is key
Often require knowledge of some
algorithms/ideas



Algorithmic problems

Precisely formulated, although often through
some real-world legend
Input/output exactly of certain format
Have tight time/memory limits
Efficiency is key

Often require knowledge of some
algorithms/ideas



Algorithmic problems

Precisely formulated, although often through
some real-world legend
Input/output exactly of certain format
Have tight time/memory limits
Efficiency is key
Often require knowledge of some
algorithms/ideas



Problem solution

Program in one of the supported languages

Usually short — a few dozen lines
Reads data in a specific format from standard
input/input file
Outputs solution in a specific format to standard
output/output file
Is repeatedly run on a testing system against
prepared test cases
Must not use external libraries, create extra files,
go to the network and so on



Problem solution

Program in one of the supported languages
Usually short — a few dozen lines

Reads data in a specific format from standard
input/input file
Outputs solution in a specific format to standard
output/output file
Is repeatedly run on a testing system against
prepared test cases
Must not use external libraries, create extra files,
go to the network and so on



Problem solution

Program in one of the supported languages
Usually short — a few dozen lines
Reads data in a specific format from standard
input/input file

Outputs solution in a specific format to standard
output/output file
Is repeatedly run on a testing system against
prepared test cases
Must not use external libraries, create extra files,
go to the network and so on



Problem solution

Program in one of the supported languages
Usually short — a few dozen lines
Reads data in a specific format from standard
input/input file
Outputs solution in a specific format to standard
output/output file

Is repeatedly run on a testing system against
prepared test cases
Must not use external libraries, create extra files,
go to the network and so on



Problem solution

Program in one of the supported languages
Usually short — a few dozen lines
Reads data in a specific format from standard
input/input file
Outputs solution in a specific format to standard
output/output file
Is repeatedly run on a testing system against
prepared test cases

Must not use external libraries, create extra files,
go to the network and so on



Problem solution

Program in one of the supported languages
Usually short — a few dozen lines
Reads data in a specific format from standard
input/input file
Outputs solution in a specific format to standard
output/output file
Is repeatedly run on a testing system against
prepared test cases
Must not use external libraries, create extra files,
go to the network and so on



Testing system verdicts

CE (Compilation error) — the compiler could
not compile your program
RE (Runtime error) — your program crashed
during the execution
TL (Time limit exceeded) — your program
didn’t exit in the alloted time
ML (Memory limit exceeded) — your program
tried to use too much memory
PE (Presentation error) — your output was
formatted incorrectly
WA (Wrong answer) — your output is not
correct
AC (Accepted) — your program passed all tests,
congratulations!

For all verdicts, except CE and AC, the test number
is reported



Testing system verdicts
CE (Compilation error) — the compiler could
not compile your program

RE (Runtime error) — your program crashed
during the execution
TL (Time limit exceeded) — your program
didn’t exit in the alloted time
ML (Memory limit exceeded) — your program
tried to use too much memory
PE (Presentation error) — your output was
formatted incorrectly
WA (Wrong answer) — your output is not
correct
AC (Accepted) — your program passed all tests,
congratulations!

For all verdicts, except CE and AC, the test number
is reported



Testing system verdicts
CE (Compilation error) — the compiler could
not compile your program
RE (Runtime error) — your program crashed
during the execution

TL (Time limit exceeded) — your program
didn’t exit in the alloted time
ML (Memory limit exceeded) — your program
tried to use too much memory
PE (Presentation error) — your output was
formatted incorrectly
WA (Wrong answer) — your output is not
correct
AC (Accepted) — your program passed all tests,
congratulations!

For all verdicts, except CE and AC, the test number
is reported



Testing system verdicts
CE (Compilation error) — the compiler could
not compile your program
RE (Runtime error) — your program crashed
during the execution
TL (Time limit exceeded) — your program
didn’t exit in the alloted time

ML (Memory limit exceeded) — your program
tried to use too much memory
PE (Presentation error) — your output was
formatted incorrectly
WA (Wrong answer) — your output is not
correct
AC (Accepted) — your program passed all tests,
congratulations!

For all verdicts, except CE and AC, the test number
is reported



Testing system verdicts
CE (Compilation error) — the compiler could
not compile your program
RE (Runtime error) — your program crashed
during the execution
TL (Time limit exceeded) — your program
didn’t exit in the alloted time
ML (Memory limit exceeded) — your program
tried to use too much memory

PE (Presentation error) — your output was
formatted incorrectly
WA (Wrong answer) — your output is not
correct
AC (Accepted) — your program passed all tests,
congratulations!

For all verdicts, except CE and AC, the test number
is reported



Testing system verdicts
CE (Compilation error) — the compiler could
not compile your program
RE (Runtime error) — your program crashed
during the execution
TL (Time limit exceeded) — your program
didn’t exit in the alloted time
ML (Memory limit exceeded) — your program
tried to use too much memory
PE (Presentation error) — your output was
formatted incorrectly

WA (Wrong answer) — your output is not
correct
AC (Accepted) — your program passed all tests,
congratulations!

For all verdicts, except CE and AC, the test number
is reported



Testing system verdicts
CE (Compilation error) — the compiler could
not compile your program
RE (Runtime error) — your program crashed
during the execution
TL (Time limit exceeded) — your program
didn’t exit in the alloted time
ML (Memory limit exceeded) — your program
tried to use too much memory
PE (Presentation error) — your output was
formatted incorrectly
WA (Wrong answer) — your output is not
correct

AC (Accepted) — your program passed all tests,
congratulations!

For all verdicts, except CE and AC, the test number
is reported



Testing system verdicts
CE (Compilation error) — the compiler could
not compile your program
RE (Runtime error) — your program crashed
during the execution
TL (Time limit exceeded) — your program
didn’t exit in the alloted time
ML (Memory limit exceeded) — your program
tried to use too much memory
PE (Presentation error) — your output was
formatted incorrectly
WA (Wrong answer) — your output is not
correct
AC (Accepted) — your program passed all tests,
congratulations!

For all verdicts, except CE and AC, the test number
is reported



Testing system verdicts
CE (Compilation error) — the compiler could
not compile your program
RE (Runtime error) — your program crashed
during the execution
TL (Time limit exceeded) — your program
didn’t exit in the alloted time
ML (Memory limit exceeded) — your program
tried to use too much memory
PE (Presentation error) — your output was
formatted incorrectly
WA (Wrong answer) — your output is not
correct
AC (Accepted) — your program passed all tests,
congratulations!

For all verdicts, except CE and AC, the test number
is reported



Test cases

Strictly formatted, no need to process typos,
handle possible errors, and so on

Range of possible values for each parameter is
given in the statement
However, you can’t assume anything about the
data, except for what’s explicitly stated
Be sure that problem authors will put test cases
of any possible type
No matter how extreme or nonsensical — only
compliance with the statement counts
Usually, to earn score you need to pass all tests



Test cases

Strictly formatted, no need to process typos,
handle possible errors, and so on
Range of possible values for each parameter is
given in the statement

However, you can’t assume anything about the
data, except for what’s explicitly stated
Be sure that problem authors will put test cases
of any possible type
No matter how extreme or nonsensical — only
compliance with the statement counts
Usually, to earn score you need to pass all tests



Test cases

Strictly formatted, no need to process typos,
handle possible errors, and so on
Range of possible values for each parameter is
given in the statement
However, you can’t assume anything about the
data, except for what’s explicitly stated

Be sure that problem authors will put test cases
of any possible type
No matter how extreme or nonsensical — only
compliance with the statement counts
Usually, to earn score you need to pass all tests



Test cases

Strictly formatted, no need to process typos,
handle possible errors, and so on
Range of possible values for each parameter is
given in the statement
However, you can’t assume anything about the
data, except for what’s explicitly stated
Be sure that problem authors will put test cases
of any possible type
No matter how extreme or nonsensical — only
compliance with the statement counts

Usually, to earn score you need to pass all tests



Test cases

Strictly formatted, no need to process typos,
handle possible errors, and so on
Range of possible values for each parameter is
given in the statement
However, you can’t assume anything about the
data, except for what’s explicitly stated
Be sure that problem authors will put test cases
of any possible type
No matter how extreme or nonsensical — only
compliance with the statement counts
Usually, to earn score you need to pass all tests



Technical Slide

1 Lesson 1: Programming competitions
Video 1.1: Introduction and course structure
Video 1.2: Specifics of programming competitions
Video 1.3: Problem example
Video 1.4: Steps in solving a problem
Video 1.5: Soft skills
Video 1.6: Competitions review



You are given a list of contact names. Order it
alphabetically.

Input format
Sequence of contact names, each on a new line.
Names are non-empty and consist only of lowercase
english letters. Total length of names is no more than
10 000.

Output format
Output given names in alphabetical order — each
name on a new line.

Sample input
turing
dijkstra
knuth

Sample output
dijkstra
knuth
turing



You are given a list of contact names. Order it
alphabetically.

Input format
Sequence of contact names, each on a new line.
Names are non-empty and consist only of lowercase
english letters. Total length of names is no more than
10 000.

Output format
Output given names in alphabetical order — each
name on a new line.

Sample input
turing
dijkstra
knuth

Sample output
dijkstra
knuth
turing



You are given a list of contact names. Order it
alphabetically.

Input format
Sequence of contact names, each on a new line.
Names are non-empty and consist only of lowercase
english letters. Total length of names is no more than
10 000.

Output format
Output given names in alphabetical order — each
name on a new line.

Sample input
turing
dijkstra
knuth

Sample output
dijkstra
knuth
turing



You are given a list of contact names. Order it
alphabetically.

Input format
Sequence of contact names, each on a new line.
Names are non-empty and consist only of lowercase
english letters. Total length of names is no more than
10 000.

Output format
Output given names in alphabetical order — each
name on a new line.

Sample input
turing
dijkstra
knuth

Sample output
dijkstra
knuth
turing



You are given a list of contact names. Order it
alphabetically.

Input format
Sequence of contact names, each on a new line.
Names are non-empty and consist only of lowercase
english letters. Total length of names is no more than
10 000.

Output format
Output given names in alphabetical order — each
name on a new line.

Sample input
turing
dijkstra
knuth

Sample output
dijkstra
knuth
turing



Legend
You are given a list of contact names. Order it
alphabetically.

Problem formulation/motivation

Often long
Look for formal conditions/constraints



Legend
You are given a list of contact names. Order it
alphabetically.

Problem formulation/motivation
Often long

Look for formal conditions/constraints



Legend
You are given a list of contact names. Order it
alphabetically.

Problem formulation/motivation
Often long
Look for formal conditions/constraints



Input format
Sequence of contact names, each on a new line.
Names are non-empty and consist only of lowercase
english letters. Total length of names is no more than
10 000.

Formal description of test case format

Constraints/limits
You may assume about tests only what’s
explicitly stated



Input format
Sequence of contact names, each on a new line.
Names are non-empty and consist only of lowercase
english letters. Total length of names is no more than
10 000.

Formal description of test case format
Constraints/limits

You may assume about tests only what’s
explicitly stated



Input format
Sequence of contact names, each on a new line.
Names are non-empty and consist only of lowercase
english letters. Total length of names is no more than
10 000.

Formal description of test case format
Constraints/limits
You may assume about tests only what’s
explicitly stated



Input format
Sequence of contact names, each on a new line.
Names consist only of lowercase english letters. Total
length of names is no more than 10 000.

Intuition — names are short, real-looking,
distinct

It’s not stated that they belong to real people
abcdefg
aaaaa

It’s not stated that names have particular length
aaa...aa (letter ’a’ 10000 times)



Input format
Sequence of contact names, each on a new line.
Names consist only of lowercase english letters. Total
length of names is no more than 10 000.

Intuition — names are short, real-looking,
distinct
It’s not stated that they belong to real people
abcdefg
aaaaa

It’s not stated that names have particular length
aaa...aa (letter ’a’ 10000 times)



Input format
Sequence of contact names, each on a new line.
Names consist only of lowercase english letters. Total
length of names is no more than 10 000.

Intuition — names are short, real-looking,
distinct
It’s not stated that they belong to real people
abcdefg
aaaaa

It’s not stated that names have particular length
aaa...aa (letter ’a’ 10000 times)



Input format
Sequence of contact names, each on a new line.
Names consist only of lowercase english letters. Total
length of names is no more than 10 000.

It’s not stated that they are distinct
a
a
... (line ’a’ 10000 times)

Length is not necessarily similar
aaa..aa (letter ’a’ 5000 times)
a
a
...(line ’a’ 5000 times)



Input format
Sequence of contact names, each on a new line.
Names consist only of lowercase english letters. Total
length of names is no more than 10 000.

It’s not stated that they are distinct
a
a
... (line ’a’ 10000 times)

Length is not necessarily similar
aaa..aa (letter ’a’ 5000 times)
a
a
...(line ’a’ 5000 times)



Output format
Output given names in alphabetical order — each
name on a new line.

Your output is tested by a special program —
the checker

So you must follow output format closely —
otherwise the checker couldn’t understand it and
wouldn’t accept it



Output format
Output given names in alphabetical order — each
name on a new line.

Your output is tested by a special program —
the checker
So you must follow output format closely —
otherwise the checker couldn’t understand it and
wouldn’t accept it



Samples
Sample input
turing
dijkstra
knuth

Sample output
dijkstra
knuth
turing

Verify your understanding of the statement with
them

If something doesn’t tie up — reread the
statement
And later, check the correctness of your program
But use other test cases, too!
Samples are usually tested first when you submit



Samples
Sample input
turing
dijkstra
knuth

Sample output
dijkstra
knuth
turing

Verify your understanding of the statement with
them
If something doesn’t tie up — reread the
statement

And later, check the correctness of your program
But use other test cases, too!
Samples are usually tested first when you submit



Samples
Sample input
turing
dijkstra
knuth

Sample output
dijkstra
knuth
turing

Verify your understanding of the statement with
them
If something doesn’t tie up — reread the
statement
And later, check the correctness of your program

But use other test cases, too!
Samples are usually tested first when you submit



Samples
Sample input
turing
dijkstra
knuth

Sample output
dijkstra
knuth
turing

Verify your understanding of the statement with
them
If something doesn’t tie up — reread the
statement
And later, check the correctness of your program
But use other test cases, too!

Samples are usually tested first when you submit



Samples
Sample input
turing
dijkstra
knuth

Sample output
dijkstra
knuth
turing

Verify your understanding of the statement with
them
If something doesn’t tie up — reread the
statement
And later, check the correctness of your program
But use other test cases, too!
Samples are usually tested first when you submit



Technical Slide

1 Lesson 1: Programming competitions
Video 1.1: Introduction and course structure
Video 1.2: Specifics of programming competitions
Video 1.3: Problem example
Video 1.4: Steps in solving a problem
Video 1.5: Soft skills
Video 1.6: Competitions review



Steps in solving a problem

1 Read the statement
2 Formalize it
3 Invent a solution
4 Prove it
5 Implement it
6 Test your implementation
7 Debug if not working
8 Submit and get AC (hopefully)



Steps in solving a problem

1 Read the statement

2 Formalize it
3 Invent a solution
4 Prove it
5 Implement it
6 Test your implementation
7 Debug if not working
8 Submit and get AC (hopefully)



Steps in solving a problem

1 Read the statement
2 Formalize it

3 Invent a solution
4 Prove it
5 Implement it
6 Test your implementation
7 Debug if not working
8 Submit and get AC (hopefully)



Steps in solving a problem

1 Read the statement
2 Formalize it
3 Invent a solution

4 Prove it
5 Implement it
6 Test your implementation
7 Debug if not working
8 Submit and get AC (hopefully)



Steps in solving a problem

1 Read the statement
2 Formalize it
3 Invent a solution
4 Prove it

5 Implement it
6 Test your implementation
7 Debug if not working
8 Submit and get AC (hopefully)



Steps in solving a problem

1 Read the statement
2 Formalize it
3 Invent a solution
4 Prove it
5 Implement it

6 Test your implementation
7 Debug if not working
8 Submit and get AC (hopefully)



Steps in solving a problem

1 Read the statement
2 Formalize it
3 Invent a solution
4 Prove it
5 Implement it
6 Test your implementation

7 Debug if not working
8 Submit and get AC (hopefully)



Steps in solving a problem

1 Read the statement
2 Formalize it
3 Invent a solution
4 Prove it
5 Implement it
6 Test your implementation
7 Debug if not working

8 Submit and get AC (hopefully)



Steps in solving a problem

1 Read the statement
2 Formalize it
3 Invent a solution
4 Prove it
5 Implement it
6 Test your implementation
7 Debug if not working
8 Submit and get AC (hopefully)



What is proving

Why not just implement an “obviously correct”
solution?

Often solutions base on wrong assumptions
Both correctness and efficiency could depend on
it
So if you assume anything, it must be either
written in the statement or proven
Proving correctness of greedy algorithms and
bounds on runnning time in general — later in
the course



What is proving

Why not just implement an “obviously correct”
solution?
Often solutions base on wrong assumptions

Both correctness and efficiency could depend on
it
So if you assume anything, it must be either
written in the statement or proven
Proving correctness of greedy algorithms and
bounds on runnning time in general — later in
the course



What is proving

Why not just implement an “obviously correct”
solution?
Often solutions base on wrong assumptions
Both correctness and efficiency could depend on
it

So if you assume anything, it must be either
written in the statement or proven
Proving correctness of greedy algorithms and
bounds on runnning time in general — later in
the course



What is proving

Why not just implement an “obviously correct”
solution?
Often solutions base on wrong assumptions
Both correctness and efficiency could depend on
it
So if you assume anything, it must be either
written in the statement or proven

Proving correctness of greedy algorithms and
bounds on runnning time in general — later in
the course



What is proving

Why not just implement an “obviously correct”
solution?
Often solutions base on wrong assumptions
Both correctness and efficiency could depend on
it
So if you assume anything, it must be either
written in the statement or proven
Proving correctness of greedy algorithms and
bounds on runnning time in general — later in
the course



Fixing a bug
Say you’ve found a test case your program isn’t
working on

An error could be on any step
So you need to check all of them
If you’ve found and fixed an error on some step
— fix it and then all the following steps one by
one
Starting from the wrong step could be disastrous
...
if n == 5:

print(42)
...



Fixing a bug
Say you’ve found a test case your program isn’t
working on
An error could be on any step

So you need to check all of them
If you’ve found and fixed an error on some step
— fix it and then all the following steps one by
one
Starting from the wrong step could be disastrous
...
if n == 5:

print(42)
...



Fixing a bug
Say you’ve found a test case your program isn’t
working on
An error could be on any step
So you need to check all of them

If you’ve found and fixed an error on some step
— fix it and then all the following steps one by
one
Starting from the wrong step could be disastrous
...
if n == 5:

print(42)
...



Fixing a bug
Say you’ve found a test case your program isn’t
working on
An error could be on any step
So you need to check all of them
If you’ve found and fixed an error on some step
— fix it and then all the following steps one by
one

Starting from the wrong step could be disastrous
...
if n == 5:

print(42)
...



Fixing a bug
Say you’ve found a test case your program isn’t
working on
An error could be on any step
So you need to check all of them
If you’ve found and fixed an error on some step
— fix it and then all the following steps one by
one
Starting from the wrong step could be disastrous
...
if n == 5:

print(42)
...



Technical Slide

1 Lesson 1: Programming competitions
Video 1.1: Introduction and course structure
Video 1.2: Specifics of programming competitions
Video 1.3: Problem example
Video 1.4: Steps in solving a problem
Video 1.5: Soft skills
Video 1.6: Competitions review



How to ask for help

If you’re stuck with some problem — you could
ask the community for help

Where — forum here, forums on popular
competitive programming resources
Respect competition rules — do not discuss
problems from ongoing contest
Ask questions well

Summarize the issue in the title as good as possible
Format your question and code in it well
Include just enough code to reproduce the problem



How to ask for help

If you’re stuck with some problem — you could
ask the community for help
Where — forum here, forums on popular
competitive programming resources

Respect competition rules — do not discuss
problems from ongoing contest
Ask questions well

Summarize the issue in the title as good as possible
Format your question and code in it well
Include just enough code to reproduce the problem



How to ask for help

If you’re stuck with some problem — you could
ask the community for help
Where — forum here, forums on popular
competitive programming resources
Respect competition rules — do not discuss
problems from ongoing contest

Ask questions well
Summarize the issue in the title as good as possible
Format your question and code in it well
Include just enough code to reproduce the problem



How to ask for help

If you’re stuck with some problem — you could
ask the community for help
Where — forum here, forums on popular
competitive programming resources
Respect competition rules — do not discuss
problems from ongoing contest
Ask questions well

Summarize the issue in the title as good as possible
Format your question and code in it well
Include just enough code to reproduce the problem



How to ask for help

If you’re stuck with some problem — you could
ask the community for help
Where — forum here, forums on popular
competitive programming resources
Respect competition rules — do not discuss
problems from ongoing contest
Ask questions well

Summarize the issue in the title as good as possible

Format your question and code in it well
Include just enough code to reproduce the problem



How to ask for help

If you’re stuck with some problem — you could
ask the community for help
Where — forum here, forums on popular
competitive programming resources
Respect competition rules — do not discuss
problems from ongoing contest
Ask questions well

Summarize the issue in the title as good as possible
Format your question and code in it well

Include just enough code to reproduce the problem



How to ask for help

If you’re stuck with some problem — you could
ask the community for help
Where — forum here, forums on popular
competitive programming resources
Respect competition rules — do not discuss
problems from ongoing contest
Ask questions well

Summarize the issue in the title as good as possible
Format your question and code in it well
Include just enough code to reproduce the problem



Clarifications

On competitions, if you don’t understand
something in the statement, you could ask the
jury for a clarification

That is, send a specific question about the
problem statement, assuming a Yes/No answer
Most probably, the answer is already in the
statement
Questions must be about the problem, not your
solution or other ones



Clarifications

On competitions, if you don’t understand
something in the statement, you could ask the
jury for a clarification
That is, send a specific question about the
problem statement, assuming a Yes/No answer

Most probably, the answer is already in the
statement
Questions must be about the problem, not your
solution or other ones



Clarifications

On competitions, if you don’t understand
something in the statement, you could ask the
jury for a clarification
That is, send a specific question about the
problem statement, assuming a Yes/No answer
Most probably, the answer is already in the
statement

Questions must be about the problem, not your
solution or other ones



Clarifications

On competitions, if you don’t understand
something in the statement, you could ask the
jury for a clarification
That is, send a specific question about the
problem statement, assuming a Yes/No answer
Most probably, the answer is already in the
statement
Questions must be about the problem, not your
solution or other ones



Establishing workflow

As time is everything, find a way to do routine things
faster/before the contest

Learn to use specific IDE/text editor, preferably
lightweight one — save time on creating new
projects, opening new files, debugging
Prepare a template code with common includes
and so on — to not start from scratch each time
Backup code versions and tests



Establishing workflow

As time is everything, find a way to do routine things
faster/before the contest

Learn to use specific IDE/text editor, preferably
lightweight one — save time on creating new
projects, opening new files, debugging

Prepare a template code with common includes
and so on — to not start from scratch each time
Backup code versions and tests



Establishing workflow

As time is everything, find a way to do routine things
faster/before the contest

Learn to use specific IDE/text editor, preferably
lightweight one — save time on creating new
projects, opening new files, debugging
Prepare a template code with common includes
and so on — to not start from scratch each time

Backup code versions and tests



Establishing workflow

As time is everything, find a way to do routine things
faster/before the contest

Learn to use specific IDE/text editor, preferably
lightweight one — save time on creating new
projects, opening new files, debugging
Prepare a template code with common includes
and so on — to not start from scratch each time
Backup code versions and tests



Technical Slide

1 Lesson 1: Programming competitions
Video 1.1: Introduction and course structure
Video 1.2: Specifics of programming competitions
Video 1.3: Problem example
Video 1.4: Steps in solving a problem
Video 1.5: Soft skills
Video 1.6: Competitions review



What to do besides this course

Participate in competitions

Practice solving problems from archives
Learn additional algorithms when you feel the
need



What to do besides this course

Participate in competitions
Practice solving problems from archives

Learn additional algorithms when you feel the
need



What to do besides this course

Participate in competitions
Practice solving problems from archives
Learn additional algorithms when you feel the
need



ACM ICPC
International Collegiate Programming Contest

5 hour contests, teams of three, one computer
per team
Result right after submission
Ranking by number of accepted problems, on
equality — by total penalty time

penalty time = minute when got AC
+ incorrect attempts · 20

You must be enrolled in a degree program to
participate
Onsite contests, multi-tiered: Subregionals,
Regionals, World Finals



ACM ICPC
International Collegiate Programming Contest

5 hour contests, teams of three, one computer
per team

Result right after submission
Ranking by number of accepted problems, on
equality — by total penalty time

penalty time = minute when got AC
+ incorrect attempts · 20

You must be enrolled in a degree program to
participate
Onsite contests, multi-tiered: Subregionals,
Regionals, World Finals



ACM ICPC
International Collegiate Programming Contest

5 hour contests, teams of three, one computer
per team
Result right after submission

Ranking by number of accepted problems, on
equality — by total penalty time

penalty time = minute when got AC
+ incorrect attempts · 20

You must be enrolled in a degree program to
participate
Onsite contests, multi-tiered: Subregionals,
Regionals, World Finals



ACM ICPC
International Collegiate Programming Contest

5 hour contests, teams of three, one computer
per team
Result right after submission
Ranking by number of accepted problems, on
equality — by total penalty time

penalty time = minute when got AC
+ incorrect attempts · 20

You must be enrolled in a degree program to
participate
Onsite contests, multi-tiered: Subregionals,
Regionals, World Finals



ACM ICPC
International Collegiate Programming Contest

5 hour contests, teams of three, one computer
per team
Result right after submission
Ranking by number of accepted problems, on
equality — by total penalty time

penalty time = minute when got AC
+ incorrect attempts · 20

You must be enrolled in a degree program to
participate

Onsite contests, multi-tiered: Subregionals,
Regionals, World Finals



ACM ICPC
International Collegiate Programming Contest

5 hour contests, teams of three, one computer
per team
Result right after submission
Ranking by number of accepted problems, on
equality — by total penalty time

penalty time = minute when got AC
+ incorrect attempts · 20

You must be enrolled in a degree program to
participate
Onsite contests, multi-tiered: Subregionals,
Regionals, World Finals



GCJ, FHC

Google Code Jam
Facebook Hacker Cup

Individual, open for all
Annual, begin with Qualification Round, usually
in April (GCJ) and January (FHC)
All rounds except final are online
You solve the problem, request input and in
several minutes need to send output, so not
solution itself
Used for recruiting



GCJ, FHC

Google Code Jam
Facebook Hacker Cup

Individual, open for all

Annual, begin with Qualification Round, usually
in April (GCJ) and January (FHC)
All rounds except final are online
You solve the problem, request input and in
several minutes need to send output, so not
solution itself
Used for recruiting



GCJ, FHC

Google Code Jam
Facebook Hacker Cup

Individual, open for all
Annual, begin with Qualification Round, usually
in April (GCJ) and January (FHC)

All rounds except final are online
You solve the problem, request input and in
several minutes need to send output, so not
solution itself
Used for recruiting



GCJ, FHC

Google Code Jam
Facebook Hacker Cup

Individual, open for all
Annual, begin with Qualification Round, usually
in April (GCJ) and January (FHC)
All rounds except final are online

You solve the problem, request input and in
several minutes need to send output, so not
solution itself
Used for recruiting



GCJ, FHC

Google Code Jam
Facebook Hacker Cup

Individual, open for all
Annual, begin with Qualification Round, usually
in April (GCJ) and January (FHC)
All rounds except final are online
You solve the problem, request input and in
several minutes need to send output, so not
solution itself

Used for recruiting



GCJ, FHC

Google Code Jam
Facebook Hacker Cup

Individual, open for all
Annual, begin with Qualification Round, usually
in April (GCJ) and January (FHC)
All rounds except final are online
You solve the problem, request input and in
several minutes need to send output, so not
solution itself
Used for recruiting



TopCoder

Regular rounds — Single Round Matches
(SRMs)

Rating system — after each round your rating
changes
Challenge phase — you need to come up with a
test to fail other people’s solutions
Annual TopCoder Open — multi-tiered
championship



TopCoder

Regular rounds — Single Round Matches
(SRMs)
Rating system — after each round your rating
changes

Challenge phase — you need to come up with a
test to fail other people’s solutions
Annual TopCoder Open — multi-tiered
championship



TopCoder

Regular rounds — Single Round Matches
(SRMs)
Rating system — after each round your rating
changes
Challenge phase — you need to come up with a
test to fail other people’s solutions

Annual TopCoder Open — multi-tiered
championship



TopCoder

Regular rounds — Single Round Matches
(SRMs)
Rating system — after each round your rating
changes
Challenge phase — you need to come up with a
test to fail other people’s solutions
Annual TopCoder Open — multi-tiered
championship



Codeforces

Also regular rounds and rating system

Prize rounds with job opportunities by
technological companies
Vibrant community — many useful blog posts
about competive programming, and a place to
ask for help



Codeforces

Also regular rounds and rating system
Prize rounds with job opportunities by
technological companies

Vibrant community — many useful blog posts
about competive programming, and a place to
ask for help



Codeforces

Also regular rounds and rating system
Prize rounds with job opportunities by
technological companies
Vibrant community — many useful blog posts
about competive programming, and a place to
ask for help



Other resources

Codechef — regular rounds and practice
problems
Hackerrank — rounds and challenges, strongly
aimed to help companies in recruiting
Sphere Online Judge — vast problems archive
CSAcademy — poised for learning
And many others


	Lesson 1: Programming competitions
	Video 1.1: Introduction and course structure
	Video 1.2: Specifics of programming competitions
	Video 1.3: Problem example
	Video 1.4: Steps in solving a problem
	Video 1.5: Soft skills
	Video 1.6: Competitions review


