Flows in Networks: Network Flows

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Advanced Algorithms and Complexity Data Structures and Algorithms

Learning Objectives

- Provide the definitions of a network and a flow.
- Give some examples of real world situations in which network flow problems might arise.

Last Time

- Last time: Discussed disaster management problem.
- Today: Talk about formalization of this and similar problems.

Network

Definition

A network is a directed graph G with:

- Each edge, e, is assigned a positive real capacity, C_e .
- One (or more) vertex is labelled a source.
- One (or more) vertex is labelled a sink.

Example

Flows

- Next we want to be able to talk about flows (traffic) through a network.
- Rather than talking about where each car goes, we will instead concern ourselves with the total flow, f_e , through each edge e.

Flows

- Next we want to be able to talk about flows (traffic) through a network.
- Rather than talking about where each car goes, we will instead concern ourselves with the total flow, f_e , through each edge e.
- This must satisfy two conditions:

Rate Limitation

For each edge e,

$$0 \leq f_e \leq C_e$$
.

Conservation of Flow

For all **v** not a source or sink:

$$\sum_{e \text{ into } v} f_e = \sum_{e \text{ out of } v} f_e.$$

Formal Definition

Definition

A flow in a network is an assignment of a real number flow, f_e to each edge e so that

■ For all e

$$0 \leq f_e \leq C_e$$
.

For all **v** not a source or sink

$$\sum_{e \text{ into } v} f_e = \sum_{e \text{ out of } v} f_e.$$

Example

Problem

Which of the following is a valid flow for the given network?

Solution

Only flow C is valid. A fails to conserve flow at one vertex, and B exceeds.

Examples of Network Flows

Network flows are useful to study since they can model a number of real-life phenomena.

Flows of Goods on a Transportation Network

Flows of Electricity Through the Power Grid

Flows of Water Through Pipes

Flows of Information Through a Communications Network

Flow Size

One thing to know about a flow is how much stuff is actually flowing.

Flow Size

One thing to know about a flow is how much stuff is actually flowing. This can be computed by looking at the sources.

Definition

For a flow, f, the size of the flow is given by

$$|f| := \sum_{e \text{ out of a source}} f_e - \sum_{e \text{ into a source}} f_e$$

Sinks

You can also compute this by looking at sinks.

Lemma

$$|f| = \sum_{e \text{ into a sink}} f_e - \sum_{e \text{ out of a sink}} f_e$$

Proof

$$0 = \sum_{e} f_{e} - \sum_{e} f_{e}$$

$$= \sum_{v \text{ source or sink}} \left(\sum_{e \text{ into } v} f_{e} - \sum_{e \text{ out of } v} f_{e} \right)$$

$$= \sum_{v \text{ source or sink}} \left(\sum_{e \text{ into } v} f_{e} - \sum_{e \text{ out of } v} f_{e} \right)$$

Proof

$$= \sum_{\substack{v \text{ source or sink} \\ e \text{ into } v}} \left(\sum_{\substack{e \text{ into } v \\ e \text{ into a source}}} f_e - \sum_{\substack{e \text{ out of } v \\ e \text{ into a sink}}} f_e \right)$$

$$= \sum_{\substack{e \text{ into a source} \\ e \text{ out of a source}}} f_e + \sum_{\substack{e \text{ into a sink} \\ e \text{ out of a sink}}} f_e$$

$$= -|f| + \left(\sum_{\substack{e \text{ into a sink} \\ e \text{ into a sink}}} f_e - \sum_{\substack{e \text{ out of a sink} \\ e \text{ out of a sink}}} f_e \right)$$

Problem

How large a flow can we fit through a network?

Maxflow

Input: A network G

Output: A flow f for G with |f| as large as

possible.