Flows in Networks: Image Segmentation

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

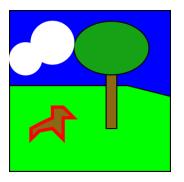
Advanced Algorithms and Complexity Data Structures and Algorithms

Learning Objectives

- Understand the image segmentation problem.
- Relate this problem to finding minimum cuts in an appropriate network.
- Write and algorithm to solve the image segmentation problem.

Image Segmentation

Given an image separate the foreground from the background.



Setup

- Image is a grid of pixels.
- Need to decide which pixels are in the foreground.
- Have some ideas about which pixels are in foreground/background.

Pixel

Some other algorithm judges each pixel to guess whether in foreground or background.



- \mathbf{a}_{v} likelihood pixel in foreground.
- \mathbf{b}_{v} likelihood pixel in background.

Simple Version of Problem

Simple Image Segmentation

Input: Values a_v , b_v

Output: Partition pixels into sets ${\mathcal F}$ and ${\mathcal B}$

so that

$$\sum_{v \in \mathcal{F}} a_v + \sum_{v \in \mathcal{B}} b_v$$

is as large as possible.

Problem

What is the best value for the following problem?

V	1	2	3
a _v	3	5	6
b_{v}	4	3	5

Solution

This version is easy to solve:

- If $a_v > b_v$, put v in \mathcal{F} .
- If $b_v > a_v$, put v in \mathcal{B} .

Solution

This version is easy to solve:

- If $a_v > b_v$, put v in \mathcal{F} .
- If $b_v > a_v$, put v in \mathcal{B} .

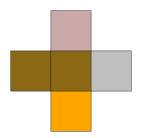
V	1	2	3
a _v	3	5	6
b_{v}	4	3	5

Answer:

$$4 + 5 + 6 = 15$$
.

Nearby Pixels

Also expect that nearby pixels will be on the same size of divide.



Have penalty p_{vw} for putting v in foreground and w in background.

Full Problem

Image Segmentation

Input: Values a_v , b_v , p_{vw}

Output: Partition pixels into sets ${\mathcal F}$ and ${\mathcal B}$

so that

$$\sum_{v \in \mathcal{F}} a_v + \sum_{v \in \mathcal{B}} b_v - \sum_{v \in \mathcal{F}, w \in \mathcal{B}} p_{vw}$$

is as large as possible.

Algebra

Subtracting the sum over all v of $a_v + b_v$, we want to maximize

$$-\left(\sum_{v\in\mathcal{F}}b_v+\sum_{v\in\mathcal{B}}a_v+\sum_{v\in\mathcal{F},w\in\mathcal{B}}p_{vw}\right).$$

Algebra

Subtracting the sum over all v of $a_v + b_v$, we want to maximize

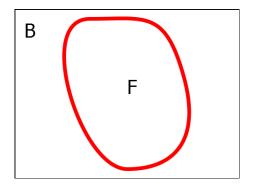
$$-\left(\sum_{v\in\mathcal{F}}b_v+\sum_{v\in\mathcal{B}}a_v+\sum_{v\in\mathcal{F},w\in\mathcal{B}}p_{vw}\right).$$

Equivalently, we can minimize

$$\sum_{v \in \mathcal{F}} b_v + \sum_{v \in \mathcal{B}} a_v + \sum_{v \in \mathcal{F}, w \in \mathcal{B}} p_{vw}.$$

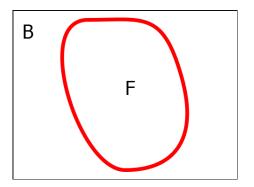
Idea

Want to split vertices into two sets. Pay cost based on boundary between sets.



Idea

Want to split vertices into two sets. Pay cost based on boundary between sets.

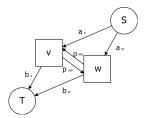


This sounds a lot like computing a mincut!

Network

Create network:

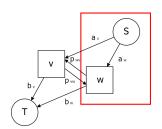
- \blacksquare New vertices s and t.
- Edge s to v with capacity a_v .
- Edge v to t with capacity b_v .
- Edge v to w with capacity p_{vw} .



Cuts

Cut \mathcal{C} has size

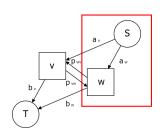
$$\sum_{v \in \mathcal{C}} b_v + \sum_{v \notin \mathcal{C}} a_v + \sum_{v \in \mathcal{C}, w \notin \mathcal{C}} p_{vw}.$$



Cuts

Cut \mathcal{C} has size

$$\sum_{v \in \mathcal{C}} b_v + \sum_{v \notin \mathcal{C}} a_v + \sum_{v \in \mathcal{C}, w \notin \mathcal{C}} p_{vw}.$$



Let $\mathcal{C} = \mathcal{F}$ and $\bar{\mathcal{C}} = \mathcal{B}$!

Algorithm

Use Maxflow-Mincut!

Algorithm

- Use Maxflow-Mincut!
- Construct network
- Compute Maxflow
- Find corresponding Mincut

Pseudocode

ImageSegmentation (a_v, b_v, p_{vw})

Construct corresponding network GCompute a maxflow f for GCompute residual G_f Let $\mathcal C$ be the collection of vertices reachable from s in G_f return $\mathcal F=\mathcal C,\mathcal B=\bar{\mathcal C}$

Summary

- Basic problem in image processing
- Found mathematical formulation
- Looks like a mincut problem
- Used relationship to maxflow to solve