

This page intentionally left blank

Fast Algorithms for Signal Processing

Efficient algorithms for signal processing are critical to very large scale future appli-
cations such as video processing and four-dimensional medical imaging. Similarly,
efficient algorithms are important for embedded and power-limited applications since,
by reducing the number of computations, power consumption can be reduced con-
siderably. This unique textbook presents a broad range of computationally-efficient
algorithms, describes their structure and implementation, and compares their relative
strengths. All the necessary background mathematics is presented, and theorems are
rigorously proved. The book is suitable for researchers and practitioners in electrical
engineering, applied mathematics, and computer science.

Richard E. Blahut is a Professor of Electrical and Computer Engineering at the University
of Illinois, Urbana-Champaign. He is Life Fellow of the IEEE and the recipient of
many awards including the IEEE Alexander Graham Bell Medal (1998) and Claude E.
Shannon Award (2005), the Tau Beta Pi Daniel C. Drucker Eminent Faculty Award,
and the IEEE Millennium Medal. He was named a Fellow of the IBM Corporation in
1980, where he worked for over 30 years, and was elected to the National Academy of
Engineering in 1990.

Fast Algorithms for
Signal Processing

Richard E. Blahut
Henry Magnuski Professor in Electrical and Computer Engineering,
University of Illinois, Urbana-Champaign

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-19049-7

ISBN-13 978-0-511-77637-3

© Cambridge University Press 2010

2010

Information on this title: www.cambridge.org/9780521190497

This publication is in copyright. Subject to statutory exception and to the

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy

of urls for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (NetLibrary)

Hardback

In loving memory of
Jeffrey Paul Blahut
May 2, 1968 – June 13, 2004

Many small make a great.
— Chaucer

Contents

Preface xi
Acknowledgments xiii

1 Introduction 1

1.1 Introduction to fast algorithms 1
1.2 Applications of fast algorithms 6
1.3 Number systems for computation 8
1.4 Digital signal processing 9
1.5 History of fast signal-processing algorithms 17

2 Introduction to abstract algebra 21

2.1 Groups 21
2.2 Rings 26
2.3 Fields 30
2.4 Vector space 34
2.5 Matrix algebra 37
2.6 The integer ring 44
2.7 Polynomial rings 48
2.8 The Chinese remainder theorem 58

3 Fast algorithms for the discrete Fourier transform 68

3.1 The Cooley–Tukey fast Fourier transform 68
3.2 Small-radix Cooley–Tukey algorithms 72
3.3 The Good–Thomas fast Fourier transform 80

vii

viii Contents

3.4 The Goertzel algorithm 83
3.5 The discrete cosine transform 85
3.6 Fourier transforms computed by using convolutions 91
3.7 The Rader–Winograd algorithm 97
3.8 The Winograd small fast Fourier transform 102

4 Fast algorithms based on doubling strategies 115

4.1 Halving and doubling strategies 115
4.2 Data structures 119
4.3 Fast algorithms for sorting 120
4.4 Fast transposition 122
4.5 Matrix multiplication 124
4.6 Computation of trigonometric functions 127
4.7 An accelerated euclidean algorithm for polynomials 130
4.8 A recursive radix-two fast Fourier transform 139

5 Fast algorithms for short convolutions 145

5.1 Cyclic convolution and linear convolution 145
5.2 The Cook–Toom algorithm 148
5.3 Winograd short convolution algorithms 155
5.4 Design of short linear convolution algorithms 164
5.5 Polynomial products modulo a polynomial 168
5.6 Design of short cyclic convolution algorithms 171
5.7 Convolution in general fields and rings 176
5.8 Complexity of convolution algorithms 178

6 Architecture of filters and transforms 194

6.1 Convolution by sections 194
6.2 Algorithms for short filter sections 199
6.3 Iterated filter sections 202
6.4 Symmetric and skew-symmetric filters 207
6.5 Decimating and interpolating filters 213
6.6 Construction of transform computers 216
6.7 Limited-range Fourier transforms 221
6.8 Autocorrelation and crosscorrelation 222

ix Contents

7 Fast algorithms for solving Toeplitz systems 231

7.1 The Levinson and Durbin algorithms 231
7.2 The Trench algorithm 239
7.3 Methods based on the euclidean algorithm 245
7.4 The Berlekamp–Massey algorithm 249
7.5 An accelerated Berlekamp–Massey algorithm 255

8 Fast algorithms for trellis search 262

8.1 Trellis and tree searching 262
8.2 The Viterbi algorithm 267
8.3 Sequential algorithms 270
8.4 The Fano algorithm 274
8.5 The stack algorithm 278
8.6 The Bahl algorithm 280

9 Numbers and fields 286

9.1 Elementary number theory 286
9.2 Fields based on the integer ring 293
9.3 Fields based on polynomial rings 296
9.4 Minimal polynomials and conjugates 299
9.5 Cyclotomic polynomials 300
9.6 Primitive elements 304
9.7 Algebraic integers 306

10 Computation in finite fields and rings 311

10.1 Convolution in surrogate fields 311
10.2 Fermat number transforms 314
10.3 Mersenne number transforms 317
10.4 Arithmetic in a modular integer ring 320
10.5 Convolution algorithms in finite fields 324
10.6 Fourier transform algorithms in finite fields 328
10.7 Complex convolution in surrogate fields 331

x Contents

10.8 Integer ring transforms 336
10.9 Chevillat number transforms 339
10.10 The Preparata–Sarwate algorithm 339

11 Fast algorithms and multidimensional convolutions 345

11.1 Nested convolution algorithms 345
11.2 The Agarwal–Cooley convolution algorithm 350
11.3 Splitting algorithms 357
11.4 Iterated algorithms 362
11.5 Polynomial representation of extension fields 368
11.6 Convolution with polynomial transforms 371
11.7 The Nussbaumer polynomial transforms 372
11.8 Fast convolution of polynomials 376

12 Fast algorithms and multidimensional transforms 384

12.1 Small-radix Cooley–Tukey algorithms 384
12.2 The two-dimensional discrete cosine transform 389
12.3 Nested transform algorithms 391
12.4 The Winograd large fast Fourier transform 395
12.5 The Johnson–Burrus fast Fourier transform 399
12.6 Splitting algorithms 403
12.7 An improved Winograd fast Fourier transform 410
12.8 The Nussbaumer–Quandalle permutation algorithm 411

A A collection of cyclic convolution algorithms 427

B A collection of Winograd small FFT algorithms 435

Bibliography 442
Index 449

Preface

A quarter of a century has passed since the previous version1 of this book was published,
and signal processing continues to be a very important part of electrical engineering.
It forms an essential part of systems for telecommunications, radar and sonar, image
formation systems such as medical imaging, and other large computational problems,
such as in electromagnetics or fluid dynamics, geophysical exploration, and so on. Fast
computational algorithms are necessary in large problems of signal processing, and
the study of such algorithms is the subject of this book. Over those several decades,
however, the nature of the need for fast algorithms has shifted both to much larger
systems on the one hand and to embedded power-limited applications on the other.

Because many processors and many problems are much larger now than they were
when the original version of this book was written, and the relative cost of addition and
multiplication now may appear to be less dramatic, some of the topics of twenty years
ago may be seen by some to be of less importance today. I take exactly the opposite
point of view for several reasons. Very large three-dimensional or four-dimensional
problems now under consideration require massive amounts of computation and this
computation can be reduced by orders of magnitude in many cases by the choice
of algorithm. Indeed, these very large problems can be especially suitable for the
benefits of fast algorithms. At the same time, smaller signal processing problems now
appear frequently in handheld or remote applications where power may be scarce
or nonrenewable. The designer’s care in treating an embedded application, such as
a digital television, can repay itself many times by significantly reducing the power
expenditure. Moreover, the unfamiliar algorithms of this book now can often be handled
automatically by computerized design tools, and in embedded applications where power
dissipation must be minimized, a search for the algorithm with the fewest operations
may be essential.

Because the book has changed in its details and the title has been slightly modernized,
it is more than a second edition, although most of the topics of the original book have
been retained in nearly the same form, but usually with the presentation rewritten.
Possibly, in time, some of these topics will re-emerge in a new form, but that time

1 Fast Algorithms for Digital Signal Processing, Addison-Wesley, Reading, MA, 1985.

xi

xii Preface

is not now. A newly written book might look different in its choice of topics and
its balance between topics than does this one. To accommodate this consideration
here, the chapters have been rearranged and revised, even those whose content has not
changed substantially. Some new sections have been added, and all of the book has
been polished, revised, and re-edited. Most of the touch and feel of the original book
is still evident in this new version.

The heart of the book is in the Fourier transform algorithms of Chapters 3 and 12
and the convolution algorithms of Chapters 5 and 11. Chapters 12 and 11 are the multi-
dimensional continuations of Chapters 3 and 4, respectively, and can be partially read
immediately thereafter if desired. The study of one-dimensional convolution algorithms
and Fourier transform algorithms is only completed in the context of the multidimen-
sional problems. Chapters 2 and 9 are mathematical interludes; some readers may
prefer to treat them as appendices, consulting them only as needed. The remainder,
Chapters 4, 7, and 8, are in large part independent of the rest of the book. Each can be
read independently with little difficulty.

This book uses branches of mathematics that the typical reader with an engineering
education will not know. Therefore these topics are developed in Chapters 2 and 9, and
all theorems are rigorously proved. I believe that if the subject is to continue to mature
and stand on its own, the necessary mathematics must be a part of such a book; appeal
to a distant authority will not do. Engineers cannot confidently advance through the
subject if they are frequently asked to accept an assertion or to visit their mathematics
library.

Acknowledgments

My major debt in writing this book is to Shmuel Winograd. Without his many con-
tributions to the subject, the book would be shapeless and much shorter. He was also
generous with his time in clarifying many points to me, and in reviewing early drafts
of the original book. The papers of Winograd and also the book of Nussbaumer were
a source for much of the material discussed in this book.

The original version of this book could not have reached maturity without being
tested, critiqued, and rewritten repeatedly. I remain indebted to Professor B. W.
Dickinson, Professor Toby Berger, Professor C. S. Burrus, Professor J. Gibson, Pro-
fessor J. G. Proakis, Professor T. W. Parks, Dr B. Rice, Professor Y. Sugiyama,
Dr W. Vanderkulk, and Professor G. Verghese for their gracious criticisms of the
original 1985 manuscript. That book could not have been written without the support
that was given by the International Business Machines Corporation. I am deeply grate-
ful to IBM for this support and also to Cornell University for giving me the opportunity
to teach several times from the preliminary manuscript of the earlier book. The revised
book was written in the wonderful collaborative environment of the Department of
Electrical and Computer Engineering and the Coordinated Science Laboratory of the
University of Illinois. The quality of the book has much to with the composition skills
of Mrs Francie Bridges and the editing skills of Mrs Helen Metzinger. And, as always,
Barbara made it possible.

xiii

1 Introduction

Algorithms for computation are found everywhere, and efficient versions of these
algorithms are highly valued by those who use them. We are mainly concerned with
certain types of computation, primarily those related to signal processing, including
the computations found in digital filters, discrete Fourier transforms, correlations, and
spectral analysis. Our purpose is to present the advanced techniques for fast digital
implementation of these computations. We are not concerned with the function of a
digital filter or with how it should be designed to perform a certain task; our concern is
only with the computational organization of its implementation. Nor are we concerned
with why one should want to compute, for example, a discrete Fourier transform;
our concern is only with how it can be computed efficiently. Surprisingly, there is
an extensive body of theory dealing with this specialized topic – the topic of fast
algorithms.

1.1 Introduction to fast algorithms

An algorithm, like most other engineering devices, can be described either by an
input/output relationship or by a detailed explanation of its internal construction. When
one applies the techniques of signal processing to a new problem one is concerned only
with the input/output aspects of the algorithm. Given a signal, or a data record of some
kind, one is concerned with what should be done to this data, that is, with what the
output of the algorithm should be when such and such a data record is the input. Perhaps
the output is a filtered version of the input, or the output is the Fourier transform of the
input. The relationship between the input and the output of a computational task can
be expressed mathematically without prescribing in detail all of the steps by which the
calculation is to be performed.

Devising such an algorithm for an information processing problem, from this
input/output point of view, may be a formidable and sophisticated task, but this is
not our concern in this book. We will assume that we are given a specification of a
relationship between input and output, described in terms of filters, Fourier transforms,
interpolations, decimations, correlations, modulations, histograms, matrix operations,

1

2 Introduction

and so forth. All of these can be expressed with mathematical formulas and so can be
computed just as written. This will be referred to as the obvious implementation.

One may be content with the obvious implementation, and it might not be apparent
that the obvious implementation need not be the most efficient. But once people began
to compute such things, other people began to look for more efficient ways to compute
them. This is the story we aim to tell, the story of fast algorithms for signal processing.
By a fast algorithm, we mean a detailed description of a computational procedure
that is not the obvious way to compute the required output from the input. A fast
algorithm usually gives up a conceptually clear computation in favor of one that is
computationally efficient.

Suppose we need to compute a number A, given by

A = ac + ad + bc + bd.

As written, this requires four multiplications and three additions to compute. If we
need to compute A many times with different sets of data, we will quickly notice that

A = (a + b)(c + d)

is an equivalent form that requires only one multiplication and two additions, and so
it is to be preferred. This simple example is quite obvious, but really illustrates most
of what we shall talk about. Everything we do can be thought of in terms of the clever
insertion of parentheses in a computational problem. But in a big problem, the fast
algorithms cannot be found by inspection. It will require a considerable amount of
theory to find them.

A nontrivial yet simple example of a fast algorithm is an algorithm for complex
multiplication. The complex product1

(e + jf) = (a + jb) · (c + jd)

can be defined in terms of real multiplications and real additions as

e = ac − bd

f = ad + bc.

We see that these formulas require four real multiplications and two real additions.
A more efficient “algorithm” is

e = (a − b)d + a(c − d)

f = (a − b)d + b(c + d)

whenever multiplication is harder than addition. This form requires three real multi-
plications and five real additions. If c and d are constants for a series of complex

1 The letter j is used for
√−1 and j is used as an index throughout the book. This should not cause any confusion.

3 1.1 Introduction to fast algorithms

multiplications, then the terms c + d and c − d are constants also and can be computed
off-line. It then requires three real multiplications and three real additions to do one
complex multiplication.

We have traded one multiplication for an addition. This can be a worthwhile saving,
but only if the signal processor is designed to take advantage of it. Most signal pro-
cessors, however, have been designed with a prejudice for a complex multiplication
that uses four multiplications. Then the advantage of the improved algorithm has no
value. The storage and movement of data between additions and multiplications are
also important considerations in determining the speed of a computation and of some
importance in determining power dissipation.

We can dwell further on this example as a foretaste of things to come. The complex
multiplication above can be rewritten as a matrix product[

e

f

]
=

[
c −d

d c

][
a

b

]
,

where the vector

[
a

b

]
represents the complex number a + jb, the matrix

[
c −d

d c

]

represents the complex number c + jd, and the vector

[
e

f

]
represents the complex

number e + jf . The matrix–vector product is an unconventional way to represent
complex multiplication. The alternative computational algorithm can be written in
matrix form as[

e

f

]
=

[
1 0 1
0 1 1

](c − d) 0 0
0 (c + d) 0
0 0 d

1 0

0 1
1 −1

[
a

b

]
.

The algorithm, then, can be thought of as nothing more than the unusual matrix
factorization:[

c −d

d c

]
=

[
1 0 1
0 1 1

](c − d) 0 0
0 (c + d) 0
0 0 d

1 0

0 1
1 −1

 .

We can abbreviate the algorithm as[
e

f

]
= B D A

[
a

b

]
,

where A is a three by two matrix that we call a matrix of preadditions; D is a three by
three diagonal matrix that is responsible for all of the general multiplications; and B is
a two by three matrix that we call a matrix of postadditions.

4 Introduction

We shall find that many fast computational procedures for convolution and for the
discrete Fourier transform can be put into this factored form of a diagonal matrix in
the center, and on each side of which is a matrix whose elements are 1, 0, and −1.
Multiplication by a matrix whose elements are 0 and ±1 requires only additions and
subtractions. Fast algorithms in this form will have the structure of a batch of additions,
followed by a batch of multiplications, followed by another batch of additions.

The final example of this introductory section is a fast algorithm for multiplying two
arbitrary matrices. Let

C = AB,

where A and B are any � by n, and n by m, matrices, respectively. The standard method
for computing the matrix C is

cij =
n∑

k=1

aikbkj

i = 1, . . . , �

j = 1, . . . , m,

which, as it is written, requires m�n multiplications and (n − 1)�m additions. We shall
give an algorithm that reduces the number of multiplications by almost a factor of
two but increases the number of additions. The total number of operations increases
slightly.

We use the identity

a1b1 + a2b2 = (a1 + b2)(a2 + b1) − a1a2 − b1b2

on the elements of A and B. Suppose that n is even (otherwise append a column of
zeros to A and a row of zeros to B, which does not change the product C). Apply the
above identity to pairs of columns of A and pairs of rows of B to write

cij =
n/2∑
i=1

(ai,2k−1b2k−1,j + ai,2kb2k,j)

=
n/2∑
k=1

(ai,2k−1 + b2k,j)(ai,2k + b2k−1,j) −
n/2∑
k=1

ai,2k−1ai,2k −
n/2∑
k=1

b2k−1,j b2k,j

for i = 1, . . . , � and j = 1, . . . , m.
This results in computational savings because the second term depends only on

i and need not be recomputed for each j , and the third term depends only on j

and need not be recomputed for each i. The total number of multiplications used
to compute matrix C is 1

2n�m + 1
2n(� + m), and the total number of additions is

3
2n�m + �m + (

1
2n − 1

)
(� + m). For large matrices the number of multiplications is

about half the direct method.
This last example may be a good place for a word of caution about numerical accu-

racy. Although the number of multiplications is reduced, this algorithm is more sensitive
to roundoff error unless it is used with care. By proper scaling of intermediate steps,

5 1.1 Introduction to fast algorithms

Algorithm Multiplications/pixel* Additions/pixel

Direct computation of
discrete Fourier transform

1000 x 1000

8000 4000

Basic Cooley–Tukey FFT
1024 x 1024

40 60

Hybrid Cooley–
Tukey/Winograd FFT

1000 x 1000

40 72.8

Winograd FFT
1008 x 1008

6.2 91.6

Nussbaumer–Quandalle FFT
1008 x 1008

4.1 79

*1 pixel – 1 output grid point

Figure 1.1 Relative performance of some two-dimensional Fourier transform algorithms

however, one can obtain computational accuracy that is nearly the same as the direct
method. Consideration of computational noise is always a practical factor in judging
a fast algorithm, although we shall usually ignore it. Sometimes when the number of
operations is reduced, the computational noise is reduced because fewer computations
mean that there are fewer sources of noise. In other algorithms, though there are fewer
sources of computational noise, the result of the computation may be more sensitive
to one or more of them, and so the computational noise in the result may be increased.

Most of this book will be spent studying only a few problems: the problems of
linear convolution, cyclic convolution, multidimensional linear convolution, multi-
dimensional cyclic convolution, the discrete Fourier transform, the multidimensional
discrete Fourier transforms, the solution of Toeplitz systems, and finding paths in
a trellis. Some of the techniques we shall study deserve to be more widely used –
multidimensional Fourier transform algorithms can be especially good if one takes
the pains to understand the most efficient ones. For example, Figure 1.1 compares
some methods of computing a two-dimensional Fourier transform. The improvements
in performance come more slowly toward the end of the list. It may not seem very
important to reduce the number of multiplications per output cell from six to four after
the reduction has already gone from forty to six, but this can be a shortsighted view. It
is an additional savings and may be well worth the design time in a large application.
In power-limited applications, a potential of a significant reduction in power may itself
justify the effort.

There is another important lesson contained in Figure 1.1. An entry, labeled the
hybrid Cooley–Tukey/Winograd FFT, can be designed to compute a 1000 by 1000-
point two-dimensional Fourier transform with forty real multiplications per grid point.
This example may help to dispel an unfortunate myth that the discrete Fourier transform
is practical only if the blocklength is a power of two. In fact, there is no need to insist

6 Introduction

that one should use only a power of two blocklength; good algorithms are available for
many values of the blocklength.

1.2 Applications of fast algorithms

Very large scale integrated circuits, or chips, are now widely available. A modern chip
can easily contain many millions of logic gates and memory cells, and it is not surprising
that the theory of algorithms is looked to as a way to efficiently organize these gates
on special-purpose chips. Sometimes a considerable performance improvement, either
in speed or in power dissipation, can be realized by the choice of algorithm. Of course,
a performance improvement in speed can also be realized by increasing the size or the
speed of the chip. These latter approaches are more widely understood and easier to
design, but they are not the only way to reduce power or chip size.

For example, suppose one devises an algorithm for a Fourier transform that has
only one-fifth of the computation of another Fourier transform algorithm. By using the
new algorithm, one might realize a performance improvement that can be as real as
if one increased the speed or the size of the chip by a factor of five. To realize this
improvement, however, the chip designer must reflect the architecture of the algorithm
in the architecture of the chip. A naive design can dissipate the advantages by increasing
the complexity of indexing, for example, or of data flow between computational steps.
An understanding of the fast algorithms described in this book will be required to
obtain the best system designs in the era of very large-scale integrated circuits.

At first glance, it might appear that the two kinds of development – fast circuits and
fast algorithms – are in competition. If one can build the chip big enough or fast enough,
then it seemingly does not matter if one uses inefficient algorithms. No doubt this view
is sound in some cases, but in other cases one can also make exactly the opposite
argument. Large digital signal processors often create a need for fast algorithms. This
is because one begins to deal with signal-processing problems that are much larger
than before. Whether competing algorithms for some problem of interest have running
times proportional to n2 or n3 may be of minor importance when n equals three or four;
but when n equals 1000, it becomes critical.

The fast algorithms we shall develop are concerned with digital signal processing,
and the applications of the algorithms are as broad as the application of digital signal
processing itself. Now that it is practical to build a sophisticated algorithm for signal
processing onto a chip, we would like to be able to choose such an algorithm to
maximize the performance of the chip. But to do this for a large chip involves a
considerable amount of theory. In its totality the theory goes well beyond the material
that will be discussed in this book. Advanced topics in logic design and computer
architecture, such as parallelism and pipelining, must also be studied before one can
determine all aspects of practical complexity.

7 1.2 Applications of fast algorithms

We usually measure the performance of an algorithm by the number of multipli-
cations and additions it uses. These performance measures are about as deep as one
can go at the level of the computational algorithm. At a lower level, we would want to
know the area of the chip or the number of gates on it and the time required to complete
a computation. Often one judges a circuit by the area–time product. We will not give
performance measures at this level because this is beyond the province of the algorithm
designer, and entering the province of the chip architecture.

The significance of the topics in this book cannot be appreciated without under-
standing the massive needs of some processing applications of the near future and
the power limitations of other embedded applications now in widespread use. At the
present time, applications are easy to foresee that require orders of magnitude more
signal processing than current technology can satisfy.

Sonar systems have now become almost completely digital. Though they process
only a few kilohertz of signal bandwidth, these systems can use hundreds of millions
of multiplications per second and beyond, and even more additions. Extensive racks
of digital equipment may be needed for such systems, and yet reasons for even more
processing in sonar systems are routinely conceived.

Radar systems also have become digital, but many of the front-end functions are
still done by conventional microwave or analog circuitry. In principle, radar and
sonar are quite similar, but radar has more than one thousand times as much band-
width. Thus, one can see the enormous potential for digital signal processing in radar
systems.

Seismic processing provides the principal method for exploration deep below the
Earth’s surface. This is an important method of searching for petroleum reserves. Many
computers are already busy processing the large stacks of seismic data, but there is no
end to the seismic computations remaining to be done.

Computerized tomography is now widely used to synthetically form images of
internal organs of the human body by using X-ray data from multiple projections.
Improved algorithms are under study that will reduce considerably the X-ray dosage,
or provide motion or function to the imagery, but the signal-processing requirements
will be very demanding. Other forms of medical imaging continue to advance, such as
those using ultrasonic data, nuclear magnetic resonance data, or particle decay data.
These also use massive amounts of digital signal processing.

It is also possible, in principle, to enhance poor-quality photographs. Pictures blurred
by camera motion or out-of-focus pictures can be corrected by signal processing. How-
ever, to do this digitally takes large amounts of signal-processing computations. Satellite
photographs can be processed digitally to merge several images or enhance features, or
combine information received on different wavelengths, or create stereoscopic images
synthetically. For example, for meteorological research, one can create a moving three-
dimensional image of the cloud patterns moving above the Earth’s surface based on a
sequence of satellite photographs from several aspects. The nondestructive testing of

8 Introduction

manufactured articles, such as castings, is possible by means of computer-generated
internal images based on the response to induced acoustic vibrations.

Other applications for the fast algorithms of signal processing could be given, but
these should suffice to prove the point that a need exists and continues to grow for fast
signal-processing algorithms.

All of these applications are characterized by computations that are massive but are
fairly straightforward and have an orderly structure. In addition, in such applications,
once a hardware module or a software subroutine is designed to do a certain task, it is
permanently dedicated to this task. One is willing to make a substantial design effort
because the design cost is not what matters; the operational performance, both speed
and power dissipation, is far more important.

At the same time, there are embedded applications for which power reduction is
of critical importance. Wireless handheld and desktop devices and untethered remote
sensors must operate from batteries or locally generated power. Chips for these devices
may be produced in the millions. Nonrecurring design time to reduce the computations
needed by the required algorithm is one way to reduce the power requirements.

1.3 Number systems for computation

Throughout the book, when we speak of the complexity of an algorithm, we will
cite the number of multiplications and additions, as if multiplications and additions
were fundamental units for measuring complexity. Sometimes one may want to go a
little deeper than this and look at how the multiplier is built so that the number of bit
operations can be counted. The structure of a multiplier or adder critically depends
on how the data is represented. Though we will not study such issues of number
representation, a few words are warranted here in the introduction.

To take an extreme example, if a computation involves mostly multiplication, the
complexity may be less if the data is provided in the form of logarithms. The additions
will now be more complicated; but if there are not too many additions, a savings will
result. This is rarely the case, so we will generally assume that the input data is given
in its natural form either as real numbers, as complex numbers, or as integers.

There are even finer points to consider in practical digital signal processors. A
number is represented by a binary pattern with a finite number of bits; both floating-
point numbers and fixed-point numbers are in use. Fixed-point arithmetic suffices for
most signal-processing tasks, and so it should be chosen for reasons of economy. This
point cannot be stressed too strongly. There is always a temptation to sweep away many
design concerns by using only floating-point arithmetic. But if a chip or an algorithm is
to be dedicated to a single application for its lifetime – for example, a digital-processing
chip to be used in a digital radio or television for the consumer market – it is not the
design cost that matters; it is the performance of the equipment, the power dissapation,

9 1.4 Digital signal processing

and the recurring manufacturing costs that matter. Money spent on features to ease the
designer’s work cannot be spent to increase performance.

A nonnegative integer j smaller than qm has an m-symbol fixed-point radix-q
representation, given by

j = j0 + j1q + j2q
2 + · · · + jm−1q

m−1, 0 ≤ ji < q.

The integer j is represented by the m-tuple of coefficients (j0, j1, . . . , jm−1). Several
methods are used to handle the sign of a fixed-point number. These are sign-and-
magnitude numbers, q-complement numbers, and (q − 1)-complement numbers. The
same techniques can be used for numbers expressed in any base. In a binary notation, q
equals two, and the complement representations are called two’s-complement numbers
and one’s-complement numbers.

The sign-and-magnitude convention is easiest to understand. The magnitude of the
number is augmented by a special digit called the sign digit; it is zero – indicating
a plus sign – for positive numbers and it is one – indicating a minus sign – for
negative numbers. The sign digit is treated differently from the magnitude digits during
addition and multiplication, in the customary way. The complement notations are a
little harder to understand, but often are preferred because the hardware is simpler; an
adder can simply add two numbers, treating the sign digit the same as the magnitude
digits. The sign-and-magnitude convention and the (q − 1)-complement convention
each leads to the existence of both a positive and a negative zero. These are equal
in meaning, but have separate representations. The two’s-complement convention in
binary arithmetic and the ten’s-complement convention in decimal arithmetic have only
a single representation for zero.

The (q − 1)-complement notation represents the negative of a number by replacing
digit j , including the sign digit, by q − 1 − j . For example, in nine’s-complement
notation, the negative of the decimal number +62, which is stored as 062, is 937; and
the negative of the one’s-complement binary number +011, which is stored as 0011,
is 1100. The (q − 1)-complement representation has the feature that one can multiply
any number by minus one simply by taking the (q − 1)-complement of each digit.

The q-complement notation represents the negative of a number by adding one to
the (q − 1)-complement notation. The negative of zero is zero. In this convention, the
negative of the decimal number +62, which is stored as 062, is 938; and the negative
of the binary number +011, which is stored as 0011, is 1101.

1.4 Digital signal processing

The most important task of digital signal processing is the task of filtering a long
sequence of numbers, and the most important device is the digital filter. Normally,
the data sequence has an unspecified length and is so long as to appear infinite to the

10 Introduction

Figure 1.2 Circuit elements

Figure 1.3 A shift register

g0 g1 g2

…,s2, s1, s0

,d2, d1, d0

Figure 1.4 A finite-impulse-response filter

processing. The numbers in the sequence are usually either real numbers or complex
numbers, but other kinds of number sometimes occur. A digital filter is a device that
produces a new sequence of numbers, called the output sequence, from the given
sequence, now called the input sequence. Filters in common use can be constructed out
of those circuit elements, illustrated in Figure 1.2, called shift-register stages, adders,
scalers, and multipliers. A shift-register stage holds a single number, which it displays
on its output line. At discrete time instants called clock times, the shift-register stage
replaces its content with the number appearing on the input line, discarding its previous
content. A shift register, illustrated in Figure 1.3, is a number of shift-register stages
connected in a chain.

The most important kinds of digital filter that we shall study are those known as
finite-impulse-response (FIR) filters and autoregressive filters. A FIR filter is simply
a tapped shift register, illustrated in Figure 1.4, in which the output of each stage is
multiplied by a fixed constant and all outputs are added together to provide the filter
output. The output of the FIR filter is a linear convolution of the input sequence and the
sequence describing the filter tap weights. An autoregressive filter is also a tapped shift
register, now with the output of the filter fed back to the input, as shown in Figure 1.5.

11 1.4 Digital signal processing

1

L

i j ji
i

p h p a

1

j

Figure 1.5 An autoregressive filter

Linear convolution is perhaps the most common computational problem found in
signal processing, and we shall spend a great deal of time studying how to implement
it efficiently. We shall spend even more time studying ways to compute a cyclic
convolution. This may seem a little strange because a cyclic convolution does not often
arise naturally in applications. We study it because there are so many good ways to
compute a cyclic convolution. Therefore we will develop fast methods of computing
long linear convolutions by patching together many cyclic convolutions.

Given the two sequences called the data sequence

d = {di | i = 0, . . . , N − 1}
and the filter sequence

g = {gi | i = 0, . . . , L − 1},
where N is the data blocklength and L is the filter blocklength, the linear convolution
is a new sequence called the signal sequence or the output sequence

s = {si | i = 0, . . . , L + N − 2},
given by the equation

si =
N−1∑
k=0

gi−kdk, i = 0, . . . , L + N − 2,

and L + N − 1 is the output blocklength. The convolution is written with the under-
standing that gi−k = 0 if i − k is less than zero. Because each component of d mul-
tiplies, in turn, each component of g, there are NL multiplications in the obvious
implementation of the convolution.

There is a very large body of theory dealing with the design of a FIR filter in the
sense of choosing the length L and the tap weights gi to suit a given application. We are
not concerned with this aspect of filter design; our concern is only with fast algorithms
for computing the filter output s from the filter g and the input sequence d.

12 Introduction

A concept closely related to the convolution is the correlation, given by

ri =
N−1∑
k=0

gi+kdk, i = 0, . . . , L + N − 2,

where gi+k = 0 for i + k ≥ L. The correlation can be computed as a convolution simply
by reading one of the two sequences backwards. All of the methods for computing a
linear convolution are easily changed into methods for computing the correlation.

We can also express the convolution in the notation of polynomials. Let

d(x) =
N−1∑
i=0

dix
i,

g(x) =
L−1∑
i=0

gix
i .

Then

s(x) = g(x)d(x),

where

s(x) =
L+N−2∑

i=0

six
i .

This can be seen by examining the coefficients of the product g(x)d(x). Of course, we
can also write

s(x) = d(x)g(x),

which makes it clear that d and g play symmetric roles in the convolution. Therefore
we can also write the linear convolution in the equivalent form

si =
L−1∑
k=0

gkdi−k.

Another form of convolution is the cyclic convolution, which is closely related to
the linear convolution. Given the two sequences di for i = 0, . . . , n − 1 and gi for
i = 0, . . . , n − 1, each of blocklength n, a new sequence s ′

i for i = 0, . . . , n − 1 of
blocklength n now is given by the cyclic convolution

s ′
i =

n−1∑
k=0

g((i−k))dk, i = 0, . . . , n − 1,

where the double parentheses denote modulo n arithmetic on the indices (see
Section 2.6). That is,

((i − k)) = (i − k) modulo n

13 1.4 Digital signal processing

and

0 ≤ ((i − k)) < n.

Notice that in the cyclic convolution, for every i, every dk finds itself multiplied by a
meaningful value of g((i−k)). This is different from the linear convolution where, for
some i, dk will be multiplied by a gi−k whose index is outside the range of definition
of g, and so is zero.

We can relate the cyclic convolution outputs to the linear convolution as follows. By
the definition of the cyclic convolution

s ′
i =

n−1∑
k=0

g((i−k))dk, i = 0, . . . , n = 1.

We can recognize two kinds of term in the sum: those with i − k ≥ 0 and those with
i − k < 0. Those occur when k ≤ i and k > i, respectively. Hence

s ′
i =

i∑
k=0

gi−kdk +
n−1∑

k=i+1

gn+i−kdk.

But now, in the first sum, gi−k = 0 if k > i; and in the second sum, gn+i−k = 0 if k < i.
Hence we can change the limits of the summations as follows:

s ′
i =

n−1∑
k=0

gi−kdk +
n−1∑
k=0

gn+i−kdk, i = 0, . . . , n − 1

= si + sn+i , i = 0, . . . , n − 1,

which relates the cyclic convolution outputs on the left to the linear convolution outputs
on the right. We say that coefficients of s with index larger than n − 1 are “folded”
back into terms with indices smaller than n.

The linear convolution can be computed as a cyclic convolution if the second term
above equals zero. This is so if gn+i−kdk equals zero for all i and k. To ensure this, one
can choose n, the blocklength of the cyclic convolution, so that n is larger than L +
N − 2 (appending zeros to g and d so their blocklength is n). Then one can compute
the linear convolution by using an algorithm for computing a cyclic convolution and
still get the right answer.

The cyclic convolution can also be expressed as a polynomial product. Let

d(x) =
n−1∑
i=0

dix
i,

g(x) =
n−1∑
i=0

gix
i.

14 Introduction

Repeat input

1 1 0 1 1 0, , , , , , ,n nd d d d d d

0g 1g 1ng

011

Select middle

cyclic
convolution

, , ,n

n points for

xxxxssxxx s

Figure 1.6 Using a FIR filter to form cyclic convolutions

Whereas the linear convolution is represented by

s(x) = g(x)d(x),

the cyclic convolution is computed by folding back the high-order coefficients of s(x)
by writing

s ′(x) = g(x)d(x) (mod xn − 1).

By the equality modulo xn − 1, we mean that s ′(x) is the remainder when s(x) is
divided by xn − 1. To reduce g(x)d(x) modulo xn − 1, it suffices to replace xn by one,
or to replace xn+i by xi wherever a term xn+i with i positive appears. This has the
effect of forming the coefficients

s ′
i = si + sn+i , i = 0, . . . , n − 1

and so gives the coefficients of the cyclic convolution.
From the two forms

s ′(x) = d(x)g(x) (mod xn − 1)

= g(x)d(x) (mod xn − 1),

it is clear that the roles of d and g are also symmetric in the cyclic convolution.
Therefore we have the two expressions for the cyclic convolution

s ′
i =

n−1∑
k=0

g((i−k))dk, i = 0, . . . , n − 1

=
n−1∑
k=0

d((i−k))gk, i = 0, . . . , n − 1.

Figure 1.6 shows a FIR filter that is made to compute a cyclic convolution. To do this,
the sequence d is repeated. The FIR filter then produces 3n − 1 outputs, and within

15 1.4 Digital signal processing

those 3n − 1 outputs is a consecutive sequence of n outputs that is equal to the cyclic
convolution.

A more important technique is to use a cyclic convolution to compute a long linear
convolution. Fast algorithms for long linear convolutions break the input datastream into
short sections of perhaps a few hundred samples. One section at a time is processed –
often as a cyclic convolution – to produce a section of the output datastream. Techniques
for doing this are called overlap techniques, referring to the fact that nonoverlapping
sections of the input datastream cause overlapping sections of the output datastream,
while nonoverlapping sections of the output datastream are caused by overlapping
sections of the input datastream. Overlap techniques are studied in detail in Chapter 5.

The operation of an autoregressive filter, as was shown in Figure 1.5, also can
be described in terms of polynomial arithmetic. Whereas the finite-impulse-response
filter computes a polynomial product, an autoregressive filter computes a polynomial
division. Specifically, when a finite sequence is filtered by an autoregressive filter (with
zero initial conditions), the output sequence corresponds to the quotient polynomial
under polynomial division by the polynomial whose coefficients are the tap weights,
and at the instant when the input terminates, the register contains the corresponding
remainder polynomial. In particular, recall that the output pj of the autoregressive
filter, by appropriate choice of the signs of the tap weights, hi , is given by

pj = −
L∑

j=1

hipj−i + aj ,

where aj is the j th input symbol and hi is the weight of the ith tap of the filter. Define
the polynomials

a(x) =
n∑

j=0

ajx
j

and

h(x) =
L∑

j=0

hjx
j ,

and write

a(x) = Q(x)h(x) + r(x),

where Q(x) and r(x) are the quotient polynomial and the remainder polynomial under
division of polynomials. We conclude that the filter output pj is equal to the j th
coefficient of the quotient polynomial, so p(x) = Q(x). The coefficients of the remain-
der polynomial r(x) will be left in the stages of the autoregressive filter after the n

coefficients aj are shifted in.
Another computation that is important in signal processing is that of

the discrete Fourier transform (hereafter called simply the Fourier transform). Let

16 Introduction

v = [vi | i = 0, . . . , n − 1] be a vector of complex numbers or a vector of real num-
bers. The Fourier transform of v is another vector V of length n of complex numbers,
given by

Vk =
n−1∑
i=0

ωikvi, k = 0, . . . , n − 1,

where ω = e−j2π/n and j = √−1.
Sometimes we write this computation as a matrix–vector product

V = Tv.

When written out, this becomes
V0

V1

V2
...

Vn−1

 =

1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
1 ωn−1 ω2(n−1) · · · ω

v0

v1

v2
...

vn−1

 .

If V is the Fourier transform of v, then v can be recovered from V by the inverse
Fourier transform, which is given by

vi = 1

n

n−1∑
k=0

ω−ikVk.

The proof is as follows:

n−1∑
k=0

ω−ikVk =
n−1∑
k=0

ω−ik

n−1∑
�=0

ω�kv�

=
n−1∑
�=0

v�

[
n−1∑
k=0

ωk(�−i)

]
.

But the summation on k is clearly equal to n if � is equal to i, while if � is not equal to
i the summation becomes

n−1∑
k=0

(ω(�−i))k = 1 − ω(�−i)n

1 − ω(�−i)
.

The right side equals zero because ωn = 1 and the denominator is not zero. Hence

n−1∑
k=0

ω−ikVk =
n−1∑
�=0

v�(nδi�) = nvi,

where δi� = 1 if i = �, and otherwise δi� = 0.

17 1.5 History of fast signal-processing algorithms

There is an important link between the Fourier transform and the cyclic convolution.
This link is known as the convolution theorem and goes as follows. The vector e is
given by the cyclic convolution of the vectors f and g:

ei =
n−1∑
�=0

f((i−�))g�, i = 0, . . . , n − 1,

if and only if the Fourier transforms satisfy

Ek = FkGk, k = 0, . . . , n − 1.

This holds because

ei =
n−1∑
�=0

f((i−�))

[
1

n

n−1∑
k=0

ω−k�Gk

]

= 1

n

n−1∑
k=0

ω−ikGk

[
n−1∑
�=0

ω(i−�)kf((i−�))

]
= 1

n

n−1∑
k=0

ω−ikGkFk.

Because e is the inverse Fourier transform of E, we conclude that Ek = GkFk .
There are also two-dimensional Fourier transforms, which are useful for processing

two-dimensional arrays of data, and multidimensional Fourier transforms, which are
useful for processing multidimensional arrays of data. The two-dimensional Fourier
transform on an n′ by n′′ array is

Vk′k′′ =
n′−1∑
i ′=0

n′′−1∑
i ′′=0

ωi ′k′
µi ′′k′′

vi ′i ′′,
k′ = 0, . . . , n′ − 1,

k′′ = 0, . . . , n′′ − 1,

where ω = e−j2π/n′
and µ = e−j2π/n′′

. Chapter 12 is devoted to the two-dimensional
Fourier transforms.

1.5 History of fast signal-processing algorithms

The telling of the history of fast signal-processing algorithms begins with the publi-
cation in 1965 of the fast Fourier transform (FFT) algorithm of Cooley and Tukey,
although the history itself starts much earlier, indeed, with Gauss. The Cooley–Tukey
paper appeared at just the right time and served as a catalyst to bring the techniques of
signal processing into a new arrangement. Stockham (1966) soon noted that the FFT
led to a good way to compute convolutions. Digital signal processing technology could
immediately exploit the FFT, and so there were many applications, and the Cooley–
Tukey paper was widely studied. A few years later, it was noted that there was an earlier
FFT algorithm, quite different from the Cooley–Tukey FFT, due to Good (1960) and
Thomas (1963). The Good–Thomas FFT algorithm had failed to attract much attention

18 Introduction

at the time it was published. Later, a more efficient though more complicated algo-
rithm was published by Winograd (1976, 1978), who also provided a much deeper
understanding of what it means to compute the Fourier transform.

The radix-two Cooley–Tukey FFT is especially elegant and efficient, and so is very
popular. This has led some to the belief that the discrete Fourier transform is practical
only if the blocklength is a power of two. This belief tends to result in the FFT algorithm
dictating the design parameters of an application rather than the application dictating
the choice of FFT algorithm. In fact, there are good FFT algorithms for just about any
blocklength.

The Cooley–Tukey FFT, in various guises, has appeared independently in other
contexts. Essentially the same idea is known as the Butler matrix (1961) when it is
used as a method of wiring a multibeam phased-array radar antenna.

Fast convolution algorithms of small blocklength were first constructed by Agar-
wal and Cooley (1977) using clever insights but without a general technique. Wino-
grad (1978) gave a general method of construction and also proved important theorems
concerning the nonexistence of better convolution algorithms in the real field or the
complex field. Agarwal and Cooley (1977) also found a method to break long con-
volutions into short convolutions using the Chinese remainder theorem. Their method
works well when combined with the Winograd algorithm for short convolutions.

The earliest idea of modern signal processing that we label as a fast algorithm came
much earlier than the FFT. In 1947 the Levinson algorithm was published as an efficient
method of solving certain Toeplitz systems of equations. Despite its great importance
in the processing of seismic signals, the literature of the Levinson algorithm remained
disjoint from the literature of the FFT for many years. Generally, the early literature
does not distinguish carefully between the Levinson algorithm as a computational pro-
cedure and the filtering problem to which the algorithm might be applied. Similarly,
the literature does not always distinguish carefully between the FFT as a computa-
tional procedure and the discrete Fourier transform to which the FFT is applied, nor
between the Viterbi algorithm as a computational procedure and the minimum-distance
pathfinding problem to which the Viterbi algorithm is applied.

Problems for Chapter 1

1.1 Construct an algorithm for the two-point real cyclic convolution

(s1x + s0) = (g1x + g0)(d1x + d0) (mod x2 − 1)

that uses two multiplications and four additions. Computations involving only
g0 and g1 need not be counted under the assumption that g0 and g1 are constants,
and these computations need be done only once off-line.

19 Problems

1.2 Using the result of Problem 1.1, construct an algorithm for the two-point complex
cyclic convolution that uses only six real multiplications.

1.3 Construct an algorithm for the three-point Fourier transform

Vk =
2∑

i=0

ωikvi, k = 0, 1, 2

that uses two real multiplications.
1.4 Prove that there does not exist an algorithm for multiplying two complex num-

bers that uses only two real multiplications. (A throughful “proof” will struggle
with the meaning of the term “multiplication.”)

1.5 a Suppose you are given a device that computes the linear convolution of
two fifty-point sequences. Describe how to use it to compute the cyclic
convolution of two fifty-point sequences.

b Suppose you are given a device that computes the cyclic convolution of
two fifty-point sequences. Describe how to use it to compute the linear
convolution of two fifty-point sequences.

1.6 Prove that one can compute a correlation as a convolution by writing one of the
sequences backwards, possibly padding a sequence with a string of zeros.

1.7 Show that any algorithm for computing x31 that uses only additions, subtractions,
and multiplications must use at least seven multiplications, but that if division
is allowed, then an algorithm exists that uses a total of six multiplications and
divisions.

1.8 Another algorithm for complex multiplication is given by

e = ac − bd,

f = (a + b)(c + d) − ac − bd.

Express this algorithm in a matrix form similar to that given in the text. What
advantages or disadvantages are there in this algorithm?

1.9 Prove the “translation property” of the Fourier transform. If {vj } ↔ {Vk} is a
Fourier transform pair, then the following are Fourier transform pairs:

{ωivi} ↔ {V((k+1))},
{v((i−1))} ↔ {ωkVk}.

1.10 Prove that the “cyclic correlation” in the real field satisfies the Fourier transform
relationship

GkD
∗
k ↔

n−1∑
k=0

g((i+k))dk.

1.11 Given two real vectors v′ and v′′, show how to recover their individual Fourier
transforms from the Fourier transform of the sum vector v = v′ + jv′′.

20 Introduction

Notes for Chapter 1

A good history of the origins of the fast Fourier transform algorithms is given in a paper
by Cooley, Lewis, and Welch (1967). The basic theory of digital signal processing can
be found in many books, including the books by Oppenheim and Shafer (1975), Rabiner
and Gold (1975), and Proakis and Manolakis (2006).

Algorithms for complex multiplication using three real multiplications became gen-
erally known in the late 1950s, but the origin of these algorithms is a little hazy. The
matrix multiplication algorithm we have given is due to Winograd (1968).

2 Introduction to abstract algebra

Good algorithms are elegant algebraic identities. To construct these algorithms, we
must be familiar with the powerful structures of number theory and of modern algebra.
The structures of the set of integers, of polynomial rings, and of Galois fields will
play an important role in the design of signal-processing algorithms. This chapter
will introduce those mathematical topics of algebra that will be important for later
developments but that are not always known to students of signal processing. We will
first study the mathematical structures of groups, rings, and fields. We shall see that
a discrete Fourier transform can be defined in many fields, though it is most familiar
in the complex field. Next, we will discuss the familiar topics of matrix algebra and
vector spaces. We shall see that these can be defined satisfactorily in any field. Finally,
we will study the integer ring and polynomial rings, with particular attention to the
euclidean algorithm and the Chinese remainder theorem in each ring.

2.1 Groups

A group is a mathematical abstraction of an algebraic structure that appears frequently
in many concrete forms. The abstract idea is introduced because it is easier to study all
mathematical systems with a common structure at once, rather than to study them one
by one.

Definition 2.1.1 A group G is a set together with an operation (denoted by ∗) satisfying
four properties.

1 (Closure) For every a and b in the set, c = a ∗ b is in the set.
2 (Associativity) For every a, b, and c in the set,

a ∗ (b ∗ c) = (a ∗ b) ∗ c.

3 (Identity) There is an element e called the identity element that satisfies

a ∗ e = e ∗ a = a

for every a in the set G.

21

22 Introduction to abstract algebra

1 2 3 4

1 2 3 4

1 1 2 3 4

2 2 3 4 1

3 3 4 1 2

4 4 1 2 3

e g g g g
e e g g g g

g g g g e
g g g e g
g g e g g
g e g g g

0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

g
g
g
g

Figure 2.1 Example of a finite group

4 (Inverses) If a is in the set, then there is some element b in the set called an inverse
of a such that

a ∗ b = b ∗ a = e.

A group that has a finite number of elements is called a finite group. The number of
elements in a finite group G is called the order of G. An example of a finite group is
shown in Figure 2.1. The same group is shown twice, but represented by two different
notations. Whenever two groups have the same structure but a different representation,
they are said to be isomorphic.1

Some groups satisfy the property that for all a and b in the group

a ∗ b = b ∗ a.

This is called the commutative property. Groups with this additional property are
called commutative groups or abelian groups. We shall usually deal with abelian
groups.

In an abelian group, the symbol for the group operation is commonly written + and
is called addition (even though it might not be the usual arithmetic addition). Then the
identity element e is called “zero” and is written 0, and the inverse element of a is
written −a so that

a + (−a) = (−a) + a = 0.

Sometimes the symbol for the group operation is written ∗ and is called multiplication
(even though it might not be the usual arithmetic multiplication). In this case, the
identity element e is called “one” and is written 1, and the inverse element of a is
written a−1 so that

a ∗ a−1 = a−1 ∗ a = 1.

1 In general, any two algebraic systems that have the same structure but are represented differently are called
isomorphic.

23 2.1 Groups

Theorem 2.1.2 In every group, the identity element is unique. Also, the inverse of each
group element is unique, and (a−1)−1 = a.

Proof Let e and e′ be identity elements. Then e = e ∗ e′ = e′. Next, let b and b′ be
inverses for element a; then

b = b ∗ (a ∗ b′) = (b ∗ a) ∗ b′ = b′

so b = b′. Finally, for any a, a−1 ∗ a = a ∗ a−1 = e, so a is an inverse for a−1. But
because inverses are unique, (a−1)−1 = a. �

Many common groups have an infinite number of elements. Examples are the set
of integers, denoted Z = {0, ±1, ±2, ±3, . . .}, under the operation of addition; the set
of positive rationals under the operation of multiplication;2 and the set of two by two,
real-valued matrices under the operation of matrix addition. Many other groups have
only a finite number of elements. Finite groups can be quite intricate.

Whenever the group operation is used to combine the same element with itself two
or more times, an exponential notation can be used. Thus a2 = a ∗ a and

ak = a ∗ a ∗ · · · ∗ a,

where there are k copies of a on the right.
A cyclic group is a finite group in which every element can be written as a power of

some fixed element called a generator of the group. Every cyclic group has the form

G = {a0, a1, a2, . . . , aq−1},
where q is the order of G, a is a generator of G, a0 is the identity element, and the
inverse of ai is aq−i . To actually form a group in this way, it is necessary that aq = a0.
Because, otherwise, if aq = ai with i �= 0, then aq−1 = ai−1, and there are fewer than
q distinct elements, contrary to the definition.

An important cyclic group with q elements is the group denoted by the label Z/〈q〉,
by Zq , or by Z/q Z, and given by

Z/〈q〉 = {0, 1, 2, . . . , q − 1},
and the group operation is modulo q addition. In formal mathematics, Z/〈q〉 would
be called a quotient group because it “divides out” multiples of q from the original
group Z.

For example,

Z/〈6〉 = {0, 1, 2, . . . , 5},
and 3 + 4 = 1.

2 This example is a good place for a word of caution about terminology. In a general abelian group, the group
operation is usually called “addition” but is not necessarily ordinary addition. In this example, it is ordinary
multiplication.

24 Introduction to abstract algebra

The group Z/〈q〉 can be chosen as a standard prototype of a cyclic group with
q elements. There is really only one cyclic group with q elements; all others are
isomorphic copies of it differing in notation but not in structure. Any other cyclic
group G with q elements can be mapped into Z/〈q〉 with the group operation in G

replaced by modulo q addition. Any properties of the structure in G are also true in
Z/〈q〉, and the converse is true as well.

Given two groups G′ and G′′, it is possible to construct a new group G, called the
direct product,3 or, more simply, the product of G′ and G′′, and written G = G′ × G′′.
The elements of G are pairs of elements (a′, a′′), the first from G′ and the second from
G′′. The group operation in the product group G is defined by

(a′, a′′) ∗ (b′, b′′) = (a′ ∗ b′, a′′ ∗ b′′).

In this formula, ∗ is used three times with three meanings. On the left side it is the
group operation in G, and on the right side it is the group operation in G′ or in G′′,
respectively.

For example, for Z2 × Z3, we have the set

Z2 × Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.
A typical entry in the addition table for Z2 × Z3 is

(1, 2) + (0, 2) = (1, 1)

with Z2 addition in the first position and Z3 addition in the second position. Notice
that Z2 × Z3 is itself a cyclic group generated by the element (1, 1). Hence Z2 × Z3 is
isomorphic to Z6. The reason this is so is that two and three have no common integer
factor. In contrast, Z3 × Z3 is not isomorphic to Z9.

Let G be a group and let H be a subset of G. Then H is called a subgroup of G if
H is itself a group with respect to the restriction of ∗ to H . As an example, in the set
of integers (positive, negative, and zero) under addition, the set of even integers is a
subgroup, as is the set of multiples of three.

One way to get a subgroup H of a finite group G is to take any element h from
G and let H be the set of elements obtained by multiplying h by itself an arbitrary
number of times to form the sequence of elements h, h2, h3, h4, The sequence must
eventually repeat because G is a finite group. The first element repeated must be h

itself, and the element in the sequence just before h must be the group identity element
because the construction gives a cyclic group. The set H is called the cyclic subgroup
generated by h. The number q of elements in the subgroup H satisfies hq = 1, and q

is called the order of the element h. The set of elements h, h2, h3, . . . , hq = 1 is called
a cycle in the group G, or the orbit of h.

3 If the group G is an abelian group, the direct product is often called the direct sum, and denoted ⊕. For this
reason, one may also use the notation Z2 ⊕ Z3.

25 2.1 Groups

To prove that a nonempty subset H of G is a subgroup of G, it is necessary only to
check that a ∗ b is in H whenever a and b are in H and that the inverse of each a in H

is also in H . The other properties required of a group will then be inherited from the
group G. If the group is finite, then even the inverse property is satisfied automatically,
as we shall see later in the discussion of cyclic subgroups.

Given a finite group G and a subgroup H , there is an important construction known
as the coset decomposition of G that illustrates certain relationships between H and G.
Let the elements of H be denoted by h1, h2, h3, . . . , and choose h1 to be the identity
element. Construct the array as follows. The first row consists of the elements of H ,
with the identity at the left and every other element of H appearing once. Choose any
element of G not appearing in the first row. Call it g2 and use it as the first element of the
second row. The rest of the elements of the second row are obtained by multiplying each
element in the first row by g2. Then construct a third, fourth, and fifth row similarly,
each time choosing a previously unused group element for the first element in the row.
Continue in this way until, at the completion of a row, all the group elements appear
somewhere in the array. This occurs when there is no unused element remaining. The
process must stop, because G is finite. The final array is

h1 = 1 h2 h3 h4 · · · hn

g2 ∗ h1 = g2 g2 ∗ h2 g2 ∗ h3 g2 ∗ h4 · · · g2 ∗ hn

g3 ∗ h1 = g3 g3 ∗ h2 g3 ∗ h3 g3 ∗ h4 · · · g3 ∗ hn

...
...

...
...

...
...

gm ∗ h1 = gm gm ∗ h2 gm ∗ h3 gm ∗ h4 · · · gm ∗ hn.

The first element on the left of each row is known as a coset leader. Each row in the
array is known as a left coset, or simply as a coset when the group is abelian. If the coset
decomposition is defined instead with the new elements of G multiplied on the right,
the rows are known as right cosets. The coset decomposition is always rectangular
with all rows completed because it is constructed that way. The next theorem says that
every element of G appears exactly once in the final array.

Theorem 2.1.3 Every element of G appears once and only once in a coset decompo-
sition of G.

Proof Every element appears at least once because, otherwise, the construction is not
halted. We now prove that an element cannot appear twice in the same row and then
prove that an element cannot appear in two different rows.

Suppose that two elements in the same row, gi ∗ hj and gi ∗ hk , are equal. Then
multiplying each by g−1

i gives hj = hk . This is a contradiction because each subgroup
element appears only once in the first row.

Suppose that two elements in different rows, gi ∗ hj and gk ∗ h�, are equal with k less
than i. Multiplying on the right by h−1

j gives gi = gk ∗ h� ∗ h−1
j . Then gi is in the kth

26 Introduction to abstract algebra

coset, because h� ∗ h−1
j is in the subgroup H . This contradicts the rule of construction

that coset leaders must be previously unused. Thus the same element cannot appear
twice in the array. �

Corollary 2.1.4 If H is a subgroup of G, then the number of elements in H divides
the number of elements in G. That is,

(Order of H) (Number of cosets of G with respect to H) = (Order of G).

Proof Follows immediately from the rectangular structure of the coset decompo-
sition. �

Theorem 2.1.5 (Lagrange) The order of a finite group is divisible by the order of any
of its elements.

Proof The group contains the cyclic subgroup generated by any element; then
Corollary 2.1.4 proves the theorem. �

Corollary 2.1.6 For any a in a group with q elements, aq = 1.

Proof By Theorem 2.1.5, the order of a divides q, so aq = 1. �

2.2 Rings

The next algebraic structure we will need is that of a ring. A ring is an abstract set that
is an abelian group and also has an additional operation.

Definition 2.2.1 A ring R is a set with two operations defined – the first called addition
(denoted by +) and the second called multiplication (denoted by juxtaposition) – and
the following axioms are satisfied.
1 R is an abelian group under addition.
2 (Closure) For any a, b in R, the product ab is in R.
3 (Associativity)

a(bc) = (ab)c.

4 (Distributivity)

a(b + c) = ab + ac

(b + c)a = ba + ca.

The distributivity property in the definition of a ring links the addition and multi-
plication operations. The addition operation is always required to be commutative in a

27 2.2 Rings

ring, but the multiplication operation need not be commutative. A commutative ring is
one in which multiplication is commutative; that is, ab = ba for all a, b in R.

Some important examples of rings are the ring of integers, denoted Z, and the ring
of integers under modulo q arithmetic, denoted Z/〈q〉. The ring Z/〈q〉 is an example
of a quotient ring because it uses modulo q arithmetic to “divide out” q from Z.
We have already seen the various Z/〈q〉 as examples of groups under addition. Because
there is also a multiplication operation that behaves properly on these sets, they are
also rings. Another example of a ring is the set of all polynomials in x with rational
coefficients. This ring is denoted Q[x]. It is easy to verify that Q[x] has all the
properties required of a ring. Similarly, the set of all polynomials with real coefficients
is a ring, denoted R[x]. The ring Q[x] is a subring of R[x]. The set of all two by
two matrices over the reals is an example of a noncommutative ring, as can be easily
checked.

Several consequences that are well-known properties of familiar rings are implied
by the axioms as can be proved as follows.

Theorem 2.2.2 For any elements a, b in a ring R,
(i) a0 = 0a = 0;

(ii) a(−b) = (−a)b = −(ab).

Proof
(i) a0 = a(0 + 0) = a0 + a0. Hence adding −a0 to both sides gives 0 = a0. The

second half of (i) is proved the same way.
(ii) 0 = a0 = a(b − b) = ab + a(−b). Hence

a(−b) = −(ab).

The second half of (ii) is proved the same way. �

The addition operation in a ring has an identity called “zero.” The multiplication
operation need not have an identity, but if there is an identity, it is unique. A ring that
has an identity under multiplication is called a ring with identity. The identity is called
“one” and is denoted by 1. Then

1a = a1 = a

for all a in R.
Every element in a ring has an inverse under the addition operation. Under the

multiplication operation, there need not be any inverses, but in a ring with identity,
inverses may exist. That is, given an element a, there may exist an element b with
ab = 1. If so, b is called a right inverse for a. Similarly, if there is an element c such
that ca = 1, then c is called a left inverse for a.

28 Introduction to abstract algebra

Theorem 2.2.3 In a ring with identity:
(i) The identity is unique.

(ii) If an element a has both a right inverse b and a left inverse c, then b = c. In this
case the element a is said to have an inverse (denoted a−1). The inverse is unique.

(iii) (a−1)−1 = a.

Proof The proof is similar to that used in Theorem 2.1.2. �

The identity of a ring, if there is one, can be added to itself or subtracted from itself
any number of times to form the doubly infinite sequence

. . . , −(1 + 1 + 1), −(1 + 1), −1, 0, 1, (1 + 1), (1 + 1 + 1),

These elements of the ring are called the integers of the ring and are sometimes denoted
more simply as 0, ±1, ±2, ±3, ±4, There may be a finite number or an infinite
number of integers. The number of integers in a ring with identity, if this is finite, is
called the characteristic of the ring. If the characteristic of a ring is not finite then, by
definition, the ring has characteristic zero. If the characteristic is the finite number q,
then we can write the integers of the ring as the set

{1, 1 + 1, 1 + 1 + 1, . . .},
denoting these more simply with the notation of the usual integers

{1, 2, 3, . . . , q − 1, 0}.
This subset is a subgroup of the additive group of the ring; in fact, it is the cyclic
subgroup generated by the element one. Hence addition of the integers of a ring is
modulo q addition whenever the characteristic of the ring is finite. If the characteristic
is infinite, then the integers of the ring add as integers. Hence every ring with identity
contains a subset that behaves under addition either as Z or as Z/〈q〉. In fact, it also
behaves in this way under multiplication, because if α and β are each a finite sum of
the ring identity one, then

α ∗ β = β + β + · · · + β,

where there are α copies of β on the right. Because addition of integers in R behaves
like addition in Z or in Z/〈q〉, then so does multiplication of integers in R.

Within a ring R, any element α can be raised to an integer power; the notation αm

simply means the product of m copies of α. If the ring has an identity and the number
of integers of the ring is a prime, then the following theorem is sometimes useful for
simplifying powers of sums.

Theorem 2.2.4 Let p be a prime, and let R be a commutative ring with p integers.
Then for any positive integer m and for any two elements α and β in R,

(a ± β)p
m = αpm ± βpm

,

29 2.2 Rings

and by direct extension,

(�iαi)
pm = �iα

pm

i

for any set of αi in R.

Proof The binomial theorem,

(a ± β)p =
p∑

i=0

(p

i

)
αi(±β)p−i

holds in the ring of real numbers, so it must also hold in any commutative ring with
identity because the coefficient

(
p

i

)
merely counts how many terms of the expansion

have i copies of α and p − i copies of β. This does not depend on the specific ring.
However,

(
p

i

)
is interpreted in R as a sum of this many copies of the ring identity. Recall

that in a ring with p integers, all integer arithmetic is modulo p. Next, observe that(p

i

)
= p!

i!(p − i)!
= p(p − 1)!

i!(p − i)!

is an integer and p is a prime. Hence, as integers, the denominator divides (p − 1)! for
i = 1, . . . , p − 1, and so

(
p

i

)
must be a multiple of p. That is,

(
p

i

) = 0 (mod p) for
i = 1, . . . , p − 1. Then (α ± β)p = αp + (±β)p. Finally, either p = 2 and −β = β

so that (±β)2 = ±β2, or p is odd and (±β)p = ±βp. Then

(a ± β)p = αp ± βp,

which proves the theorem for m = 1.
This now can again be raised to the pth power,

((α ± β)p)p = (αp ± βp)p,

and because the statement is true for m = 1, we have

(αp ± βp)p = αp2 ± βp2
.

This can be repeated multiple times to get

(α ± β)p
m = αpm ± βpm

,

which completes the proof of the theorem. �

An element that has an inverse under multiplication in a ring with identity is called
a unit of the ring. The set of all units is closed under multiplication, because if a and b

are units, then c = ab has the inverse c−1 = b−1a−1.

Theorem 2.2.5
(i) Under ring multiplication, the set of units of a ring forms a group.

(ii) If c = ab and c is a unit, then a has a right inverse and b has a left inverse.
(iii) If c = ab and a has no right inverse or b has no left inverse, then c is not a unit.

30 Introduction to abstract algebra

Proof Exercise. �

There are many familiar examples of rings such as the following.
1 The set of all real numbers under the usual addition and multiplication is a commu-

tative ring with identity. Every nonzero element is a unit.
2 The set Z of all integers under the usual addition and multiplication is a commutative

ring with identity. The only units are ±1.
3 The set of all n by n matrices with real-valued elements under matrix addition and

matrix multiplication is a noncommutative ring with identity. The identity is the n

by n identity matrix. The units are the nonsingular matrices.
4 The set of all n by n matrices with integer-valued elements under matrix addition

and matrix multiplication is a noncommutative ring with identity.
5 The set of all polynomials in x with real-valued coefficients is a commutative ring

with identity under polynomial addition and polynomial multiplication. The identity
is the zero-degree polynomial p(x) = 1. The units are the nonzero polynomials of
degree zero.

2.3 Fields

Loosely speaking, an abelian group is a set in which one can “add” and “subtract,” and
a ring is a set in which one can “add,” “subtract,” and “multiply.” A more powerful
algebraic structure, known as a field, is a set in which one can “add,” “subtract,”
“multiply,” and “divide.”

Definition 2.3.1 A field F is a set containing at least two elements that has two
operations defined on it – addition and multiplication – such that the following axioms
are satisfied:
1 the set is an abelian group under addition;
2 the set is closed under multiplication, and the set of nonzero elements is an abelian

group under multiplication;
3 the distributive law,

(a + b)c = ac + bc,

holds for all a, b, and c in the field.

In a field, it is conventional to denote the identity element under addition by 0 and
to call it zero; to denote the additive inverse of a by −a; to denote the identity element
under multiplication by 1 and to call it one; and to denote the multiplicative inverse of
a by a−1. By subtraction (a − b), one means a + (−b); by division (a/b), one means
b−1a.

31 2.3 Fields

The following examples of fields are well known.
1 R: the set of real numbers.
2 C: the set of complex numbers.
3 Q: the set of rational numbers.
These fields all have an infinite number of elements. There are many other, less-familiar
fields with an infinite number of elements. One that is easy to describe is known as the
field of complex rationals, denoted Q(j). It is given by

Q(j) = {a + jb},
where a and b are rationals. Addition and multiplication are as complex numbers. With
this definition, Q(j) satisfies the requirements of Definition 2.3.1, and so it is a field.

There are also fields with a finite number of elements, and we have uses for these as
well. A field with q elements, if there is one, is called a finite field or a Galois field and
is denoted by the label GF (q).

Every field must have an element zero and an element one, thus every field has at
least two elements. In fact, with the addition and multiplication tables,

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

,

these elements suffice to form a field. This is the field known as GF (2). No other field
with two elements exists.

Finite fields can be described by writing out their addition and multiplication tables.
Subtraction and division are defined implicitly by the addition and multiplication tables.
Later, we shall study finite fields in detail. Here we give three more examples.

The field GF (3) = {0, 1, 2} with the operations

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

.

The field GF (4) = {0, 1, 2, 3} with the operations

+ 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

.

Notice that multiplication in GF (4) is not modulo 4 multiplication, and addition
in GF (4) is not modulo 4 addition. The field GF (5) = {0, 1, 2, 3, 4} with the

32 Introduction to abstract algebra

operations

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

.

These examples are very small fields. Much larger fields such as GF (216 + 1) can arise
in applications.

In any field, whether a finite field or an infinite field, almost all familiar computational
procedures are valid. This is because most of the methods in use for the real field or
the complex field depend only on the formal structure, given in Definition 2.3.1, and
not on any special structure of a particular field.

There is even a Fourier transform in any field F , given by

Vk =
n−1∑
i=0

ωikvi, k = 0, . . . , n − 1,

where ω is now an nth root of unity in F , and v and V are vectors of length n in
F . A Fourier transform of blocklength n exists in F only if there is an nth root of
unity ω in F . As long as the Fourier transform exists, it will behave as expected. In
particular, there will be an inverse Fourier transform, and the convolution theorem will
hold because, if we look to the proof of these facts, we will see that no property of F

is used except that F satisfies the formal structure given in Definition 2.3.1.
Similarly, a two-dimensional Fourier transform in the field F

Vk′k′′ =
n′−1∑
i ′=0

n′′−1∑
i ′′=0

ωi ′k′
µi ′′k′′

vi ′i ′′,
k′ = 0, . . . , n′ − 1
k′′ = 0, . . . , n′′ − 1

exists whenever the field F contains both an element ω of order n′ and an element µ

of order n′′, possibly with n′ = n′′ and ω = µ. If such elements do not exist, then this
two-dimensional Fourier transform does not exist.

As an example of the Fourier transform, in GF (5) the element two has order four.
Therefore we have the four-point Fourier transform in GF (5)

Vk =
3∑

i=0

2ikvi, k = 0, . . . , 3.

We also have the four by four, two-dimensional Fourier transform

Vk′k′′ =
3∑

i ′=0

3∑
i ′′=0

2i ′k′
2i ′′k′′

vi ′i ′′,
k′ = 0, . . . , 3
k′′ = 0, . . . , 3

.

33 2.3 Fields

Because the components of v and V are elements of GF (5), all arithmetic is the
arithmetic of GF (5). If

v =

4
3
2
1

 ,

then the one-dimensional Fourier transform of v in GF (5) is
V0

V1

V2

V3

 =

1 1 1 1
1 2 4 3
1 4 1 4
1 3 4 2

4
3
2
1

 =

0
1
2
3

 .

Similarly, the array

v =

4 3 2 1
3 1 1 4
2 4 3 1
1 3 2 2

has a two-dimensional Fourier transform obtained by taking the one-dimensional
Fourier transform of each row, then the one-dimensional Fourier transform of each
column.

Definition 2.3.2 Let F be a field. A subset of F is called a subfield when the subset
is a field under the inherited addition and multiplication. The original field F is then
called an extension field of the subfield.

The field of rationals is a subfield of the field of reals, which, in turn, is a subfield
of the complex field. The field of complex rationals is not a subfield of the real
field, but it is a subfield of the complex field. The finite field GF (2) is readily seen
to be a subfield of GF (4) because in GF (4), the elements zero and one add and
multiply just as they do in GF (2). However, GF (2) is not a subfield of GF (3) nor
of GF (5).

To prove that a subset of a finite field is a subfield, it is necessary to prove only that
it contains a nonzero element and that it is closed under addition and multiplication.
All other necessary properties are inherited from F . Inverses under addition or multi-
plication of an element β are contained in the cyclic group generated by β under the
operation of addition or multiplication.

Each field contains as a subset the set of its integers

{. . . , −(1 + 1 + 1), −(1 + 1), −1, 0, 1, (1 + 1), (1 + 1 + 1), . . .}.

34 Introduction to abstract algebra

The integers of the field are usually written simply as 0, ±1, ±2, ±3, ±4, There
may be only a finite number of integers in the field, in which case the number of integers,
if finite, is called the characteristic of the field. (It will then always be a prime p.) If
not finite, the characteristic, of the field is defined to be zero. All elements of GF (3)
or GF (5) are integers, so these fields have characteristics three or five, respectively.
Only the elements zero and one are integers of GF (4), so this field has characteristic
two. Both the real field and the complex field have characteristic zero. Every field of
characteristic zero will contain the field of rationals (or an isomorphic copy of the field
of rationals).

If a field has a finite characteristic p, then the integers of the field form a cyclic
group under addition; hence addition of integers is modulo p addition where p is the
number of integers. The sum of n copies of the identity element one is written ((n)),
where the double parentheses denote modulo p.

A finite field forms a group in two ways. The elements form a group under the
operation of addition, and the nonzero elements form a group under the operation of
multiplication. In fact, the nonzero elements form a cyclic group under the operation
of multiplication. The fact that the nonzero elements form a cyclic group is difficult
to prove, and we defer the proof until Chapter 5, although we will make use of this
cyclic structure earlier. Because the set of nonzero elements forms a cyclic group under
multiplication, it must be generated by a single element.

Definition 2.3.3 A primitive element of the Galois field GF (q) is an element of order
q − 1 under multiplication. It generates the multiplicative group of the field.

For example, in GF (5), the powers of the element 3 are 31 = 3, 32 = 4, 33 = 2,
34 = 1. Hence 3 is a primitive element of GF (5). Likewise, in GF (7), the powers of the
element 3 are 31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1. Hence 3 is a primitive
element of GF (7). However, 3 is not a primitive element of GF (11).

2.4 Vector space

Given a field F , the n-tuple of field elements (v0, v1, . . . , vn−1) is called a vector of
length n over the field F . The set of all such vectors of length n, together with two
operations called vector addition and scalar multiplication, is called a vector space
over the field F . In discussions of vector spaces, the elements of the underlying field F

are called scalars. Scalar multiplication is an operation that multiplies a vector, denoted
v, by a field element, denoted c. Scalar multiplication is defined as

c(v0, v1, . . . , vn−1) = (cv0, cv1, . . . , cvn−1).

35 2.4 Vector space

Vector addition is an operation that adds two vectors v = v′ + v′′ according to the
following definition:

(v′
0, v

′
1, . . . , v

′
n−1) + (v′′

0 , v′′
1 , . . . , v′′

n−1) = (v′
0 + v′′

0 , v′
1 + v′′

1 , . . . , v′
n−1 + v′′

n−1).

A vector space of n-tuples is one example of a vector space. A vector space over a
field F can be defined abstractly as a set V of elements called vectors together with
two operations. The first operation is called vector addition (denoted by +) on pairs
of elements from V . The second operation is called scalar multiplication (denoted by
juxtaposition) on an element from F and an element from V to produce an element
from V . For V to be a vector space, the operations must satisfy the following axioms.
1 V is an abelian group under vector addition.
2 (Distributivity) For any vectors v1 and v2, and for any scalar c,

c(v1 + v2) = cv1 + cv2.

3 (Distributivity) For any vector v, and for any scalars c1 and c2, 1v = v and

(c1 + c2)v = c1v + c2v.

4 (Associativity) For any vector v, and any scalars c1 and c2,

(c1c2)v = c1(c2v).

The zero element of V is called the origin of the vector space V and is denoted 0.
Notice that there are two different uses for the symbol +: vector addition and addition
within the field. Furthermore, the symbol 0 is used for the origin of the vector space,
and the symbol 0 is used for the zero of the field. In practice, these ambiguities cause
no confusion.

A subset of a vector space is called a vector subspace when it is also a vector space
under the original vector addition and scalar multiplication. Under the operation of
vector addition, a vector space is a group, and a vector subspace is a subgroup. In order
to check whether a nonempty subset of a vector space is a subspace, it is necessary
only to check for closure under vector addition and under scalar multiplication. Closure
under scalar multiplication ensures that the zero vector is in the subset. All other
required properties are then inherited from the original space.

The n-dimensional vector space of n-tuples over F is denoted by Fn. In the n-tuple
space Fn, vector addition and scalar multiplication are defined componentwise. In
the n-tuple space Fn, there is another operation called the componentwise product of
two n-tuples. If u = (a0, . . . , an−1) and v = (b0, . . . , bn−1), then the componentwise
product is the vector defined componentwise as

uv = (a0b0, a1b1, . . . , an−1bn−1).

36 Introduction to abstract algebra

Another operation is the inner product of two n-tuples. The inner product results in a
scalar, defined as

u · v = (a0, . . . , an−1) · (b0, . . . , bn−1)

= a0b0 + · · · + an−1bn−1.

It is immediately verified that u · v = v · u, that (cu) · v = c(u · v), and that w · (u +
v) = (w · u) + (w · v). If the inner product of two vectors is zero, the vectors are said
to be orthogonal. There are some fields over which it is possible for a nonzero vector to
be orthogonal to itself, but this cannot happen in the real field. A vector orthogonal to
every vector in a set is said to be orthogonal to the set.

Theorem 2.4.1 Let V be the vector space of n-tuples over a field F , and let W be a
subspace. The set of vectors orthogonal to W is itself a subspace.

Proof Let U be the set of all vectors orthogonal to W . Because 0 is in U , U is
not empty. Let w be any vector in W , and let u1 and u2 be any vectors in U . Then
w · u1 = w · u2 = 0, and

w · u1 + w · u2 = 0 = w · (u1 + u2),

so u1 + u2 is in U . Also w · (cu1) = c(w · u1) = 0, so cu1 is in U . Therefore U is a
subspace. �

The set of vectors orthogonal to a subspace W is called the orthogonal complement
of W and is denoted by W⊥. In the vector space of n-tuples over the real numbers, Rn,
the intersection of the subspaces W and W⊥ contains only the all-zero vector; but in a
vector space over GF (q), W⊥ may have a nontrivial intersection with W or may even
lie within W , contain W , or equal W . For example, in GF (2)2, the subspace, consisting
of the two vectors 00 and 11, is its own orthogonal complement.

In a vector space V , a sum of the form

u = a1v1 + a2v2 + · · · + akvk,

where the ai are scalars, is called a linear combination of the vectors v1, . . . , vk. A
set of vectors is said to span a vector space if every vector in the space equals at least
one linear combination of the vectors in the set. A vector space that is spanned by a
finite set of vectors is called a finite-dimensional vector space. The number of vectors
in a smallest set that spans the space is called the dimension of the space. The space of
n-tuples over F is an example of a finite-dimensional vector space of dimension n.

A set of vectors {v1, . . . , vk} is called linearly dependent if there is a set of scalars
{a1, . . . , ak}, not all zero, such that

a1v1 + a2v2 + · · · + akvk = 0.

37 2.5 Matrix algebra

A set of vectors that is not linearly dependent is called linearly independent. No vector
in a linearly independent set can be expressed as a linear combination of the others.
Note that the all-zero vector 0 cannot belong to a linearly independent set; every set
containing 0 is linearly dependent. A set of k linearly independent vectors that spans a
vector space is called a basis of the space.

2.5 Matrix algebra

The methods of matrix algebra are often studied only for the field of real numbers and
the field of complex numbers, but most of the operations remain valid in an arbitrary
field (sometimes even in an arbitrary ring).

Definition 2.5.1 An n by m matrix A over a field F consists of nm elements from F

arranged in a rectangular array of n rows and m columns.

A matrix is written as:

A =

a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

...
an1 an2 · · · anm

 .

If n = m, the matrix is called a square matrix. A square matrix for which aij = ai ′j ′

whenever i − j = i ′ − j ′ is called a Toeplitz matrix. A Toeplitz matrix has the form

A =

a0 a1 a2 · · · an−1

a−1 a0 a1 · · · an−2

a−2 a−1 a0
...

...
a−(n−1) · · · a0

with the same elements along any diagonal.

Two n by m matrices, A and B, over a field F are added by the rule

A + B =

 a11 + b11 a12 + b12 · · · a1m + b1m

...
...

an1 + bn1 an2 + bn2 · · · anm + bnm

 .

An � by n matrix A and an n by m matrix B can be multiplied to produce an � by m

matrix C by using the following rule:

cij =
n∑

k=1

aikbkj ,
i = 1, . . . , �

j = 1, . . . , m
.

38 Introduction to abstract algebra

In the matrix A, usually a square matrix, the set of elements aii , for which the column
number and row number are equal, is called the (main) diagonal of the matrix. An
identity matrix, denoted by I , is an n by n matrix with the field element one in
every entry of the diagonal and the field element zero in every other matrix entry. An
exchange matrix, denoted by J , is a matrix with the field element one in every entry
of the antidiagonal (the entries where j = n + 1 − i) and with the field element zero
in every other matrix entry. Notice that J2 = I . Examples of a three by three identity
matrix and a three by three exchange matrix are

I =

1 0 0
0 1 0
0 0 1

 , J =

0 0 1
0 1 0
1 0 0

 .

With the above definitions of matrix multiplication and matrix addition, the set of
n by n square matrices over any field F forms a ring, as can easily be verified. It is a
noncommutative ring but does have an identity, namely, the n by n identity matrix.

The transpose of an n by m matrix A is an m by n matrix, denoted AT, such that
aT

ij = aji . That is, the rows of AT are the columns of A, and the columns of AT are the
rows of A. It is easy to verify that if C = AB, then CT = BT AT.

The inverse of the square matrix A is the square matrix A−1, if it exists, such that
A−1 A = AA−1 = I . The set of all square n by n matrices for which an inverse exists
is a group under matrix multiplication. Therefore, whenever a matrix has an inverse,
it is unique, because we saw in Theorem 2.1.2 that this uniqueness property holds in
any group. A matrix that has an inverse is called nonsingular; otherwise, it is called
singular. Let C = AB. We see from part (iii) of Theorem 2.2.5 that if the inverse of
either A or B does not exist, then neither does the inverse of C. If the inverses of A
and B both exist, then C−1 = B−1 A−1 because (B−1 A−1)C = I = C(B−1 A−1).

Definition 2.5.2 For any field F and for each n, the determinant, det(A), is a function
from the set of n by n matrices over F into the field F , given by

det(A) =
∑

ξik ···ina1i1a2i2a3i3 · · · anin ,

where the sum is over all permutations i1, i2, . . . , in of the integers 1, 2, . . . , n; ξi1...in ,
is equal to 1 if the permutation can be obtained by an even number of transpositions;
otherwise, it is equal to −1. A transposition is an interchange of two terms.

If a matrix A′ is obtained from A by interchanging two rows, then every permutation
of rows of the new matrix A′ that can be obtained by an even (odd) number of
transpositions looks like a permutation of rows of A that can be obtained by an odd
(even) number of transpositions. From this it follows that if two rows of a matrix are
interchanged, the determinant is replaced by its negative. Similar reasoning shows that
if two rows of a real matrix are equal, the determinant is equal to zero.

39 2.5 Matrix algebra

The following theorem gives, without proof, properties of the determinant that follow
easily from the definition.

Theorem 2.5.3
(i) If all elements of any row of a square matrix are zero, the determinant of the

matrix is zero.
(ii) The determinant of a matrix equals the determinant of its transpose.

(iii) If two rows of a square matrix are interchanged, the determinant is replaced by
its negative.

(iv) If two rows of a square matrix are equal, the determinant is zero.
(v) If all elements of one row of a square matrix are multiplied by a field element c,

the value of the determinant is multiplied by c.
(vi) If two matrices A and B differ only in row i, the sum of their determinants equals

the determinant of a matrix C whose ith row is the sum of the ith rows of A and
B and whose other rows equal the corresponding rows of A or B.

(vii) If a scaler multiple of any row is added to any other row, the determinant is
unchanged.

(viii) The determinant of a square matrix is nonzero if and only if its rows (or columns)
are linearly independent.

If the row and column containing an element aij in a square matrix are deleted, then
the determinant of the remaining square array, denoted here by Mij , is called the minor
of aij . The cofactor of aij , denoted here by Cij , is defined by

Cij = (−1)i+jMij .

By examination of the definition of the determinant, it is seen that the cofactor of
aij is the coefficient of aij in the expansion of det(A). Therefore the determinant can
be written

det(A) =
n∑

k=1

aikCik.

This is known as the Laplace expansion formula for determinants. The Laplace expan-
sion formula is used as a recursive method of computing the determinant. It gives the
determinant of an n by n matrix in terms of n determinants of (n − 1) by (n − 1)
submatrices.

If aik is replaced by ajk , then
∑n

k=1 ajkCik is the determinant of a new matrix in
which the elements of the ith row are replaced by the elements of the j th row; hence
it is zero if j �= i. Thus

n∑
k=1

ajkCik =
{

det(A), i = j

0, i �= j.

40 Introduction to abstract algebra

Therefore the matrix A = [aij] has the inverse

A−1 =
[

Cji

det(A)

]
,

provided that det(A) �= 0. When det(A) = 0, an inverse does not exist.
A matrix can be broken into pieces as follows

A =
[

A11 A12

A21 A22

]
,

where A11, A12, A21, and A22 are smaller matrices whose dimensions add up to the
dimension of A. That is, the number of rows of A11 (or A12) plus the number of rows of
A21 (or A22) equals the number of rows of A. A similar statement holds for columns.
Matrices can be multiplied in blocks. That is, if

A =
[

A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
and C = AB, then

C =
[

A11 B11 + A12 B21 A11 B12 + A12 B22

A21 B11 + A22 B21 A21 B12 + A22 B22

]
,

provided that the dimensions of the blocks are compatible in the sense that all matrix
products and additions are defined. This decomposition can be readily verified as a
simple consequence of the associativity and distributivity properties of the underlying
field.

Definition 2.5.4 Let A = [aik] be an I by K matrix, and let B = [bj�] be a J by L

matrix. Then the Kronecker product of A and B, denoted A × B, is a matrix with IJ

rows and KL columns whose entry in row (i − 1)J + j and column (k − 1)L + � is
given by

cij,k� = aikbj�.

The Kronecker product, A × B, is an I by K array of J by L blocks, with the (i, k)th
such block being aik B. It is apparent from the definition that the Kronecker product is
not commutative, but it is associative:

A × B �= B × A

(A × B) × C = A × (B × C).

The elements of B × A are the same as those of A × B, but they are arranged dif-
ferently. It is also clear that the Kronecker product distributes over ordinary matrix
addition.

41 2.5 Matrix algebra

The most familiar example of a Kronecker product is the outer product of two
vectors. Suppose that both A and B are column vectors, say a = (a1, . . . , aI)T and
b = (b1, . . . , bJ)T, respectively. Then K = L = 1 and a × bT is an I by J matrix with
entry aibj in row i and column j . This is denoted simply as abT because, in this simple
case, the Kronecker product coincides with the ordinary matrix product.

The following useful theorem says that the Kronecker product of the matrix product
of matrices is the matrix product of the Kronecker products.

Theorem 2.5.5 The Kronecker product satisfies (A × B)(C × D) = (AC) × (B D),
provided that the matrix products all exist.

Proof Let the matrices A, B, C, and D have dimensions I × K , J × L, K × M , and
L × N , respectively. Because A × B has KL columns and C × D has KL rows, the
matrix product (A × B)(C × D) is defined. It has IJ rows, which we doubly index
by (i, j), and MN columns, which we doubly index by (m, n). The entry in row (i, j)
and column (m, n) is

∑
k� aikbj�ckmd�n. Because AC has I rows and M columns and

B D has J rows and L columns, (AC) × (B D) also is an IJ by MN matrix. Its entry
in row (i, j) and column (m, n) is∑

k

aikckm

∑
�

bj�d�n =
∑
k�

aikbj�ckmd�n,

which completes the proof. �

The rows of an n by m matrix A over a field F comprise a set of vectors in Fm having
m components. The row space of the matrix A is the set of all linear combinations of
the row vectors of A. The row space is a subspace of F m. The dimension of the row
space is called the row rank. Similarly, the columns of A may be thought of as a set
of vectors in F n having n components. The column space of A is the set of all linear
combinations of column vectors of A, and the dimension of the column space is called
the column rank. The set of vectors v such that AvT = 0 is called the null space of
the matrix A. It is clear that the null space is a vector subspace of Fn. In particular,
the null space of A is the orthogonal complement of the row space of A because the
null space can be described as the set of all vectors orthogonal to all vectors of the row
space.

The elementary row operations on a matrix are as follows:
1 interchange of any two rows;
2 multiplication of any row by a nonzero field element;
3 replacement of any row by the sum of itself and a multiple of any other row.

Each elementary row operation on an n by m matrix can be effected by multiplying
the matrix on the left by an appropriate n by n matrix E, called an elementary matrix.
The elementary matrices are of the form of the following modifications of an identity

42 Introduction to abstract algebra

matrix:

1
·

·
0 1

·
·

1 0
·

·
1

,

1
·

·
a

·
·

·
·

·
1

,

or

1
·

·
1

·
·

a 1
·

·
1

.

Each elementary row operation is inverted by an elementary row operation of the same
kind.

Elementary row operations can be used to put a matrix into a standard form, known
as the row-echelon form, with the same row space. The row-echelon form is as follows.
1 The leading nonzero term of every nonzero row is one.
2 Every column containing such a leading term has all its other entries equal to zero.
3 The leading term of any row is to the right of the leading term in every higher row.

Every zero row is below every nonzero row.
An example of a matrix in row-echelon form is the matrix

A =

1 1 0 1 3 0
0 0 1 1 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 .

Notice the all-zero row at the bottom. Also, notice that if the all-zero row is deleted,
then all columns of a three by three identity matrix appear as columns of the matrix,
but not as consecutive columns. In general, if there are k rows, none of them all zero,
and at least this many columns, then all columns of a k by k identity matrix will appear
within a row-echelon matrix.

43 2.5 Matrix algebra

Theorem 2.5.6 If two matrices A and A′ are related by a succession of elementary
row operations, both matrices have the same row space.

Proof Each row of A′ is a linear combination of rows of A; therefore any linear
combination of rows of A′ is a linear combination of rows of A also, so the row space
of A′ contains the row space of A′. But A can be obtained from A′ by the inverse
succession of elementary row operations, so by the same argument the row space of A′

contains the row space of A. Therefore A and A′ have equal row spaces. �

Theorem 2.5.7 If two matrices A and A′ are related by a succession of elementary
row operations, any set of columns that is linearly independent in A is also linearly
independent in A′.

Proof It suffices to prove the theorem for a single elementary row operation, and the
theorem is obvious if it is the first or second kind of elementary row operation. Hence
suppose A′ is formed from A by adding a multiple of row α to row β. Choose any
linearly dependent combination of columns of A′. The column sum of the elements in
row α must combine to give zero and so must also sum to zero within row β. That is,
this set of columns is also linearly dependent in A. �

Theorem 2.5.8 A k by n matrix A whose k rows are linearly independent also has k

linearly independent columns.

Proof Put A in row-echelon form A′. Because the rows of A are linearly independent,
the rows of A′ are also linearly independent, so it has no all-zero row. Hence, for each
row of A′, there is a column in which that row has a one and every other row has a zero.
This set of k columns of A′ is linearly independent, so by Theorem 2.5.7 this same set
of columns of A is linearly independent. �

Theorem 2.5.9 The row rank of a matrix A equals its column rank, and both are equal
to the dimension of any largest square submatrix with determinant not equal to zero.
(Hence this value is called simply the rank of the matrix.)

Proof It is necessary only to show that the row rank of A is equal to the dimension
of a largest square submatrix with nonzero determinant. The same proof applied to the
transpose of A then proves the same for the column rank of A, and so proves that the
row rank equals the column rank.

A submatrix of A is a matrix obtained by deleting any number of rows and columns
from A. Let M be a nonsingular square submatrix of A of largest dimension. Because M
is nonsingular, the rows of M are linearly independent by part (viii) of Theorem 2.5.3,
and so the rows of A that give rise to these rows of M must be linearly independent.
Therefore the row rank of A is at least as large as the dimension of M.

44 Introduction to abstract algebra

On the other hand, choose any set of k linearly independent rows. A matrix of these
rows, by Theorem 2.5.8, has k linearly independent columns. Hence choosing these
k columns from these k rows gives a matrix with nonzero determinant. Therefore the
dimension of a largest nonsingular submatrix of A is at least as large as the row rank
of A. Hence the row rank of A is equal to the dimension of M. This completes the
proof. �

2.6 The integer ring

The integers (positive, negative, and zero) form a deceptively simple mathematical
set. Nothing could appear more uniform and regular than the integers, yet, upon close
examination one can see very complex patterns and interrelationships in this set,
starting with the notions of factors and primes. Clever designers have built efficient
signal-processing algorithms upon these properties of the set of integers.

Under the usual operations of addition and multiplication, the integers form a ring
which is conventionally denoted by the label Z. Within the ring of integers, while
subtraction is always possible, division is not always possible. This limitation of the
division operation is one thing that makes the integer ring so interesting and rich in
structure.

We say that the integer s is divisible by the integer r or that r divides s or is a
factor of s if ra = s for some integer a. In symbols this is written r|s, which is read
“r divides s.” Whenever r both divides s and is divisible by s, then r = ±s. This is
because r = sa and s = rb for some a and b. Therefore r = rab, so ab must equal
one. Because a and b are integers, a and b must each be either plus one or minus one.

A positive integer p larger than one, divisible only by ±p or ±1, is called a prime
integer or a prime. The smallest primes are 2, 3, 5, 7, 11, 13, . . . ; the integer 1 is not a
prime. A positive integer larger than one, not a prime, is called composite. The greatest
common divisor of two integers r and s, denoted by GCD[r, s], is the largest positive
integer that divides both of them. The least common multiple of two integers r and
s, denoted by LCM[r, s], is the smallest positive integer that is divisible by both of
them. Two integers are said to be coprime, or relatively prime, if their greatest common
divisor is one. Thus, every positive integer n is coprime with one.

It is always possible to cancel in the integer ring; if ca = cb and c is nonzero,
then a = b. The integer ring also has a weak form of division known as division with
remainder or as the division algorithm. We state it as a self-evident theorem.

Theorem 2.6.1 (Division algorithm) For every integer c and positive integer d, there
is a unique pair of integers Q, the quotient, and s, the remainder, such that c = dQ + s,
where 0 ≤ s < d.

45 2.6 The integer ring

The quotient is sometimes denoted by

Q =
⌊ c

d

⌋
.

Usually, we will be more interested in the remainder than in the quotient. When s and
c have the same remainder under division by d, we write

s ≡ c (mod d).

In this form, the expression is called a congruence and is read: s is congruent to c

modulo d. In a congruence, neither s nor c is necessarily smaller than d. The remainder
will also be written

s = Rd [c],

which is read: s is the remainder of c when divided by d , or s is the residue of c modulo
d. We will also use double parentheses ((c)) to denote the same thing; in this case, d is
understood from the context. Yet another notation is

s = c (mod d),

where now an equal sign is used. This is not quite the same as a congruence. Now s is
the remainder of c when divided by d.

The computation of the remainder of a complicated expression is facilitated by
the following theorem, which says that the process of computing a remainder can be
interchanged with addition and multiplication.

Theorem 2.6.2 With the modulus d fixed,
(i) Rd [a + b] = Rd [Rd [a] + Rd [b]];

(ii) Rd [a · b] = Rd[Rd [a] · Rd[b]].

Proof Exercise. �

Given two positive integers s and t , their greatest common divisor can be computed
by an iterative application of the division algorithm. This procedure is known as the
euclidean algorithm. Suppose that t is less than s; the euclidean algorithm consists of
the steps

s = Q(1)t + t (1),

t = Q(2)t (1) + t (2),

t (1) = Q(3)t (2) + t (3),

...

t (n−2) = Q(n)t (n−1) + t (n),

t (n−1) = Q(n+1)t (n),

46 Introduction to abstract algebra

where the process stops when a remainder of zero is obtained. The steps of the euclidean
algorithm can be expressed concisely in matrix notation as[

s(r)

t (r)

]
=

[
0 1
1 −Q(r)

][
s(r−1)

t (r−1)

]
.

The last nonzero remainder t (n) is the greatest common divisor. This will be proved in
the next theorem.

Theorem 2.6.3 (Euclidean algorithm) Given two positive integers s and t , with s

larger than t , let s(0) = s and t (0) = t , the following recursive equations for r =
1, . . . , n:

Q(r) =
⌊

s(r−1)

t (r−1)

⌋
,[

s(r)

t (r)

]
=

[
0 1
1 −Q(r)

][
s(r−1)

t (r−1)

]
satisfy

s(n) = GCD[s, t],

where n is the integer for which t (n) = 0.

Proof Because t (r+1) is less than t (r) and all remainders are nonnegative, eventually
for some n, t (n) = 0, so the termination is well-defined. The following matrix inverse
is readily verified:[

0 1
1 −Q(r)

]−1

=
[

Q(r) 1
1 0

]
.

Therefore[
s

t

]
=

{
n∏

�=1

[
Q(�) 1

1 0

]}[
s(n)

0

]
,

so s(n) must divide both s and t and hence divides GCD[s, t]. Inverting this equation
gives[

s(n)

0

]
=

{
1∏

�=n

[
0 1
1 −Q(�)

]}[
s

t

]
,

so that any divisor of both s and t divides s(n). Hence GCD[s, t] divides s(n) and is
divisible by s(n). Thus

s(n) = GCD[s, t].

This completes the proof of the theorem. �

47 2.6 The integer ring

There are several important corollaries to this theorem. Let

A(r) =
1∏

�=r

[
0 1
1 −Q(�)

]

=
[

0 1
1 −Q(r)

]
A(r−1).

We then have the following corollary, an important and nonintuitive result of number
theory. It says that the greatest common divisor of two integers is an integer combination
of them.

Corollary 2.6.4 For any integers s and t , there exist integers a and b such that

GCD[s, t] = as + bt.

Proof It suffices to prove the corollary for s and t positive. Then, because[
s(n)

0

]
= A(n)

[
s

t

]
and

s(n) = GCD[s, t],

the theorem follows with a = A
(n)
11 and b = A

(n)
12 . �

The integers solving Corollary 2.6.4 are not unique, because we can write

GCD[s, t] = (a − �t)s + (b + �s)t

for any integer �.

Corollary 2.6.5 For any positive coprime integers s and t , there exist integers a and b

such that

as + bt = 1.

Proof This is an immediate consequence of Corollary 2.6.4. �

The proof of the corollary tells how to compute the integers a and b as elements of
the matrix A. This procedure is referred to as the extended euclidian algorithm. The
other two elements of the matrix also have a direct interpretation. To interpret those
elements, we will need the inverse of the matrix A(r). Recall that

A(r) =
1∏

�=r

[
0 1
1 −Q(�)

]
.

48 Introduction to abstract algebra

From this it is clear that the determinant of A(r) is (−1)r . The inverse is[
A

(r)
11 A

(r)
12

A
(r)
21 A

(r)
22

]−1

= (−1)r
[

A
(r)
22 −A

(r)
12

−A
(r)
21 A

(r)
11

]
.

Corollary 2.6.6 The matrix elements A
(n)
21 and A

(n)
22 produced by the euclidean algo-

rithm satisfy

s = (−1)nA(n)
22 GCD[s, t],

t = (−1)nA(n)
21 GCD[s, t].

Proof Using the above expression for the inverse gives[
s

t

]
= (−1)n

[
A

(n)
22 −A

(n)
12

−A
(n)
21 A

(n)
11

][
s(n)

0

]
from which the corollary follows. �

Using the division algorithm, we can find the greatest common divisor of two
integers. As an example, GCD[814, 187] is found as follows:[

s(n)

0

]
=

[
0 1
1 −5

][
0 1
1 −1

][
0 1
1 −2

][
0 1
1 −4

][
814
187

]

=
[

3 −13
−17 74

][
814
187

]
=

[
11
0

]
.

From this calculation, we immediately have that GCD[814, 187] is 11, and also that

GCD[814, 187] = 3 × 814 − 13 × 187,

as given by Corollary 2.6.6.

2.7 Polynomial rings

For each field F , there is a ring F [x] called the ring of polynomials over F . A
polynomial ring is analogous in many ways to the ring of integers. To make this
evident, this section will closely follow Section 2.6.

A polynomial over a field F is a mathematical expression

f (x) = fnx
n + fn−1x

n−1 + · · · + f1x + f0

=
n∑

i=0

fix
i,

49 2.7 Polynomial rings

where the symbol x is an indeterminate and the coefficients f0, . . . , fn are elements of
the field. The zero polynomial is

f (x) = 0.

The degree of a polynomial f (x), denoted deg f (x), is the largest index of a nonzero
coefficient. The degree of a nonzero polynomial is always finite. By convention, the
degree of the zero polynomial is negative infinity (−∞). A monic polynomial is a
polynomial whose coefficient fn with largest index is equal to one. Two polynomials
are equal if all coefficients fi are equal.

To form a ring from the set of all polynomials over a given field, addition and
multiplication are defined as the usual addition and multiplication of polynomials.
For each field F , we define such a polynomial ring, denoted by the label F [x], and
consisting of all polynomials with coefficients in F . In discussions about the ring F [x],
the polynomials of degree zero are elements of the field F . They are sometimes called
scalars.

In the usual way, the sum of two polynomials in F [x] is another polynomial in F [x],
defined by

f (x) + g(x) =
∞∑
i=0

(fi + gi)x
i,

where, of course, terms higher than the larger of the degrees of f (x) and g(x) are all
zero. The degree of the sum is not greater than the larger of these two degrees. The
product of two polynomials in F [x] is another polynomial in F [x], defined by

f (x)g(x) =
∑

i

 i∑
j=0

figi−j

 xi.

The degree of the product of two polynomials is equal to the sum of the degrees of
the two factors. If f (x) �= 0 and g(x) �= 0, then f (x)g(x) �= 0 because deg p(x) equals
negative infinity if and only if p(x) = 0.

Within a ring of polynomials, while subtraction is always possible, division is not
always possible. We write r(x)|s(x) and say that the polynomial s(x) is divisible by
the polynomial r(x), or that r(x) divides s(x), or r(x) is a factor of s(x), if there is a
polynomial a(x) such that r(x)a(x) = s(x). A nonzero polynomial p(x) that is divisible
only by p(x) or by α, where α is an arbitrary field element, is called an irreducible
polynomial. A monic irreducible polynomial is called a prime polynomial.

To say that a polynomial is a prime polynomial, it is necessary to know within
which field the polynomial is to be regarded. The polynomial p(x) = x4 − 2 is a
prime polynomial over the field of rationals, but it is not a prime polynomial over the
real field. Over the real field, p(x) = (x2 − √

2)(x2 + √
2) is a product of two prime

50 Introduction to abstract algebra

polynomials. Over the complex field those two polynomials are not prime because they
can be factored further.

Whenever r(x) both divides s(x) and is divisible by s(x), then r(x) = αs(x) where
α is an element of the field F . This is proved as follows. There must exist poly-
nomials a(x) and b(x) such that r(x) = s(x)a(x) and s(x) = r(x)b(x). Therefore
r(x) = r(x)b(x)a(x). But the degree of the right side is the sum of the degrees of
r(x), b(x), and a(x). Because this must equal the degree of the left side, a(x) and b(x)
must have zero degree; that is, they are scalars.

The greatest common divisor of two polynomials r(x) and s(x), denoted by
GCD[r(x), s(x)], is the monic polynomial of largest degree that divides both of them.
If the greatest common divisor of two polynomials is one, then they are said to be
coprime (or relatively prime).

The least common multiple of two polynomials r(x) and s(x), denoted by
LCM[r(x), s(x)], is the monic polynomial of smallest degree divisible by both of
them. We shall see that the greatest common divisor and the least common multiple of
r(x) and s(x) are unique.

Differentiation is defined in the real field in terms of limits. This definition does
not work in all fields because, in some fields, there is no notion of an arbitrary small
number. In such fields it is convenient simply to define an operation on polynomials
that behaves the way we want derivatives to behave. This is called the formal derivative
of a polynomial.

Definition 2.7.1 Let r(x) = rnx
n + rn−1x

n−1 + · · · + r1x + r0 be a polynomial over
the field F . The formal derivative of r(x) is a polynomial r ′(x), given by

r ′(x) = nrnx
n−1 + (n − 1)rn−1x

n−2 + · · · + 2r2x + r1,

where the new coefficients iri are computed in the field F as the sum of i copies of ri:

iri = ri + ri + · · · + ri .

It is easy to verify many of the usual properties of derivatives, namely that

[r(x)s(x)]′ = r ′(x)s(x) + r(x)s ′(x)

and that if a(x)2 divides r(x), then a(x) divides r ′(x).
Cancellation is valid in a ring of polynomials over a field; if c(x)a(x) = c(x)b(x)

and c(x) is nonzero, then a(x) = b(x). A ring of polynomials also has a weak form of
division known as division with remainder or as the division algorithm.

Theorem 2.7.2 (Division algorithm for polynomials) For every polynomial c(x) and
nonzero polynomial d(x), there is a unique pair of polynomials Q(x), the quotient

51 2.7 Polynomial rings

polynomial, and s(x), the remainder polynomial, such that

c(x) = d(x)Q(x) + s(x)

and

deg s(x) < deg d(x).

Proof The quotient polynomial and the remainder polynomial can be found by ele-
mentary long division of polynomials. They are unique because if

c(x) = d(x)Q1(x) + s1(x) = d(x)Q2(x) + s2(x),

then

d(x)[Q1(x) − Q2(x)] = s1(x) − s2(x).

If the right side is nonzero, it has degree less than deg d(x), while if the left side
is nonzero, it has degree at least as large as deg d(x). Hence both are zero, and the
representation is unique. �

In practice, one can compute the quotient polynomial and the remainder polynomial
by simple long division of polynomials. The quotient polynomial is sometimes denoted
by

Q(x) =
⌊

c(x)

d(x)

⌋
.

Usually, we will be more interested in the remainder polynomial than in the quotient
polynomial. The remainder polynomial will also be written

s(x) = Rd(x)[c(x)]

or

s(x) = c(x) (mod d(x)).

One also can write the congruence

s(x) ≡ c(x) (mod d(x)),

which only means that s(x) and c(x) have the same remainder under division by d(x).
To find Rd(x)[c(x)], it seems that we must carry through a polynomial division.

Actually, there are several shortcuts that simplify the work. First, notice that

Rd(x)[c(x)] = Rd(x)[c(x) + a(x)d(x)],

so we can add any multiple of d(x) to c(x) without changing the remainder. Hence,
without changing the remainder, one can cancel the largest-index nonzero coefficient

52 Introduction to abstract algebra

of c(x) by adding a multiple of d(x). By using this principle, reduction of c(x) modulo
the monic polynomial

d(x) = xn +
n−1∑
i=0

dix
i

can be simplified by replacing xn with the polynomial −∑n−1
i=0 dix

i whenever it is
convenient to do so. In this way, finding the remainder polynomial is simplified.

Another method to simplify the computation of a remainder is given in the following
theorem.

Theorem 2.7.3 Let d(x) be a multiple of g(x). Then for any a(x),

Rg(x)[a(x)] = Rg(x)[Rd(x)[a(x)]].

Proof Let d(x) = g(x)h(x) for some h(x). Expanding the meaning of the right side
gives

a(x) = Q1(x)d(x) + Rd(x)[a(x)]

= Q1(x)h(x)g(x) + Q2(x)g(x) + Rg(x)[Rd(x)[a(x)]],

where the remainder polynomial has a degree less than deg g(x). Expanding the mean-
ing of the left side gives

a(x) = Q(x)g(x) + Rg(x)[a(x)],

and the division algorithm says that there is only one such expansion with the degree
of Rg(x)[a(x)] smaller than the degree of g(x). The theorem follows by identifying the
like terms in the two expansions. �

As an example of the use of Theorem 2.7.3, we will divide x7 + x + 1 by x4 + x3 +
x2 + x + 1. Long division would be tedious, but if we remember that

(x − 1)(x4 + x3 + x2 + x + 1) = x5 − 1,

we can first divide by x5 − 1, then by x4 + x3 + x2 + x + 1. But then

Rx5−1[x7 + x + 1] = x2 + x + 1,

which is now trivial to divide by x4 + x3 + x2 + x + 1. Thus

Rx4+x3+x2+x+1[x7 + x + 1] = x2 + x + 1.

Another handy reduction is given in the next theorem.

53 2.7 Polynomial rings

Theorem 2.7.4
(i) Rd(x)[a(x) + b(x)] = Rd(x)[a(x)] + Rd(x)[b(x)].

(ii) Rd(x)[a(x) · b(x)] = Rd(x){Rd(x)[a(x)] · Rd(x)[b(x)]}.

Proof Use the division algorithm to interpret the left side of the first equation as

a(x) + b(x) = Q(x)d(x) + Rd(x)[a(x) + b(x)].

Use the division algorithm to interpret the right side of the first equation as

a(x) + b(x) = Q′(x)d(x) + Rd(x)[a(x)] + Q′′(x)d(x) + Rd(x)[b(x)].

Equating these, part (i) follows from the uniqueness of the division algorithm. Part (ii)
is proved in the same way. �

Just as it is often useful to express an integer as a product of primes, it is also often
useful to express polynomials as products of irreducible polynomials. To make the
factoring of integers into primes unique, one adopts the convention that only positive
integers can be primes. Similarly, to make the factoring of polynomials into irreducible
polynomials unique, one adopts the convention that the irreducible polynomials used
as factors must be monic polynomials.

Theorem 2.7.5 (Unique factorization theorem) A polynomial over a field has a
unique factorization into a field element times a product of prime polynomials over the
field, each polynomial with degree at least one.

Proof Clearly, the field element must be the coefficient of pn, where n is the degree
of the polynomial p(x). We can factor out this field element and prove the theorem for
monic polynomials.

Suppose the theorem is false. Let p(x) be a polynomial of the lowest degree for
which the theorem fails. Then there are two factorizations:

p(x) = a1(x)a2(x) · · · ak(x) = b1(x)b2(x) · · · bj (x),

where the ak(x) and bj (x) are prime polynomials.
All of the ak(x) must be different from all of the bj (x) because, otherwise, the

common terms could be canceled to give a polynomial of lower degree that can be
factored in two different ways.

Without loss of generality, suppose that b1(x) has a degree not larger than that of
a1(x). Then

a1(x) = b1(x)Q(x) + s(x),

where deg s(x) < deg b1(x) ≤ deg a1(x). Then

s(x)a2(x)a3(x) · · · ak(x) = b1(x)[b2(x) · · · bj (x) − Q(x)a2(x) · · · ak(x)].

54 Introduction to abstract algebra

Factor both s(x) and the bracketed term on the right into their prime polynomial factors
and, if necessary, divide by a field element to make all factors monic. Because b1(x)
does not appear on the left side, we have two different factorizations of another monic
polynomial whose degree is smaller than the degree of p(x), contrary to the choice of
p(x). The contradiction proves the theorem. �

Now, from the unique factorization theorem, for any polynomials s(x) and t(x), it is
clear that both GCD[s(x), t(x)] and LCM[s(x), t(x)] are unique because the greatest
common divisor is the product of all prime factors common to both s(x) and t(x), each
factor raised to the smallest power with which it appears in either s(x) or t(x), and
because the least common multiple is the product of all prime factors that appear in
either s(x) or t(x), each factor raised to the largest power that appears in either s(x) or
t(x).

The division algorithm for polynomials has an important consequence known as
the euclidean algorithm for polynomials. Given two polynomials s(x) and t(x), their
greatest common divisor can be computed by an iterative application of the division
algorithm. Without loss of generality, we can suppose that deg s(x) ≥ deg t(x); the
computation is

s(x) = Q(1)(x)t(x) + t (1)(x)

t(x) = Q(2)(x)t (1)(x) + t (2)(x)

t (1)(x) = Q(3)(x)t (2)(x) + t (3)(x)
...

t (n−2)(x) = Q(n)(x)t (n−1)(x) + t (n)(x)

t (n−1)(x) = Q(n+1)(x)t (n)(x),

where the process stops when a remainder of zero is obtained. We claim that the last
nonzero remainder t (n)(x) is a scalar multiple of the greatest common divisor. The proof
is given in the following theorem.

Theorem 2.7.6 (Euclidean algorithm for polynomials) Given two polynomials s(x)
and t(x) with deg s(x) ≥ deg t(x), let s(0)(x) = s(x) and t (0)(x) = t(x). The following
recursive equations for r = 1, . . . , n:

Q(r)(x) =
⌊

s(r−1)(x)

t (r−1)(x)

⌋
[

s(r)(x)
t (r)(x)

]
=

[
0 1
1 −Q(r)(x)

][
s(r−1)(x)
t (r−1)(x)

]

55 2.7 Polynomial rings

satisfy

s(n)(x) = αGCD[s(x), t(x)],

where n is the smallest integer for which t (n)(x) = 0, and α is a field element.

Proof Because deg t (r+1)(x) is strictly decreasing, eventually t (n)(x) = 0 for some n,
so the termination is well-defined. The following matrix inverse is readily verified:[

0 1
1 −Q(r)(x)

]−1

=
[

Q(r)(x) 1
1 0

]
.

Therefore[
s(x)
t(x)

]
=

{
n∏

�=1

[
Q(�)(x) 1

1 0

]}[
s(n)(x)

0

]
,

so s(n)(x) must divide both s(x) and t(x), and hence divides GCD[s(x), t(x)]. Further,[
s(n)(x)

0

]
=

{
1∏

�=n

[
0 1
1 −Q(�)(x)

]}[
s(x)
t(x)

]

so that any divisor of both s(x) and t(x) divides s(n)(x). Hence GCD[s(x), t(x)] both
divides s(n)(x) and is divisible by s(n)(x). Thus

s(n)(x) = αGCD[s(x), t(x)],

where α is a nonzero field element. This completes the proof of the theorem. �

Again, as in the case of the integer ring, there are two important corollaries. Define
the matrix of polynomials

A(r)(x) =
1∏

�=r

[
0 1
1 −Q(�)(x)

]

=
[

0 1
1 −Q(r)(x)

]
A(r−1)(x),

where A(0)(x) is the identity matrix. We then have the following corollary.

Corollary 2.7.7 (Bézout’s identity) For any polynomials s(x) and t(x) over the field
F , there exist two other polynomials a(x) and b(x) over the same field such that

GCD[s(x), t(x)] = a(x)s(x) + b(x)t(x).

56 Introduction to abstract algebra

Proof Because[
s(n)(x)

0

]
= A(n)(x)

[
s(x)
t(x)

]

and s(n)(x) = αGCD[s(x), t(x)], the corollary follows with a(x) = α−1A
(n)
11 (x) and

b(x) = α−1A
(n)
12 (x). �

The polynomials a(x) and b(x) are not unique because, given any a(x) and b(x)
satisfying the statement of the corollary, we can also write

GCD[s(x), t(x)] = [a(x) + t(x)]s(x) + [b(x) − s(x)]t(x).

Corollary 2.7.8 For any two coprime polynomials s(x) and t(x) over the field F , there
exist two other polynomials, a(x) and b(x), over the same field such that

a(x)s(x) + b(x)t(x) = 1.

Proof This is an immediate consequence of Corollary 2.7.7. �

The polynomials a(x) and b(x) are known as the Bézout polynomials. They can be
obtained as two elements of the matrix A(x) normalized by α. The other two elements
of A(x) also have a direct interpretation. We shall need the inverse of the matrix A(r)(x).
Because

A(r)(x) =
1∏

�=r

[
0 1
1 −Q(�)(x)

]
,

it is clear that the determinant of A(r)(x) is (−1)r . The inverse is[
A

(r)
11 (x) A

(r)
12 (x)

A
(r)
21 (x) A

(r)
22 (x)

]−1

= (−1)r
[

A
(r)
22 (x) −A

(r)
12 (x)

−A
(r)
21 (x) A

(r)
11 (x)

]
.

Corollary 2.7.9 The A
(n)
21 (x) and A

(n)
22 (x) produced by the euclidean algorithm satisfy

s(x) = (−1)nA(n)
22 (x)αGCD[s(x), t(x)],

t(x) = −(−1)nA(n)
21 (x)αGCD[s(x), t(x)].

Proof Using the above expression for the matrix inverse gives[
s(x)

t(x)

]
= (−1)n

[
A

(n)
22 (x) −A

(n)
12 (x)

−A
(n)
21 (x) A

(n)
11 (x)

][
s(n)(x)

0

]
from which the corollary follows. �

57 2.7 Polynomial rings

As an example of the euclidean algorithm for polynomials, let s(x) = x4 − 1, and
t(x) = x3 + 2x2 + 2x + 1. Then[

s(n)(x)

0

]
=

[
0 1

1 − 8
3x − 4

3

][
0 1

1 − 1
2x − 1

4

][
0 1

1 −x + 2

][
s(x)

t(x)

]

=
[

− 1
2x − 1

4
1
2x2 − 3

4x + 1
2

4
3x2 + 4

3x + 4
3 − 4

3x3 + 4
3x2 − 4

3x + 4
3

][
x4 − 1

x3 + 2x2 + 2x + 1

]

=
[

3
4 (x + 1)

0

]
.

Hence GCD[x4 − 1, x3 + 2x2 + 2x + 1] = x + 1. In addition,

x + 1 = (− 2
3x − 1

3

)
s(x) + (

2
3x2 − x + 2

3

)
t(x),

as promised by Corollary 2.7.7.

A polynomial p(x) over the field F can be evaluated at any element β of the field
F . This is done by substituting the field element β for the indeterminate x to obtain
the field element p(β), given by

p(β) =
deg p(x)∑

i=0

piβ
i.

A polynomial over the field F also can be evaluated at an element of any larger
field that contains F . This is done by substituting the element of the extension field
for the indeterminate x. When F is the real field, evaluation of a polynomial in an
extension field is a familiar concept. For example, polynomials with real coefficients
are commonly evaluated over the complex field.

A field element β is called a zero of the polynomial p(x) if p(β) = 0. A polynomial
does not necessarily have zeros in its own field. The polynomial p(x) = x2 + 1 has no
zeros in the real field.

Theorem 2.7.10 A nonzero polynomial p(x) has the field element β as a zero if and
only if (x − β) is a factor of p(x). Furthermore, there are at most n field elements that
are zeros of a polynomial of degree n.

Proof From the division algorithm,

p(x) = (x − β)Q(x) + s(x),

where s(x) has degree less than one. That is, s(x) is a field element s0. Hence

0 = p(β) = (β − β)Q(β) + s0,

58 Introduction to abstract algebra

so that s0 = 0 and hence p(x) = (x − β)Q(x). Conversely, if (x − β) is a factor of
p(x), then

p(x) = (x − β)Q(x)

and p(β) = (β − β)Q(β) = 0, so that β is a zero of p(x).
Next factor p(x) into a field element times a product of prime polynomials. The

degree of p(x) equals the sum of the degrees of the prime polynomial factors, and one
such prime polynomial factor exists for each zero. Hence there are at most n zeros. �

Theorem 2.7.11 (Lagrange interpolation) Let β0, . . . , βn be a set of n + 1 distinct
points, and let p(βk) for k = 0, . . . , n be given. There is exactly one polynomial p(x)
of degree n or less that has value p(βk) when evaluated at βk for k = 0, . . . , n. It is
given by

p(x) =
n∑

i=0

p(βi)

∏
j �=i(x − βj)∏
j �=i(βi − βj)

.

Proof The stated polynomial p(x) passes through the given points, as can be verified
by substituting βk for x. Uniqueness follows because if p′(x) and p′′(x) both satisfy
the requirements and P (x) = p′(x) − p′′(x), then P (x) has degree at most n and has
n + 1 zeros at βk for k = 0, . . . , n. Hence P (x) equals the zero polynomial. �

2.8 The Chinese remainder theorem

It is possible to uniquely determine a nonnegative integer given only its moduli with
respect to each of several integers, provided that the integer is known to be smaller
than the product of the moduli. This is known as the Chinese remainder theorem. The
Chinese remainder theorem, summarized in Figure 2.2, is proved in two parts. First,
we prove the uniqueness of a solution. Then we prove the existence of a solution by
giving a procedure for finding it.

Before we develop the theory formally, we will give a simple example. Choose the
moduli m0 = 3, m1 = 4, and m2 = 5, and let M = m0m1m2 = 60. Given the integer c

satisfying 0 ≤ c < 60, let ci = Rmi
[c]. The Chinese remainder theorem says that there

is a one-to-one map between the sixty values that c is allowed to take on and the sixty
values that the vector of residues (c0, c1, c2) can take on. Suppose that c0 = 2, c1 = 1,
and c2 = 2. These three conditions imply, in turn, that

c ∈ {2, 5, 8, 11, 14, 17, 20, 23, 26, 29, . . .},
c ∈ {1, 5, 9, 13, 17, 21, 25, 29, 33, . . .},
c ∈ {2, 7, 12, 17, 22, 27, 32, 37, . . .}.

59 2.8 The Chinese remainder theorem

Direct equations
 0, ,

where the are coprime.
cc

m

Inverse equations

0
 mod c c N M M

0
where /

and is the solution of 1.

i k

k

k

i

i i i
i

i

i

i
i

i

i i i i i

i

m

m

mM

MMM m

NN n

R

Figure 2.2 The Chinese remainder theorem

The unique solution for c is seventeen. Later, we shall give a simple algorithm for
finding c from its residues.

The example suggests that the residues uniquely determine the original integer. The
following theorem proves this in the general case.

Theorem 2.8.1 Given a set of integers m0, m1, . . . , mk that are pairwise coprime and
a set of integers c0, c1, . . . , ck with ci < mi , then the system of equations

ci = c (mod mi), i = 0, . . . , k

has at most one solution for c in the interval

0 ≤ c <

k∏
i=0

mi.

Proof Suppose that c and c′ are solutions in this interval. Then, for each i,

c = Qimi + ci,

c′ = Q′
imi + ci,

so c − c′ is a multiple of mi for each i. Then c − c′ is a multiple of
∏k

i=0 mi because
the mi are pairwise coprime. But c − c′ satisfies

−
k∏

i=0

mi < c − c′ <

k∏
i=0

mi.

The only possibility is c − c′ = 0. Hence c = c′. �

There is a simple way to find the solution to the system of congruences of Theo-
rem 2.8.1, which is based on the corollary to the euclidean algorithm. Corollary 2.6.4
says that, for each s and t , there exist integers a and b that satisfy

GCD[s, t] = as + bt.

60 Introduction to abstract algebra

Therefore, using the set of pairwise coprime integers m0, m1, . . . , mk as moduli, define
M = ∏k

r=0 mr and Mi = M/mi . Then GCD[Mi, mi] = 1, so for each i there exist
integers Ni and ni with

NiMi + nimi = 1, i = 0, . . . , k.

We are now ready to prove the following theorem.

Theorem 2.8.2 Let M = ∏k
r=0 mr be a product of pairwise coprime integers; let Mi =

M/mi and for each i, let Ni satisfy NiMi + nimi = 1. Then the system of congruences

ci = c (mod mi), i = 0, . . . , k

is uniquely solved by

c =
k∑

i=0

ciNiMi (mod M).

Proof We need only show that this c solves the specified system of congruences
because we already know that the solution is unique. But for this c,

c =
k∑

r=0

crNrMr = ciNiMi (mod mi)

because mi divides Mr if r �= i. Finally, because

NiMi + nimi = 1,

we have

NiMi = 1 (mod mi)

and

c = ci (mod mi),

which completes the proof. �

The earlier example can be continued to illustrate Theorem 2.8.2. Notice that M =
60, M0 = 20, M1 = 15, and M2 = 12. Further,

1 = (−1)M0 + 7m0,

1 = (−1)M1 + 4m1,

1 = (−2)M2 + 5m2,

61 2.8 The Chinese remainder theorem

as can be computed from the euclidean algorithm or simply written down by inspection.
Therefore

N0M0 = −20, N1M1 = −15, N2M2 = −24,

and the inverse operation is

c = −20c0 − 15c1 − 24c2 (mod 60).

In particular, if c0 = 2, c1 = 1, and c2 = 2, then

c = −103 (mod 60)

= 17,

as we saw earlier.
On the basis of the Chinese remainder theorem, one can form an alternative system

for representing integers, a representation in which multiplication is easy. Suppose that
we need to perform the multiplication

c = ab.

For each i, let ai = Rmi
[a], bi = Rmi

[b], and ci = Rmi
[c]. Then for i = 0, . . . , k,

ci = aibi (mod mi).

This can be an easy computation because ai and bi are now small integers. Similarly,
if instead we had the addition

c = a + b,

then for i = 0, . . . , k,

ci = ai + bi (mod mi).

In either case, the final answer c can be recovered from its residues by using the Chinese
remainder theorem.

In this way, by taking residues, large integers are broken down into small pieces
that are easy to add, subtract, and multiply. As long as a computation involves only
these operations, this representation provides an alternative system of arithmetic. If the
computation is simple, then the mapping from the natural representation of the data
into the residue representation and the mapping of the answer back into the natural
representation more than offset any possible computational advantage. If, however, the
computation is lengthy, savings may be found because intermediate values can be left
in the residue form. Only the final answer needs to be converted to a conventional
integer form.

In a ring of polynomials over any field, there again is a Chinese remainder theorem,
summarized in Figure 2.3, which is developed in the same way as for the case of
integers.

62 Introduction to abstract algebra

Direct equations

()
()

()
() () 0, , i

i
m x

k,ic x ,Rxc

Inverse equations
() () ()

0
() () () () mod ()

k
i i i

i
c x c x N x M x M x ,

() () ()

0
where () () () () / (),

k
i i i

i
xmxMxMxm ,xM

)()()()()(and () is the solution of () () () () 1.iiiiiN x N x M x n x m x

()where the () are coprime.im x

Figure 2.3 The Chinese remainder theorem for polynomials

Theorem 2.8.3 Given a set of polynomials m(0)(x), m(1)(x), . . . , m(k)(x) that are pair-
wise coprime and a set of polynomials c(0)(x), c(1)(x), . . . , c(k)(x) with deg c(i)(x) <

deg m(i)(x), then the system of equations

c(i)(x) = c(x) (mod m(i)(x)), i = 0, . . . , k

has at most one solution for c(x), satisfying

deg c(x) <

k∑
i=0

deg m(i)(x).

Proof The proof is similar to the proof of Theorem 2.8.1. Suppose that c(x) and c′(x)
are solutions:

c(x) = Q(i)(x)m(i)(x) + c(i)(x),

c′(x) = Q′(i)(x)m(i)(x) + c(i)(x),

so c(x) − c′(x) is a multiple of m(i)(x) for each i. Because the m(i)(x) are pairwise
coprime, c(x) − c′(x) is a multiple of

∏k
i=0 m(i)(x), and the degree of c(x) − c′(x)

is less than the degree of
∏k

i=0 m(i)(x). That is, c(x) − c′(x) = 0, and the proof is
complete. �

The system of congruences can be solved in a way similar to the case of the integer
ring. Corollary 2.7.7 states that in a ring of polynomials over a field, given any s(x)
and t(x), there exist polynomials a(x) and b(x) that satisfy

GCD[s(x), t(x)] = a(x)s(x) + b(x)t(x).

Hence let M(x) = ∏k
r=0 m(r)(x) and M (i)(x) = M(x)/m(i)(x). Then

GCD[M (i)(x), m(i)(x)] = 1. Let N (i)(x) and n(i)(x) be the polynomials that

63 Problems

satisfy

N (i)(x)M (i)(x) + n(i)(x)m(i)(x) = 1.

Theorem 2.8.4 Let M(x) = ∏k
r=0 m(r)(x) be a product of pairwise coprime polynomi-

als. Let M (i)(x) =M(x)/m(i)(x) and N (i)(x) satisfy N (i)(x)M (i)(x) + n(i)(x)m(i)(x) = 1.
Then the system of congruences

c(i)(x) = c(x) (mod m(i)(x)), i = 0, . . . , k

is uniquely solved by

c(x) =
k∑

i=0

c(i)(x)N (i)(x)M (i)(x) (mod M(x)).

Proof We need only show that this c(x) satisfies every congruence in the system of
congruences. But

c(x) = c(i)(x)N (i)(x)M (i)(x) (mod m(i)(x))

because M (r)(x) has m(i)(x) as a factor if r �= i. Then, because

N (i)(x)M (i)(x) + n(i)(x)m(i)(x) = 1,

we have

N (i)(x)M (i)(x) = 1 (mod m(i)(x))

and

c(x) = c(i)(x) (mod m(i)(x)),

which completes the proof of the theorem. �

Problems for Chapter 2

2.1 a Show that only one group with three elements exists. Construct it and show
that it is abelian.

b Show that only two groups with four elements exist. Construct them and show
that they are abelian. Show that one of the two groups with four elements has
no element of order four. This group is called the Klein four-group.

2.2 Let the group operation in the groups of Problem 2.1 be called addition.
a Define multiplication to make the three-element group a ring. Is it unique?
b For each of the two four-element groups, define multiplication to make it a

ring. Is each definition unique?

64 Introduction to abstract algebra

2.3 Which of the three rings in Problem 2.2 are also fields? Can multiplication be
defined differently to get a field?

2.4 Prove that, in a cyclic group with q elements, aq = a0 and (ai)−1 = aq−i for
any element a.

2.5 a Show that Z2 × Z3 is isomorphic to Z6.
b Show that Z2 × Z4 is not isomorphic to Z8.

2.6 Give an example of a ring without identity.
2.7 Prove the following standard properties of the discrete Fourier transform, starting

with the Fourier transform pair {vi} ↔ {Vk}:
a Linearity {avi + bv′

i} ↔ {aVk + bV ′
k};

b Cyclic shift {v((i−1))} ↔ {ωkVk};
c Modulation {ωivi} ↔ {V((k+1))}.

2.8 Show that the Fourier transform of the vector with components vi = ωri, r an
integer, has a single nonzero spectral component. Which component is it if
r = 0? Show that a vector that is nonzero in only a single component has a
nonzero spectrum everywhere.

2.9 Prove that if A is a Toeplitz matrix and J is an exchange matrix of the same
size, then

AT = J A J .

2.10 a Use the euclidean algorithm to find GCD[1573, 308].
b Find integers A and B, satisfying

GCD[1573, 308] = A1573 + B308.

2.11 The set of powers of 3 modulo 2m is a cyclic group. By enumerating the elements
of the set for m = 3, 4, 5, 6, and 7, show that the order of the group is 2m−2 for
these values of m. Is the statement true for all values of m not smaller than 3?

2.12 Consider the set S = {0, 1, 2, 3} with the operations

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

Is this a field?
2.13 Prove that the complex-valued discrete Fourier transform of a data sequence

satisfies the symmetry condition

Vk = V ∗
n−k, k = 0, . . . , n − 1

if and only if the data sequence is real.

65 Problems

2.14 Let G be an arbitrary group (not necessarily finite). For convenience, call the
group operation “multiplication” and call the identity “one.” Let g be any element
and suppose that ν is the smallest integer, if there is one, such that gν = 1, where
gν means g ∗ g ∗ · · · ∗ g, ν times. Then ν is called the order of g. Prove that the
subset {g, g2, g3, . . . , gν−1, gν} is a subgroup of G. Prove that the subgroup is
abelian even if G is not.

2.15 Prove that the set of real numbers of the form {a + b
√

2}, where a and b are
rational, is a field under the conventional arithmetic operations.

2.16 The ring of quaternions consists of all expressions of the form

a = a0 + a1i + a2j + a3k,

where a0, a1, a2, and a3 are real numbers, and i, j , and k are indeterminates.
Addition and multiplication are defined by

a + b = (a0 + b0) + (a1 + b1)i + (a2 + b2)j + (a3 + b3)k

ab = (a0b0 − a1b1 − a2b2 − a3b3)

+ (a1b0 + a0b1 − a3b2 + a2b3)i

+ (a2b0 + a3b1 + a0b2 − a1b3)j

+ (a3b0 − a2b1 + a1b2 + a0b3)k.

Prove that the ring of quaternions is indeed a ring but is not a field. What field
property is lacking?

2.17 Prove the following.
(i) Under ring multiplication, the set of units of a ring forms a group.

(ii) If c = ab and c is a unit, then a has a right inverse and b has a left inverse.
(iii) If c = ab and a has no right inverse or b has no left inverse, then c is not a

unit.
2.18 The field with three elements, GF (3), is given by the arithmetic tables

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

.

Calculate the determinant of the following matrix and show that its rank is three:

M =

2 1 2
1 1 2
1 0 1

 .

66 Introduction to abstract algebra

2.19 (Discrete Fourier transform of a permuted sequence) Given the discrete Fourier
transform

Vk =
n−1∑
i=0

ωikvi, i = 0, . . . , n − 1,

suppose that a and n are coprime. Let

v′
i = v((ai))

define a permutation of the components of v. Prove that

V ′
k =

n−1∑
i=0

ωikv′
i

is a permutation of the components of V , given by V ′
k = V((bk)) for some b

coprime to n.
2.20 A year has at most 366 days. Suppose that all months except the last have

31 days.
a Is it possible to uniquely determine the day of the year, given the day of the

month and the day of the week?
b Suppose next that a month has 31 days and a week has twelve days. Is it

now possible to uniquely determine the day of the year, given the day of the
month and the day of the week?

c Using a 31-day month and a twelve-day week, give a formula for the day of
the year when given the day of month and day of week.

d Work through some numerical examples.
2.21 How many vectors are there in the vector space GF (2)n?
2.22 Is it true that if x, y, and z are linearly independent vectors over GF (q), then

so also are x + y, y + z, and z + x?
2.23 If S and T are distinct two-dimensional subspaces of a three-dimensional vector

space, show that their intersection is a one-dimensional subspace.
2.24 Let S be any finite set. Let G be the set of subsets of S. If A and B are two

subsets, let A ∪ B denote the set of elements in either A or B, let A ∩ B denote
the set of elements in both A and B, and let A − B denote the set of elements
in A but not in B.
a Show that G with the operation ∗ as set union ∪ is not a group.
b The set operation of symmetric difference
 is given by

A
B = (A − B) ∪ (B − A).

Show that G with ∗ as the operation of symmetric difference does give a
group. Is it abelian?

c Show that G, together with the operations
 and ∩, gives a ring. Is it a
commutative ring? Is there a unit?

67 Notes

Notes for Chapter 2

This chapter deals with standard topics in modern algebra. Many textbooks can be found
that cover the material more thoroughly. The book by Birkhoff and MacLane (1941)
is intended as an introductory text and is easily understood at the level of this book.
The two-volume work by Van der Waerden (1949, 1953) is a more advanced work,
addressed primarily to mathematicians, and goes more deeply into many topics. The
material on linear algebra and matrix theory can also be found in textbooks written
specifically for these topics. The book by Thrall and Tornheim (1957) is especially
suitable because it does not presuppose that the underlying field is the real field or the
complex field as do many other books. Pollard (1971) explicitly put forth the notion of
a Fourier transform in an arbitrary field.

The Galois fields are named for Évariste Galois (1811–1832). The abelian groups
are named for Niels Henrik Abel (1802–1829).

3 Fast algorithms for the discrete
Fourier transform

One of our major goals is the development of a collection of techniques for computing
the discrete Fourier transform. We shall find many such techniques, each with dif-
ferent advantages and each best-used in different circumstances. There are two basic
strategies. One strategy is to change a one-dimensional Fourier transform into a two-
dimensional Fourier transform of a form that is easier to compute. The second strategy
is to change a one-dimensional Fourier transform into a small convolution, which is
then computed by using the techniques described in Chapter 5. Good algorithms for
computing the discrete Fourier transform will use either or both of these strategies to
minimize the computational load. In Chapter 6, we shall describe how the fast Fourier
transform algorithms are used to perform, in conjunction with the convolution theorem,
the cyclic convolutions that are used to compute the long linear convolutions forming
the output of a digital filter.

Throughout the chapter, we shall usually regard the complex field as the field of the
computation, or perhaps the real field. However, most of the algorithms we study do
not depend on the particular field over which the Fourier transform is defined. In such
cases, the algorithms are valid in an arbitrary field. In some cases, the general idea
behind an algorithm does not depend on the field over which the Fourier transform
is defined, but some small detail of the algorithm may depend on the field. Then the
algorithm would need to be derived or verified for each field of interest.

3.1 The Cooley–Tukey fast Fourier transform

The Fourier transform of a vector v,

Vk =
n−1∑
i=0

ωikvi,

as it is written, requires on the order of n2 multiplications and n2 additions. If n is
composite, there are several ways to change this one-dimensional Fourier transform
into a two-dimensional Fourier transform, or something similar to it. This changes the

68

69 3.1 The Cooley–Tukey fast Fourier transform

Cooley–Tukey FFT (1965)

n n n
0, , 1;
0, , 1

0, , 1;
0, , 1

i n
i i n i

i n

k n
k n k k

k n

1 1

0 0

n n

i i

i k i k i k vV iikk

Number of multiplications n n n n

Figure 3.1 Cooley–Tukey FFT

computation to a form that is much more efficient; but the price is an increased diffi-
culty of understanding. Algorithms of this kind are known collectively as fast Fourier
transform (FFT) algorithms. Figure 3.1 summarizes the structure of the Cooley–Tukey
FFT algorithm – the algorithm that will be studied in this section. Figure 3.1 should
be compared with Figure 3.8 of Section 3.3, which summarizes the structure of the
Good–Thomas FFT algorithm.

To derive the general form of the Cooley–Tukey FFT algorithm, suppose that n =
n′n′′. Replace each of the indices in the above expression for the Fourier transform by
a coarse index and a vernier index as follows:

i = i ′ + n′i ′′,
i ′ = 0, . . . , n′ − 1,

i ′′ = 0, . . . , n′′ − 1;

k = n′′k′ + k′′,
k′ = 0, . . . , n′ − 1,

k′′ = 0, . . . , n′′ − 1.

Then

Vn′′k′+k′′ =
n′′−1∑
i ′′=0

n′−1∑
i ′=0

ω(i ′+n′i ′′)(n′′k′+k′′)vi ′+n′i ′′ .

Expand the product in the exponent and let ωn′ = γ and ωn′′ = β. Because ω has
order n′n′′, the term ωn′n′′i ′′k′ = 1 and can be dropped. Now define the two-dimensional
variables, which we also call v and V , given by

vi ′i ′′ = vi ′+n′i ′′,
i ′ = 0, . . . , n′ − 1,

i ′′ = 0, . . . , n′′ − 1;

Vk′k′′ = Vn′′k′+k′′,
k′ = 0, . . . , n′ − 1,

k′′ = 0, . . . , n′′ − 1.

70 Fast algorithms for the discrete Fourier transform

0
1
2
3

13
14

15-point
input

indices

0
1
2
3

13
14

15-point
output
indices0 1 2 3 4

5 6 7 8 9
10 11 12 13 14

0 3 6 9 12
1 4 7 10 13
2 5 8 11 14

Mapping Computation Mapping

0
1
2
3

19
20

0
1
2
3

19
20

21-point
input

indices

21-point
output
indices

0 1 2 3 4 5 6
7 8 9 10 11 12 13

14 15 16 17 18 19 20

0 3 6 9 12 15 18
1 4 7 10 13 16 19
2 5 8 11 14 17 20

Mapping Computation Mapping

Figure 3.2 Examples of Cooley–Tukey address shuffling

In this way, the input and output data vectors are mapped into two-dimensional arrays.
Observe that the components of the transform V are found arranged differently in the
array than are the components of the signal v. This is known as address shuffling. In
terms of the two-dimensional variables, the formula becomes

Vk′k′′ =
n′−1∑
i ′=0

βi ′k′
[
ωi ′k′′

n′′−1∑
i ′′=0

γ i ′′k′′
vi ′i ′′

]
.

Although this form is more difficult to understand than the original, the number of
multiplications and additions is much less. In fact, at most n(n′ + n′′ + 1) complex
multiplications and n(n′ + n′′ − 2) complex additions are required, compared to about
n2 complex multiplications and n2 complex additions previously.

The computations of the Cooley–Tukey FFT can be visualized as mapping a two-
dimensional signal-domain array into a two-dimensional transform-domain array, as
shown in Figure 3.2 for n = 15 and for n = 21. The computation consists of an n′′-
point discrete Fourier transform on each column, followed by an element-by-element
complex multiplication throughout the new array by ωi ′k′′

, followed by an n′-point
discrete Fourier transform on each row.

To compute the number of complex multiplications and the number of complex
additions when the input vector v is complex, suppose that the inner Fourier transform
and the outer Fourier transform are each computed in the obvious way with n

′′2 and
n′2 complex multiplications, respectively, and with n′′(n′′ − 1) and n′(n′ − 1) complex
additions, respectively. Each of these Fourier transforms is computed n′ times and
n′′ times, respectively. Besides these computations, there are n′n′′ additional complex

71 3.1 The Cooley–Tukey fast Fourier transform

multiplications needed for the element-by-element adjustment terms ωi ′k′′
. Therefore

the number of complex multiplications MC(n) and the number of complex additions
AC(n) are given by

MC(n) = n′(n′′)2 + n′′(n′)2 + n′n′′

= n(n′ + n′′ + 1),

AC(n) = n′n′′(n′′ − 1) + n′′n′(n′ − 1)

= n(n′ + n′′ − 2),

as we have already asserted. Among the multiplications are some trivial multiplications
by one. These occur in the adjustment terms whenever i ′ or k′′ equals zero. If one wants
to take the care, the algorithm can skip these multiplications. Then the number of
complex multiplications is

MC(n) = n(n′ + n′′) + (n′ − 1)(n′′ − 1)

= (n − 1)(n′ + n′′) + (n + 1).

The inner Fourier transform and the outer Fourier transform can themselves be
computed by a fast algorithm, not necessarily the Cooley–Tukey FFT. Then the number
of complex multiplications MC(n) and the number of complex additions AC(n) needed
by the Cooley–Tukey FFT will satisfy

MC(n) = n′MC(n′′) + n′′MC(n′) + n,

AC(n) = n′AC(n′′) + n′′AC(n′),

where the new MC(n′), MC(n′′), AC(n′), and AC(n′′) on the right side denote the number
of complex multiplications and complex additions needed by the selected n′-point fast
Fourier transform algorithm and the selected n′′-point fast Fourier transform algorithm,
respectively. Of course, if n′ or n′′ is itself composite, the smaller transforms may
themselves be computed by the Cooley–Tukey FFT. In this way, a transform whose
size n equals ��n� can be broken down into a form requiring about n

∑
� n� complex

multiplications. Figure 3.3 shows one way of several that a 75-point Fourier transform
can be broken down. We may want to think of the intermediate nodes in that figure as
representing calls to a subroutine and the terminal nodes as the actual subroutines. If
the computations are to be so broken into subroutines, then one way to do it is shown
in Figure 3.4. At the bottom level are a three-point Fourier transform and a five-point
Fourier transform that are computed explicitly. Later, we shall study the Winograd small
FFT, which can be used instead for these routines at the bottom level. The Winograd
small FFTs are highly optimized routines (by one criterion of optimality) designed to
compute a small Fourier transform whose blocklength is a small prime or a power of a
small prime.

72 Fast algorithms for the discrete Fourier transform

75-point
3

times

25-point

5
times

5
times

25
times

3-point
Fourier

transform

5-point
Fourier

transform

5-point
Fourier

transform

Figure 3.3 Structure of a 75-point Cooley–Tukey FFT

Map data
into 3 by 25 array

3-point transform
call 25 times

' ''
Multiply 3 by 25

array by i k

25-point FFT
call 3 times

Map data
into 5 by 5 array

5-point transform
call 5 times

' ''
Multiply 5 by 5
array by i k

5-point transform
call 5 times

Enter 75-point FFT

Exit 75-point FFT

Map 5 by 5 array
into 25-point vector

Enter 25-point FFT

Exit 25-point FFT

4

0

ik
k i

i
V v

Exit 5-point transform

Enter 5-point transform

Exit 3-point transform

Enter 3-point FFT

2

0

ik
k i

i
V v

Map 3 by 25 array
into 75-point vector

Figure 3.4 Subroutines for a 75-point FFT

3.2 Small-radix Cooley–Tukey algorithms

Many applications of the Cooley–Tukey FFT use a blocklength n that is a power of
two or of four. The blocklength 2m is factored either as 2 · 2m−1 or as 2m−1 · 2 to
form the FFT. The FFT then is called a radix-two1 Cooley–Tukey FFT. Similarly, the
blocklength 4m is factored either as 4 · 4m−1 or as 4m−1 · 4. The FFT then is called a
radix-four Cooley–Tukey FFT. In this section, we shall describe many variations of

1 The term radix-two refers to the fact that the indices are represented to the base two. The data components may
be in any number representation, including a base-two representation.

73 3.2 Small-radix Cooley–Tukey algorithms

Figure 3.5 Decimation-in-time butterfly

the radix-two and radix-four FFTs. These will be judged simply by the number of
multiplications and additions. However, it takes work to avoid work, and one must
choose an algorithm only after all considerations are examined.

The 2m-point radix-two Cooley–Tukey FFT with n′ equal to 2 and n′′ equal to 2m−1

is known as a decimation-in-time radix-two Cooley–Tukey FFT. By setting n′ = 2 and
n′′ = n/2 in the expression of Figure 3.1, the equations of the FFT then can be put into
the simple form

Vk =
(n/2)−1∑

i=0

ω2ikv2i + ωk

(n/2)−1∑
i=0

ω2ikv2i+1,

Vk+n/2 =
(n/2)−1∑

i=0

ω2ikv2i − ωk

(n/2)−1∑
i=0

ω2ikv2i+1

for k = 0, . . . , (n/2) − 1, where we have used the fact that β = ωn/2 = −1. The
decimation-in-time FFT breaks the input data vector v into the set of components
with odd index and the set of components with even index. The output transform vec-
tor V is broken into the set containing the first n/2 components and the set containing
the second n/2 components. The decimation-in-time Cooley–Tukey FFT calls for the
computation of two Fourier transforms, given by

V ′
k =

(n/2)−1∑
i=0

µikv2i

and

V ′′
k =

(n/2)−1∑
i=0

µikv2i+1,

where µ = ω2. Each of these expressions is a Fourier transform of blocklength n/2.
Then V is obtained by the equations

Vk = V ′
k + ωkV ′′

k ,

Vk+n/2 = V ′
k − ωkV ′′

k

for k = 0, . . . , (n/2) − 1. This is illustrated by the so-called decimation-in-time
“butterfly” in Figure 3.5.

74 Fast algorithms for the discrete Fourier transform

Figure 3.6 Decimation-in-frequency butterfly

The 2m-point radix-two Cooley–Tukey algorithm, with n′ equal to n/2 and n′′ equal
to 2 in the expression of Figure 3.1, is known as a decimation-in-frequency radix-two
Cooley–Tukey FFT. The equations of this FFT are

V2k′ =
(n/2)−1∑

i ′=0

(vi ′ + vi ′+n/2)ω2i ′k′
,

V2k′+1 =
(n/2)−1∑

i ′=0

(vi ′ − vi ′+n/2)ωiω2i ′k′

for k′ = 0, . . . , (n/2) − 1. This is illustrated by the so-called decimation-in-frequency
“butterfly” in Figure 3.6. The decimation-in-frequency FFT breaks the input data vector
v into the first n/2 components and the second n/2 components. The output Fourier
transform vector V is broken into the set of components with odd index and the set of
components with even index. By taking the sum and difference of two half data vectors,
the decimation-in-frequency FFT sets up two Fourier transforms of blocklength n/2.

The decimation-in-time algorithm and the decimation-in-frequency algorithm are
different in structure and in the sequence of the computations, but the number of
computations is the same. Also, the performance is the same, but the user may prefer
one of them because of some unique implementation considerations. We shall study in
detail only the performance of the decimation-in-time algorithm.

The decimation-in-time algorithm changes an n-point Fourier transform into two
n/2-point Fourier transforms plus some extra additions and multiplications. Some of
the multiplications are multiplications by one or by j . These are trivial and need no
actual computation. To by-pass the trivial multiplications, however, does require that
such special cases be handled separately in the implementation. Sometimes, to make
the implementation clean, the designer will elect to execute all multiplications, even
the trivial ones. We begin with this case.

The decimation-in-time algorithm is used recursively, at each level replacing an
n-point Fourier transform by two n/2-point Fourier transforms, which, in turn, are
broken down in the same way. By examining the equations, it is easy to see that the
number of complex multiplications for an n-point FFT, MC(n), satisfies the recursion

MC(n) = 2MC(n/2) + n/2

75 3.2 Small-radix Cooley–Tukey algorithms

and the number of complex additions satisfies

AC(n) = 2AC(n/2) + n,

where n is a power of two. These recursions are satisfied by

MC(n) = 1
2n log2 n,

AC(n) = n log2 n.

Each complex multiplication can be implemented with four real multiplications and
two real additions. The performance of the radix-two FFT is then measured by

MR(n) = 2n log2 n,

AR(n) = 3n log2 n.

Alternatively, each complex multiplication can be implemented with three real multi-
plications and three real additions. Then the performance is described by

MR(n) = 3
2n log2 n,

AR(n) = 7
2n log2 n.

Suppose, instead, that we are willing to build into the algorithm a provision to skip
the trivial multiplications. Then these performance measures will go down. A careful
analysis will show that all multiplications in the innermost stage are trivial, given by
(−1)k for k = 0, 1; all multiplications in the next stage are trivial, given by jk for
k = 0, 1, 2, 3; and in subsequent stages the numbers of trivial multiplications are n/4,
n/8, and so forth. Therefore the number of complex multiplications is

MC(n) = 1
2n(−3 + log2 n) + 2.

When using four real multiplications and two real additions to compute a complex
multiplication, the performance of the radix-two FFT is described by

MR(n) = 2n(−3 + log2 n) + 8,

AR(n) = 3n(−1 + log2 n) + 4

real multiplications and real additions. When using three real multiplications and three
real additions to compute a complex multiplication, the performance is described by

MR(n) = 3
2n(−3 + log2 n) + 6,

AR(n) = 1
2n(−9 + 7 log2 n) + 6

real multiplications and real additions.
There is still one more symmetry within the trigonometric functions that can be used

to perform even a little better. Notice that

ωn/8 = (1 − j)/
√

2.

76 Fast algorithms for the discrete Fourier transform

Table 3.1 Performance of some Cooley–Tukey FFT algorithms

Basic Fully optimized∗ Rader–Brenner
radix-two radix-two radix-two

complex FFT complex FFT complex FFT

Number of Number of Number of Number of Number of Number of
Blocklength real real real real real real

n multiplications additions multiplications additions multiplications additions

8 48 72 4 52 4 64
16 128 192 24 152 20 192
32 320 480 88 408 68 512
64 768 1152 264 1032 196 1280

128 1792 2688 712 2504 516 3072
256 4096 6144 1800 5896 1284 7168
512 9216 13824 4360 13576 3076 16384

1024 20480 30720 10248 30728 7172 36864
2048 45056 67584 23560 68616 16388 81920
4096 98304 147456 59256 151560 36868 180224

∗ • Complex multiplication using three real multiplications and three real additions
• Trivial multiplications (by ±1 or ±j) not counted
• Symmetries of trigonometric functions fully used

Multiplication by this complex constant requires only two real multiplications and two
real additions. There are n/4, n/8, . . . such multiplications in stages 3, 4, These
can be handled by a special multiplication procedure. In such an implementation, the
performance is measured by

MR(n) = n(−7 + 2 log2 n) + 12,

AR(n) = 3n(−1 + log2 n) + 4

real multiplications and real additions, or

MR(n) = 1
2n(−10 + 3 log2 n) + 8,

AR(n) = 1
2n(−10 + 7 log2 n) + 8,

depending on which complex multiplication rule is used.
We can see that the number of variations of the radix-two Cooley–Tukey algorithm is

quite large, but we are still not finished. There are even more options available. Table 3.1
summarizes the performance of some Cooley–Tukey FFTs. In addition to the ordinary
form of the Cooley–Tukey FFT, the figure also includes the Rader–Brenner fast Fourier
transform. This FFT algorithm is a variation of the Cooley–Tukey FFT algorithm and
is based on the observation that some of the multiplications by complex constants can
be made into multiplications by real constants by rearranging the equations.

77 3.2 Small-radix Cooley–Tukey algorithms

The Rader–Brenner FFT can be developed by starting from the decimation-in-time
equations or from the decimation-in-frequency equations. We choose to start with the
decimation-in-frequency equations:

V2k =
(n/2)−1∑

i=0

(vi + vi+n/2)ω2ik,

V2k+1 =
(n/2)−1∑

i=0

(vi − vi+n/2)ωiω2ik

for k = 0, . . . , (n/2) − 1. Define a working vector a, given by

ai =
{

0, i = 0,

(vi − vi+n/2)/[2j sin(2πi/n)], i = 1, . . . , (n/2) − 1,

and let

Ak =
(n/2)−1∑

i=0

ω2ikai, k = 0, . . . ,
n

2
− 1.

We can relate V2k+1 to Ak as follows:

Ak+1 − Ak =
(n/2)−1∑

i=0

ω2ikai(ω
2i − 1)

=
(n/2)−1∑

i=0

ω2ikωiai2j sin(2πi/n)

=
(n/2)−1∑

i=1

(vi − vi+n/2)ωiω2ik.

Therefore

V2k+1 = Ak+1 − Ak + (V0 − Vn/2)

for k = 0, . . . , (n/2) − 1. Thus we have replaced the multiplication by the complex
constant ωi with multiplication by the imaginary constant [2j sin(2πi/n)]−1, which
reduces the computational complexity. Care must be taken, however, because when n is
large and i is small, the new constants can become quite large, so wordlength problems
may arise.

A summary of the Rader–Brenner FFT algorithm is shown in Figure 3.7. Each of
the two n/2-point discrete Fourier transforms can, in turn, be broken down in the
same way. At each stage the algorithm requires (n/2) − 2 multiplications of a complex
number by an imaginary number, for a total of n − 4 real multiplications. (We choose
not to count the multiplication by 1

2 when i equals n/4.) There is a total of 2n complex
additions per stage, or 4n real multiplications. The performance of the Rader–Brenner

78 Fast algorithms for the discrete Fourier transform

0, 0,

1,/ 2), (1,) ,/2sin(2/2

i
ai j v v i n i ni n i

/2 1
2 0, ,(/ 2) 1,

0

n
ikA a k nk ii

/2 1
2 0, ,(/ 2) 1,2/2 0

n
ikV v v k nk i i ni

 0, ,(/ 2) 1,0 /22 1 1V A A V V k nnk k k

,

,

,

Figure 3.7 Rader–Brenner FFT algorithm

algorithm is measured by the recursive equations

MR(n) = n − 4 + 2MR(n/2),

AR(n) = 4n + 2AR(n/2),

with initial conditions

MR(4) = 0,

AR(4) = 16.

We have not counted the multiplications by ±1 or ±j that occur in the innermost two
stages.

The performance of the Rader–Brenner FFT is shown in Table 3.1 in comparison with
other forms of the Cooley–Tukey FFT. Notice that the fully optimized radix-two FFT
for small blocklength has fewer additions. This suggests a hybrid approach, breaking
down the Fourier transform with the Rader–Brenner algorithm until a blocklength of
sixteen is reached; then continuing with the fully optimized radix-two algorithm. Even
better performance can be obtained by using a Winograd sixteen-point FFT, discussed
in Section 3.6, at the innermost stage. The recursive equations given above still apply,
but now with initial conditions

MR(16) = 20,

AR(16) = 148.

The radix-four Cooley–Tukey FFT algorithms are also popular. They can be used
when the blocklength n is a power of four and so factorable as 4 · 4m−1 or as 4m−1 · 4. We
will discuss only the decimation-in-time radix-four Cooley–Tukey FFT. The equations
of this FFT can be obtained in a simple form by setting n′ = 4 and n′′ = n/4 in

79 3.2 Small-radix Cooley–Tukey algorithms

the general equation for the Cooley–Tukey FFT, given in Figure 3.1. Then for k =
0, . . . , (n/4) − 1,

Vk

Vk+n/4

Vk+n/2

Vk+3n/4

 =

1 1 1 1
1 −j −1 j

1 −1 1 −1
1 j −1 −j

∑(n/4)−1
i=0 ω4ikv4i

ωk
∑(n/4)−1

i=0 ω4ikv4i+1

ω2k
∑(n/4)−1

i=0 ω4ikv4i+2

ω3k
∑(n/4)−1

i=0 ω4ikv4i+3

 .

For each of n/4 values of k, there is such a matrix equation giving four values of
the transform. In this way, the n-point Fourier transform is replaced with four n/4-
point Fourier transforms plus some supporting computations. As written, the matrix
equation has only three distinct complex multiplications and twelve complex additions
for each k as supporting computations. The innermost FTT stage – a four-point Fourier
transform – has no multiplications.

The number of additions can be reduced further. Rewrite the equation for k =
0, . . . , (n/4) − 1 as

Vk

Vk+n/4

Vk+n/2

Vk+3n/4

 =

1 0 1 0
0 1 0 −j

1 0 −1 0
0 1 0 j

1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1

∑(n/4)−1
i=0 ω4ikv4i

ωk
∑(n/4)−1

i=0 ω4ikv4i+1

ω2k
∑(n/4)−1

i=0 ω4ikv4i+2

ω3k
∑(n/4)−1

i=0 ω4ikv4i+3

 .

Now only eight additions are needed to execute the factored form of the four by
four matrix, compared to twelve previously. This is the final form of the radix-four
Cooley–Tukey FFT. The performance is described by

MC(n) = 3
4n(log4 n − 1) = 3

8n(log2 n − 2),

AC(n) = 2n log4 n = n log2 n

complex multiplications and complex additions, respectively.
If the complex multiplications are computed by using three real multiplications

and three real additions, the performance of the basic algorithm is measured by the
equations

MR(n) = 9
8n(log2 n − 2),

AR(n) = 25
8 n log2 n − 9

4n.

It is possible to do even better if one wishes to design enough logic in the pro-
gram to catch all multiplications by ±1, by ±j , or by odd powers of (1/

√
2)(1 − j)

because these multiplications do not require three real multiplications. The performance

80 Fast algorithms for the discrete Fourier transform

Table 3.2 Performance of some radix-four FFT algorithms

Basic Fully optimized∗

radix-four radix-four
complex FFT complex FFT

Number of Number of Number of Number of
Blocklength real real real real

n multiplications additions multiplications additions

4 0 16 0 16
16 36 164 20 148
64 288 1128 208 976

256 1728 5824 1392 5488
1024 9216 29696 7856 28336
4096 46080 144384 40642 138928

∗ • Complex multiplication using 3 real multiplications and 3 real additions
• Trival multiplications (by ±1 or ±j) not counted

equations then become

MR(n) = 9
8n log2 n − 43

12n + 16
3 ,

AR(n) = 25
8 n log2 n − 43

12n + 16
3 .

The performance of the radix-four Cooley–Tukey FFT is summarized in Table 3.2.

3.3 The Good–Thomas fast Fourier transform

The second type of FFT algorithm is the Good–Thomas fast Fourier transform. It is
based on factorization of the blocklength into distinct prime powers. This algorithm is
a little more complicated conceptually than the Cooley–Tukey algorithm, but is a little
simpler computationally. The Good–Thomas algorithm, summarized in Figure 3.8, is
another way of organizing a linear array of n = n′n′′ numbers into an n′ by n′′ array,
but in such a way that a one-dimensional Fourier transform can be turned into a true
two-dimensional Fourier transform. The idea is very different from the idea of the
Cooley–Tukey algorithm. Now n′ and n′′ must be coprime, and the mapping is based
on the Chinese remainder theorem. Refer to Figure 3.9 to see how the input data is
arranged. It is stored in the two-dimensional array by starting in the upper left corner
and listing the components down the “extended diagonal.” Because the number of rows
and the number of columns are coprime, the extended diagonal passes through every
element of the array. After a true two-dimensional Fourier transform, the transform
appears in another two-dimensional array. The order of the output components in the

81 3.3 The Good–Thomas fast Fourier transform

Good–Thomas FFT (1960–1963)

 coprimen n n

Scramble input indices

 (mod)
(mod)

where
(mod)

1

ni N ni N ni
nii
nii

N n N n

Scramble output indices

 (mod)nn kn kk

1 1

0 0

n n
i k i k

iikk
i i

vV

Number of multiplications n n n

Figure 3.8 Good–Thomas FFT

0
1
2
3

13
14

15-point
input

indices

0
1
2
3

13
14

15-point
output
indices0 3 6 9 12

5 8 11 14 2
10 13 1 4 7

0 6 12 3 9
10 1 7 13 4

5 11 2 8 14

MappingComputationMapping

0
1
2
3

19
20

0
1
2
3

19
20

21-point
input

indices

21-point
output
indices

0 15 9 3 18 12 6
7 1 16 10 4 19 13

14 8 2 17 11 5 20

0 3 6 9 12 15 18
7 10 13 16 19 1 4

14 17 20 2 5 8 11

Mapping MappingComputation

Figure 3.9 Examples of Good–Thomas shuffling

82 Fast algorithms for the discrete Fourier transform

output array, however, is different from the order of input components in the input
array. The ordering of the input and output arrays is described below.

The derivation of the Good–Thomas FFT algorithm is based on the Chinese remain-
der theorem for integers. The input index is described by its residues as follows:

i ′ = i (mod n′),

i ′′ = i (mod n′′).

This is the map of the input index i down the extended diagonal of a two-dimensional
array indexed by (i ′, i ′′). By the Chinese remainder theorem, there exist integers N ′

and N ′′ such that the input index can be recovered as follows:

i = i ′N ′′n′′ + i ′′N ′n′ (mod n),

where N ′ and N ′′ are the integers that satisfy

N ′n′ + N ′′n′′ = 1.

The output index is described somewhat differently. Define

k′ = N ′′k (mod n′),

k′′ = N ′k (mod n′′).

For this purpose, N ′ and N ′′ can be reduced modulo n′ and modulo n′′, respectively.
The output index k is recovered as follows:

k = n′′k′ + n′k′′ (mod n).

To verify this, write it out:

k = n′′(N ′′k + Q1n
′) + n′(N ′k + Q2n

′′) (mod n′n′′)

= k(n′′N ′′ + n′N ′) (mod n)

= k.

Now, with these new indices, we convert the Fourier transform

Vk =
n−1∑
i=0

ωikvi

into the formula

Vn′′k′+n′k′′ =
n′′−1∑
i ′′=0

n′−1∑
i ′=0

ω(i ′N ′′n′′+i ′′N ′n′)(n′′k′+n′k′′)vi ′N ′′n′′+i ′′N ′n′ .

Multiply out the exponent. Because ω has order n′n′′, terms in the exponent of ω

involving n′n′′ can be dropped. Treat the input and output vectors as two-dimensional
arrays by using the index transformations given above to replace n′′k′ + n′k′′ by (k′, k′′)

83 3.4 The Goertzel algorithm

and to replace vi ′N ′′n′′+i ′′N ′n′ by (i ′, i ′′). Then

Vk′k′′ =
n′−1∑
i ′=0

n′′−1∑
i ′′=0

ωN ′′(n′′)2i ′k′
ωN ′(n′)2i ′′k′′

vi ′i ′′

=
n′−1∑
i ′=0

n′′−1∑
i ′′=0

βi ′k′
γ i ′′k′′

vi ′i ′′,

where β = ωN ′′(n′′)2
and γ = ωN ′(n′)2

. The terms β and γ are an n′th root of unity and an
n′′th root of unity, respectively, which are needed for the n′-point Fourier transform and
the n′′-point Fourier transform. To see this for β, notice that β = (ωn′′

)N
′′n′′

. Because
ωn′′ = e−j2π/n′

, and N ′′n′′ = 1 modulo n′, we see that β = e−j2π/n′
. A similar analysis

shows that γ = e−j2π/n′′
.

The equation is now in the form of an n′ by n′′ two-dimensional Fourier transform.
The number of multiplications is about n(n′ + n′′), and the number of additions is
about the same. The Fourier transform on the rows or on the columns can, in turn, be
simplified by another application of the fast Fourier transform if the size is composite.
In this way, a transform whose size n has coprime factors n� can be broken down into
a form requiring about n

∑
� n� multiplications and n

∑
� n� additions.

One can choose either the Cooley–Tukey algorithm or the Good–Thomas algorithm
to do Fourier transforms. It is even possible to build a Fourier transform algorithm by
using both the Cooley–Tukey FFT and the Good–Thomas FFT. For example, a 63-point
transform can be broken into a seven-point transform and a nine-point transform by
using the Good–Thomas FFT; the nine-point transform can then be broken into two
three-point transforms by using the Cooley–Tukey FFT. One then has a computation
in a form similar to a three by three by seven three-dimensional Fourier transform.
Figure 3.10 shows some ways that a 1000-point discrete Fourier transform could be
built out of smaller pieces. Each example uses a two-point module three times and
a five-point module three times. They are, however, distinctly different procedures;
the small modules are used in a different order. The number of multiplications and
additions, the sensitivity to computational noise, and the ease of implementation will
be different.

3.4 The Goertzel algorithm

A single component of a Fourier transform can be computed by Horner’s rule. This is
a way of evaluating a polynomial

v(x) = vn−1x
n−1 + vn−2x

n−2 + · · · + v1x + v0

at some point β. Horner’s rule is the arrangement

v(β) = (· · · ((vn−1β + vn−2)β + vn−3)β + · · · + v1)β + v0,

84 Fast algorithms for the discrete Fourier transform

1000

G.T.
FFT

C.T.
FFT

C.T.
FFT

C.T.
FFT

C.T.
FFT

8

4

22

2

125

5

5 5

C.T.
FFT

C.T.
FFT

C.T.
FFT

C.T.
FFT

C.T.
FFT

2

2

2

5

5 5

25

125

250

500

1000

C.T.
FFT

C.T.
FFT

C.T.
FFT

G.T.
FFT

G.T.
FFT

2

1000

2

2

5 5

25

50

C.T.
FFT

G.T.
FFT

C.T.
FFT

G.T.
FFT

G.T.
FFT

2

2 2 5

10

100

1000

5

5

10

25
5 10

20

4

Figure 3.10 Some ways to build a 1000-point Fourier transform

which requires n − 1 multiplications and n − 1 additions in the field of β. If the
various powers of β are prestored, then Horner’s rule has no advantage over a direct
computation. The advantage of Horner’s rule is that prestorage is not necessary.

If β = ωk , then Horner’s rule computes the kth component of the Fourier transform in
n − 1 complex multiplications and n − 1 complex additions. A more efficient algorithm
is the Goertzel algorithm, which is another procedure for computing a discrete Fourier
transform. It reduces the number of multiplications by only a small factor. It is not
an FFT because the complexity is still proportional to n2. The Goertzel algorithm
is useful when only a few components of the discrete Fourier transform are to be
computed – typically not more than log2 n of the n components. This is because, if
more than log2 n components were to be computed, an FFT algorithm would compute
all the components with about n log2 n operations; then those that are not needed could
be discarded.

To compute one component of the Fourier transform

Vk =
n−1∑
i=0

ωikvi

introduce the polynomial p(x), given by

p(x) = (x − ωk)(x − ω−k).

85 3.5 The discrete cosine transform

This polynomial is the smallest-degree polynomial with real coefficients having ωk as
a zero. More succinctly, it is the minimal polynomial of ωk over the reals. It is

p(x) = x2 − 2 cos

(
2π

n
k

)
x + 1.

Let

v(x) =
n−1∑
i=0

vix
i

and write

v(x) = p(x)Q(x) + r(x).

The quotient polynomial Q(x) and the remainder polynomial r(x) can be found by
long division of polynomials. Then Vk is computed from the remainder polynomial by

Vk = v(ωk) = r(ωk),

because, by construction, p(ωk) is equal to zero. Most of the work of the Goertzel
algorithm is in the long division of polynomials. If v(x) has complex coefficients, then
the division by p(x) requires 2(n − 2) real multiplications; if v(x) has real coefficients,
then n − 2 real multiplications are needed. Likewise, 4(n − 2) real additions are needed
in the complex case, and 2(n − 2) real additions are needed in the real case.

Because r(x) has degree one, to compute r(ωk) after the division takes only one
more complex multiplication and one more complex addition. Hence, when the input
data is complex, the Goertzel algorithm has 2n − 1 real multiplications and 4n − 1 real
additions for each output component Vk computed.

A circuit diagram implementing the Goertzel algorithm is shown in Figure 3.11.
This circuit has the form of an autoregressive filter. This is a consequence of the fact
that a circuit for dividing one polynomial by another has the form of an autoregressive
filter. After the polynomial v(x) is shifted in, the circuit of Figure 3.11 will contain
the remainder polynomial r(x) when v(x) is divided by p(x). The quotient polynomial
Q(x) is of no importance to the computation, and is lost.

3.5 The discrete cosine transform

The Fourier transform of a real-valued vector is a complex-valued vector. This means
that every component of the transform, in general, has both a real part and an imaginary
part, which results in a doubling of the data storage when converting a real time-domain
signal into the frequency domain. Moreover, the computation of the Fourier transform
of a real-valued vector may have nearly as many operations as the computation of

86 Fast algorithms for the discrete Fourier transform

Shift in ()v x

0 2 1, , ,n nv v v

1 A

Notes: Real or complex input data
2

2cosA k
n

() remains in shift register after division is completer x
One divide circuit for each kV

1 0
k

kV r r

Figure 3.11 Flow diagram for Goertzel algorithm

the Fourier transform of a complex-valued vector, while it may seem that it should
have only half as many. One way to effectively halve the number of computations
is to combine two real time-domain vectors into one complex time-domain vector
so that both can be transformed simultaneously. Then the resulting Fourier transform
can be disentangled in the standard way (see Problem 1.11 and Section 5.1) into the
two Fourier transforms of the two real vectors. Those two transforms, however, will
each still be complex and must be stored as such. Another method – one that yields
a real-valued transform – is to use a discrete cosine transform as described in this
section.

The discrete cosine transform is an alternative transform with the property that the
transform of a real-valued vector is another real-valued vector. The discrete cosine
transform of blocklength n is defined as

Vk =
n−1∑
i=0

vi cos
π (2i + 1)k

2n
, k = 0, . . . , n − 1.

The inverse discrete cosine transform is

vi = 1

n

n−1∑
k=0

Vk

(
1 − 1

2δk

)
cos

π (2i + 1)k

2n
, i = 0, . . . , n − 1,

where δk = 1 if k = 0 and, otherwise, δk = 0. The inverse discrete cosine transform
can be verified directly. The summand in the inverse discrete cosine transform differs
from the summand in the direct discrete cosine transform due to the curious factor of(
1 − 1

2δk

)
, whose only purpose is to change V0 to V0/2.

87 3.5 The discrete cosine transform

An example may be helpful to make the structure of the discrete cosine transform
explicit. To this end, notice that the four-point discrete cosine transform can be written
out as

V0

V1

V2

V3

 =

1 1 1 1

cos π
8 cos 3π

8 −cos 3π
8 −cos π

8

cos 2π
8 −cos 2π

8 −cos 2π
8 cos 2π

8

cos 3π
8 −cos π

8 cos π
8 −cos 3π

8

v0

v1

v2

v3

 .

As written, this requires twelve real multiplications, although there are some obvious
groupings of terms that immediately reduce this to five real multiplications.

Mathematically, the discrete cosine transform is closely related to the discrete Fourier
transform. Indeed, the discrete cosine transform of the vector v is equal to the discrete
Fourier transform of a vector u of blocklength 4n that is formed from v in two steps.
First, double the length of v by following it with its own time reversal and divide the
resulting vector by two. Then double the length again by inserting a zero between every
two elements. The new vector u is a vector of length 4n given by

u2i+1 =
{

1
2vi, i = 0, . . . , n − 1,

1
2v2n−i−1, i = n, . . . , 2n − 1,

u2i = 0, i = 0, . . . , 2n − 1.

Theorem 3.5.1 The discrete cosine transform of blocklength n of the vector v is equal
to the first n components of the discrete Fourier transform of blocklength 4n of the vector
u given by u2i+1 = vi for i = 0, . . . , n − 1, and equal to v2n−i−1 for i = n, . . . , 2n − 1,
and otherwise, the components of u are zero.

Proof To compute the 4n-point Fourier transform of the vector u, let ω = e−j2π/4n be
a 4nth root of unity, and let the 4n components of u be indexed by �. Then the first n

components of the Fourier transform of u are given by

Vk =
4n−1∑
�=0

ω�ku�, k = 0, . . . , n − 1

= 1

2

n−1∑
i=0

ω(2i+1)kvi + 1

2

2n−1∑
i=n

ω(2i+1)kv2n−i−1.

Set i = 2n − i ′ − 1 in the second term and note that ω4n = 1. Then

Vk = 1

2

n−1∑
i=0

ω(2i+1)kvi + 1

2

n−1∑
i ′=0

ω−(2i ′+1)kvi ′ .

88 Fast algorithms for the discrete Fourier transform

But ω = e−j2π/4n, so, with i ′ changed to i in the second term,

Vk = 1

2

n−1∑
i=0

e−j2π(2i+1)k/4nvi + 1

2

n−1∑
i=0

ej2π(2i+1)k/4nvi

=
n−1∑
i=0

vi cos
π (2i + 1)k

2n
, k = 0, . . . , n − 1,

as was to be proved. �

From Theorem 3.5.1 we can conclude that any fast algorithm for computing a 4n-
point discrete Fourier transform could be used to compute an n-point discrete cosine
transform by first rearranging the components of v into the vector u of blocklength 4n.
The resulting algorithm, however, can be simplified because of the alternating zeros in
the vector u of blocklength 4n. In this way, any of the algorithms for computing the
discrete Fourier transform can be restructured to provide an algorithm for computing
the discrete cosine transform. One must examine the Fourier transform algorithm to
eliminate from that algorithm those operations that become vacuous or redundant when
applied to the discrete cosine transform. A first step in this direction is the following
corollary.

Corollary 3.5.2 The discrete cosine transform of the vector v of blocklength n is given
by

Vk = Re

[
e−j2πk/4n

2n−1∑
i=0

rie
−j2πik/2n

]
, k = 0, . . . , n − 1,

where

ri =
{

vi, i = 0, . . . , n − 1,

v2n−i−1, i = n, . . . , 2n − 1.

Proof The proof applies the decimation-in-time equations of the radix-two Cooley–
Tukey fast Fourier transform to the expression of Theorem 3.5.1. This decimation
leads to one expression for all of the even values of the index k in the equation of the
theorem, and another expression for all of the odd values of that index. The expression
involving the even indices can be dropped because those terms are all zero. Then, with
ω = e−j2π/4n, we have

Vk = ωk

2n−1∑
i=0

ω2ikui, k = 0, . . . , n − 1

= ωk

n−1∑
i=0

ω2ikvi + ωk

2n−1∑
i=n

ω2ikv4n−4i−1.

89 3.5 The discrete cosine transform

Replace 4n − 4i − 1 by i in the second term:

Vk = ωk

n−1∑
i=0

riω
2ik + ω−k

n−1∑
i=0

riω
−2ik.

Because ri is real, this becomes

Vk = Re

[
n−1∑
i=0

riω
(2i+1)k

]
,

which completes the proof. �

Of course, the statement in Corollary 3.5.2 could instead be obtained directly and
more simply from the definition of the discrete cosine transform.

Theorem 3.5.1 and Corollary 3.5.2 show that the discrete cosine transform of block-
length n can be computed with a fast Fourier transform algorithm of blocklength either
4n or 2n. In particular, a radix-two discrete cosine transform of blocklength n can be
computed with complexity on the order of n log n. However, such algorithms do use
complex numbers, and may be inconvenient for small or moderate values of n. A more
direct algorithm may be preferred for small blocklengths when n is equal to a power
of two. As an instructive alternative, we will develop an algorithm directly from the
definition of the discrete cosine transform.

Theorem 3.5.3 (Decimation of the DCT) The discrete cosine transform of even
blocklength can be written for even k as

V2k′ =
(n/2)−1∑

i=0

(vi +− vi+n/2) cos
π (2i + 1)k′

n
, k′ = 0, . . . , (n/2) − 1,

the sign depending on whether k′ is odd or even, and for odd k as

V2k′+1 =
(n/2)−1∑

i=0

(vi − vn−1−i) cos
π (2i + 1)(2k′ + 1)

2n
, k′ = 0, . . . , (n/2) − 1.

Proof The discrete cosine transform is given by

Vk =
n−1∑
i=0

vi cos
π (2i + 1)k

2n
.

This will be decimated by treating odd indices and even indices separately.

90 Fast algorithms for the discrete Fourier transform

For the decimation step for even indices, replace k by 2k′ and write

V2k′ =
n−1∑
i=0

vi cos
π (2i + 1)2k′

2n

=
(n/2)−1∑

i=0

vi cos
π (2i + 1)k′

n
+

n−1∑
i=n/2

vi cos
π (2i + 1)k′

n
.

Now replace i by i ′ + n/2 in the second sum, noting that cos π (2i ′ + n + 1)k′/n =
+− cos π (2i ′ + 1)k′/n. Therefore, replacing, in turn, i ′ by i, we have

V2k′ =
(n/2)−1∑

i=0

(vi +− vi+n/2) cos
π (2i + 1)k′

n
, k′ = 0, . . . , (n/2) − 1.

This has the same form as the original equation except that n is replaced by n/2.
For the decimation step for odd integers, replace k by 2k′ + 1 and write

V2k′+1 =
n−1∑
i=0

vi cos
π (2i + 1)(2k′ + 1)

2n

=
(n/2)−1∑

i=0

vi cos
π (2i + 1)(2k′ + 1)

2n
+

n−1∑
i=n/2

vi cos
π (2i + 1)(2k′ + 1)

2n
.

Now replace i by n − 1 − i ′ in the second term. Then

V2k′+1 =
(n/2)−1∑

i=0

vi cos
π (2i + 1)(2k′ + 1)

2n
+

(n/2)−1∑
i ′=0

vn−1−i ′
cos π (2n − 2i ′ − 1)(2k′ + 1)

2n

=
(n/2)−1∑

i=0

(vi − vn−1−i) cos
π (2i + 1)(2k′ + 1)

2n
,

which completes the proof of the theorem. �

The first decimation equation in Theorem 3.5.3 has the same form as did the original
equation for the discrete cosine transform, and so, in turn, that expression can be
decimated in the same way provided n/2 is even. The second decimation equation in
Theorem 3.5.3 does not have this same form and so cannot be decimated in the same
way. It can be computed as written using (n/2)2 multiplications. If MR(n) denotes the
number of real multiplications needed to compute the n-point discrete cosine transform,
then this decimation procedure leads to the recursion

MR(n) = MR(n/2) + (n/2)2.

By starting with M(4) = 5, this gives M(8) = 21, and M(16) = 85. In general, this
recursion shows that it requires 1

3 (n2 − 1) multiplications to compute a discrete cosine
transform of blocklength n with this procedure.

91 3.6 Fourier transforms computed by using convolutions

It is possible to do even better if n = 2m. Then the indices i and k′ are elements
of Z2m , and so 2i + 1 and 2k′ + 1 are elements of Z∗

2m . This means that the methods
to be studied in Section 3.7 can be used to represent this computation as a two-
dimensional cyclic convolution for which fast algorithms exist. For this purpose, the
structure of Z∗

2m is described in Chapter 9. In particular, Theorem 9.1.8 states that Z∗
2m

is isomorphic to the direct sum Z2 ⊕ Z2m−2 . This means that the elements of Z∗
2m can

be written as σ �′
η�′′

or as σ−r ′
η−r ′′

for some integers σ and η. In particular, we can
write (2i + 1)(2k + 1) = σ �′

η�′′
σ−r ′

η−r ′′ = σ �′−r ′
η�′′−r ′′

for some �′, r ′, �′′, and r ′′. In
Section 3.7, it is explained how, with this representation, the decimation equation can
be put in the form

V ′
r ′r ′′ =

1∑
�′=0

n∑
�′′=0

g�′−r ′,�′′−r ′′v�′,�′′

which is a two-dimensional cyclic convolution. Thus, the terms in the second of the
decimation equations of Theorem 3.5.3 can be computed by any fast algorithm for
computing a two-dimensional cyclic convolution.

3.6 Fourier transforms computed by using convolutions

The discrete Fourier transform

Vk =
n−1∑
i=0

ωikvi

can be computed efficiently by first changing it into a convolution. This may seem like
a peculiar thing to consider, because we have already suggested that a good way to
compute a convolution is to make use of the convolution theorem and a fast Fourier
transform algorithm. However, sometimes there can be an advantage in turning a Fourier
transform into a convolution, and, conversely, sometimes there can be an advantage in
using a Fourier transform to do a convolution. Even more surprising, one can gain an
advantage by using a Fourier transform to do a convolution, while at the same time
implementing that very Fourier transform by turning it back into a convolution, albeit
one of a different blocklength than the original.

The Bluestein chirp algorithm and the Rader prime algorithm are two different ways
of turning a Fourier transform into a convolution. The Bluestein algorithm, shown in
Figure 3.12, turns an n-point Fourier transform into an n-point convolution plus 2n side
multiplications. The Rader algorithm, shown in Figure 3.13, turns an n-point Fourier
transform into an (n − 1)-point convolution but it requires that n be a prime. Indeed,
an attractive feature of the Rader algorithm is that it can be used when n is a prime,
while the usual FFT algorithms cannot.

92 Fast algorithms for the discrete Fourier transform

Bluestein chirp algorithm

2 2 2

1

0
1

()

0

n
ik

k i
i

n
k i k i

i
i

V v

v

iv
kV

ChirpChirp

 tap
FIR filter

n

Figure 3.12 The Bluestein algorithm for computing a Fourier transform

Rader prime algorithm
 Blocklength must equal a prime
 Use a primitive element in GF()

n p
p

1 2 3 11,2,3, , 1 , , , , modp pp
1

() ()

0
1 1

0 0
0 0

1,0, +

n
ik n r i r k

k i
i
n n

ik
i k i

i i

ki ,v ,V

nkv ,vVv ,V

() ()1

0
1

1

0
1

+

1,0,

r i r k

j

n

i
i
n

j
j

v v

nv ,vV

iv
Scramble Unscramble

Sum

1 tap
FIR filter
n

kV

0V

Figure 3.13 The Rader algorithm for computing a Fourier transform

The Bluestein chirp algorithm is less useful but is easy to describe, so we will begin
with it. It is given by the expression

Vk = β−k2
n−1∑
i=0

β (i−k)2
(β−i2

vi),

where β is a square root of ω. This variation of the Fourier transform is based on the
calculation

β−k2
n−1∑
i=0

β(i−k)2
(β−i2

vi) =
n−1∑
i=0

β2ikvi =
n−1∑
i=0

ωikvi = Vk.

93 3.6 Fourier transforms computed by using convolutions

The Bluestein chirp algorithm requires n multiplications for the pointwise product of
vi by β−i2

, an n-tap finite impulse response filter for the cyclic convolution with βi2
,

followed by n multiplications for the pointwise product with β−k2
. The number of

operations is still on the order of n2, so the Bluestein chirp algorithm is not asymp-
totically more efficient than the direct Fourier transform. However, it can be easier to
implement in hardware in some applications. Further, it is possible to replace the direct
convolution by the fast convolution algorithms of Chapter 5.

The Bluestein chirp algorithm requires 2n multiplications plus a convolution of
length n. The next algorithm – the Rader prime algorithm – is generally preferred in
situations where it can be used because the 2n multiplications are not needed. However,
the Rader algorithm can be used only when the blocklength is a prime p. The Rader
algorithm requires only some indexing operations plus the computations of a cyclic
convolution – now, however, a cyclic convolution of blocklength p − 1, which is not a
prime.

The Rader prime algorithm can be used to compute a Fourier transform with a
blocklength equal to a prime p in any field F . Because p is a prime, we can make use
of the structure of GF (p) to reindex the vector components. The index field GF (p)
is defined as modulo p integer arithmetic. It should not be confused with F , the field
over which the Fourier transform of v is to be computed.

Choose a primitive element π in the field GF (p). Then each integer less than p can
be expressed as a unique power of π . The Fourier transform

Vk =
p−1∑
i=0

ωikvi, k = 0, . . . , p − 1

will be rewritten with i and k expressed as powers of the primitive element π . Because
i and k each take on the value zero, and zero is not a power of π , the zero frequency
component (with k = 0) and the zero time component (with i = 0) must be treated
specially. To this end, write

V0 =
p−1∑
i=0

vi,

Vk = v0 +
p−1∑
i=1

ωikvi, k = 1, . . . , p − 1.

For each i from 1 to p − 1, let r(i) be the unique integer from 1 to p − 1 such that in
GF (p), πr(i) = i. The function r(i) is a map from the set {1, 2, . . . , p − 1} onto the
set {1, 2, . . . , p − 1}; it is a permutation of {1, 2, . . . , p − 1}. Then Vk can be written

Vπr(k) = v0 +
p−1∑
i=1

ωπr(i)+r(k)
vπr(i), k = 1, . . . , p − 2.

94 Fast algorithms for the discrete Fourier transform

Because r(i) is a permutation, we can set r(k) = �, and set r(i) = p − 1 − j . Because
a sum is unaffected by the order of the summations, we can use j as the index of
summation to get

Vπ� = v0 +
p−1∑
j=1

ωπ�−j

vπp−1−j , � = 0, . . . , p − 2,

recalling that πp−1 = 1. Finally, we write this equation in this slightly modified form
as

V ′
� − V0 =

p−2∑
j=0

(ωπ�−j − 1)v′
j , � = 0, . . . , p − 2,

where V ′
� = Vπ� and v′

j = vπp−1−j are scrambled input and output data sequences. This
is now the equation of a cyclic convolution between the scrambled input vector v = [v′

j]
and the vector g = [ωπj − 1]. Accordingly, define the Rader polynomial as

g(x) =
p−2∑
j=0

(ωπj − 1)xj .

By scrambling the input and output indices, we have turned the Fourier transform
of blocklength p into a cyclic convolution of blocklength p − 1. As it is written, the
number of operations needed to implement the convolution is still on the order of p2,
but a fast Fourier transform can be used to reduce the number of multiplications. In
Section 3.8 we shall combine the Rader prime algorithm with the Winograd convolu-
tion algorithm to obtain the Winograd small FFT algorithm in which the number of
multiplications is so reduced.

Using the Rader prime algorithm, let us construct a binary five-point Fourier trans-
form algorithm as an example. This algorithm will compute

Vk =
4∑

i=0

ωikvi, k = 0, . . . , 4,

where ω = e−j2π/5. First, rewrite this expression as

V0 =
4∑

i=0

vi,

Vk = V0 +
4∑

i=1

(ωik − 1)vi, k = 1, . . . , 4,

95 3.6 Fourier transforms computed by using convolutions

and work only with the terms
∑4

i=1(ωik − 1)vi . The element two is easily found to be
primitive in GF (5), and so in GF (5) we have

20 = 1, 20 = 1,

21 = 2, 2−1 = 3,

22 = 4, 2−2 = 4,

23 = 3, 2−3 = 2.

Hence

V ′
� − V0 =

3∑
j=0

(ω2i−j − 1)v′
j .

The summation is recognized as a four-point cyclic convolution. We now write the
Rader polynomial g(x) of blocklength four over the field F as

g(x) = (ω3 − 1)x3 + (ω4 − 1)x2 + (ω2 − 1)x + (ω − 1),

where gj = ω2j − 1. The input to the filter and the output from the filter can be
expressed as polynomials whose coefficients are scrambled coefficients of v and V .
The Rader five-point Fourier transform algorithm is now summarized by the following
equations:

d(x) = v2x
3 + v4x

2 + v3x + v1,

s(x) = (V3 − V0)x3 + (V4 − V0)x2 + (V2 − V0)x + (V1 − V0),

and

s(x) = g(x)d(x) (mod x4 − 1).

The Rader polynomial g(x) is a fixed polynomial with precomputed coefficients. The
polynomial d(x) is formed by scrambling the coefficients of v(x). The polynomial V (x)
is obtained by unscrambling the coefficients of the polynomial s(x). The algorithm is
summarized in Figure 3.14.

It is instructive to reexamine the Rader algorithm in a matrix formulation. The
five-point Fourier transform is

V0

V1

V2

V3

V4

 =

1 1 1 1 1
1 ω ω2 ω3 ω4

1 ω2 ω4 ω ω3

1 ω3 ω ω4 ω2

1 ω4 ω3 ω2 ω1

v0

v1

v2

v3

v4

 .

From this we obtain

V0 = v0 + v1 + v2 + v3 + v4,

96 Fast algorithms for the discrete Fourier transform

0 1 2 3 4

Enter
(, , , ,)v v v v v

3 2
2 4 3 1

Scramble input
()d x v x v x v x v

0 1 2 3 4

Exit
(, , , ,)V V V V V

Unscramble output
432100

001
022
013
034

V v v v v v
V s V
V s V
V s V
V s V

4

3 3 4 2 2

 Cyclic convolution
() () () (mod 1)

where
() (1) (1) (1) (1)

s x g x d x x

g x x x x

Figure 3.14 A five-point Fourier transform using the Rader algorithm

and
V1 − V0

V2 − V0

V3 − V0

V4 − V0

 =

ω1 − 1 ω2 − 1 ω3 − 1 ω4 − 1
ω2 − 1 ω4 − 1 ω1 − 1 ω3 − 1
ω3 − 1 ω1 − 1 ω4 − 1 ω2 − 1
ω4 − 1 ω3 − 1 ω2 − 1 ω1 − 1

v1

v2

v3

v4

 .

By the scrambling rules of the Rader algorithm, this becomes
V1 − V0

V2 − V0

V4 − V0

V3 − V0

 =

ω1 − 1 ω3 − 1 ω4 − 1 ω2 − 1
ω2 − 1 ω1 − 1 ω3 − 1 ω4 − 1
ω4 − 1 ω2 − 1 ω1 − 1 ω3 − 1
ω3 − 1 ω4 − 1 ω2 − 1 ω1 − 1

v1

v3

v4

v2

 ,

which can be recognized as the matrix representation of a cyclic convolution
V1 − V0

V2 − V0

V4 − V0

V3 − V0

 =

g0 g3 g2 g1

g1 g0 g3 g2

g2 g1 g0 g3

g3 g2 g1 g0

v1

v3

v4

v2

 ,

97 3.7 The Rader–Winograd algorithm

where g0 = ω − 1, g1 = ω2 − 1, g3 = ω4 − 1, and g3 = ω3 − 1. The coefficients of
the polynomial g(x) can be specified once the field F is specified. For example, if the
field is the complex field, then ω = e−j2π/5 and the coefficients of g(x) are complex
constants.

3.7 The Rader–Winograd algorithm

The idea of the Rader algorithm can still be used when the blocklength n is a power
of an odd prime. In this case, not only must the zero time component and the zero
frequency component be treated specially, but certain other time components and other
frequency components must be treated specially as well. This is because the nonzero
elements of Z/〈pm〉 do not form a cyclic group, as is explained within the discussion
on number theory in Chapter 9. We shall develop the ideas of this section by referring
forward to the discussion of Section 9.1. Theorem 9.1.8 of Chapter 9 promises that,
when p is an odd prime, there is an element of order pm−1(p − 1), and we use this
element to construct an algorithm. To this point, all multiples of p must be deleted to
find a cyclic group, denoted Z∗

pm , that is contained in Z/〈pm〉.
To compute

Vk =
pm−1∑
i=0

ωikvi, k = 0, . . . , pm − 1,

we shall make use of the cyclic structure of Z∗
pm , portrayed by Theorem 9.1.8, to reindex

the components of the vector. When q is a power of an odd prime, Z/〈pm〉 contains a
cyclic group with pm−1(p − 1) elements. From the pm by pm matrix

W = [ωik]

simply strike out all troublesome rows and columns to get a pm−1(p − 1) by
pm−1(p − 1) matrix for which Rader’s idea can be used. The indices of the remaining
rows and columns are all of the elements of Z∗

pm and can be written as powers of a

generator π so that ωij can be replaced by ωπ�−r

. With this procedure, the notion of the
Rader polynomial is then replaced by the notion of the generalized Rader polynomial.
An example is given in Section 3.8.

The troublesome rows and columns are those whose index is divisible by p. They
are then handled separately. Even these troublesome rows and columns can themselves
be arranged into yet smaller cyclic convolutions, as we shall see in the next section.
Hence the pm-point Fourier transform, though too irregular to be swallowed whole,
can be handled with just a few judicious bites.

The case where the blocklength is a power of two is a little more complicated and
requires one more layer of manipulation. This is because the set of indices coprime to

98 Fast algorithms for the discrete Fourier transform

2m – the set of odd indices – does not form a cyclic group under multiplication. Rather,
as will be shown in Theorem 9.1.8, this group is isomorphic to Z2 × Z2m−2 . The idea
of the procedure is as follows. From the 2m by 2m matrix

W = [ωik],

strike out all the rows and columns with even indices to get a 2m−1 by 2m−1 matrix,
denoted W ′. Similarly, strike out all the components of v and V with even indices
to form the reduced vectors v′ and V ′. The surviving indices are all odd and, under
multiplication, the set of these indices is isomorphic to Z2 × Z2m−2 . The isomorphism
can be used to define a permutation of the rows of the reduced matrix W ′ and a similar
permutation of the columns of that matrix that will now put the reduced matrix W ′ into
the form

W ′′ =
[

W 1 W 2

W 2 W 1

]
,

where W 1 and W 2 are 2m−2 by 2m−2 matrices, each of which has the structure of a
cyclic convolution and with indices in Z2m−2 . Moreover, the index designating W1 or
W 2 is an element of Z2. Hence, the full matrix W ′′ is indexed by Z2 × Z2m−2 . Similar
permutations on the components of v′ and V ′ based on Z2 × Z2m−2 put these vectors
into the form

v′′ =
[
v1

v2

]

and

V ′′ =
[

V 1

V 2

]
.

In keeping with this background, we will require two indices. One index desig-
nates the top half versus the bottom half (or left half versus the right half), and the
other index designates a component within that half. These are described explicitly in
Corollary 9.1.9. Specifically, let π = 3 and let σ = 2m − 1. The group of odd integers
under multiplication modulo 2m is generated by σ and π ; every element of Z∗

2m can be
expressed as σ �′

π�′′
, where �′ = 0, 1 and �′′ = 0, . . . , 2m−2. Hence we can write

ωik = ωσ�′π�′′σ r′πr′′
,

and by the indicated permutations

W ′′ =
[[

ωπ�′′+r′′] [
ωσπ�′′+r′′][

ωσπ�′′+r′′] [
ωπ�′′+r′′]

]
,

99 3.7 The Rader–Winograd algorithm

where �′′ and r ′′ index the rows and columns, respectively, in each of the four sub-
matrices. Each of the four submatrices now corresponds to a cyclic convolution of
blocklength 2m−2.

Moreover, the matrix computation, denoted by[
V 1

V 2

]
=

[
W 1 W 2

W 2 W 1

][
v1

v2

]
,

has the form of a two-point cyclic convolution of matrices. One way to compute it is
as follows:[

V 1

V 2

]
=

[
1 1
1 −1

][
1
2 (W 1 + W 2) 0

0 1
2 (W 1 − W 2)

][
1 1
1 −1

][
v1

v2

]
.

The diagonal elements each lead to a complex cyclic convolution of blocklength 2m−2,
which is a reduction from the four cyclic convolutions in the previous expression.
However, we shall find that we can still do a little better. For one thing, we will see a
little later that W 1 + W 2 is a purely real matrix and W1 − W 2 is a purely imaginary
matrix.

As an example, we shall look at the two four-point cyclic convolutions that arise in
this way at the core of a sixteen-point Fourier transform. Let

Vk =
15∑
i=0

ωikvi, k = 0, . . . , 15,

where ω16 = 1. Consider the matrix obtained by striking out even indices from the
range of i and k. The subcomputation is

V ′
1

V ′
3

V ′
5

V ′
7

V ′
9

V ′
11

V ′
13

V ′
15

=

ω1 ω3 ω5 ω7 ω9 ω11 ω13 ω15

ω3 ω9 ω15 ω5 ω11 ω1 ω7 ω13

ω5 ω15 ω9 ω3 ω13 ω7 ω1 ω11

ω7 ω5 ω3 ω1 ω15 ω13 ω11 ω9

ω9 ω11 ω13 ω15 ω1 ω3 ω5 ω7

ω11 ω1 ω7 ω13 ω3 ω9 ω15 ω5

ω13 ω7 ω1 ω11 ω5 ω15 ω9 ω3

ω15 ω13 ω11 ω9 ω7 ω5 ω3 ω1

v1

v3

v5

v7

v9

v11

v13

v15

.

To find the permutation, we write the indices as 15�′
3�′′

for �′ = 0, 1 and �′′ = 0, 1, 2, 3.
The powers of three (modulo 16) are

30 = 1, 30 = 1,

31 = 3, 3−1 = 11,

32 = 9, 3−2 = 9,

33 = 11, 3−3 = 3,

100 Fast algorithms for the discrete Fourier transform

and

15 · 30 = 15, 15 · 30 = 15,

15 · 31 = 13, 15 · 3−1 = 5,

15 · 32 = 7, 15 · 3−2 = 7,

15 · 33 = 5, 15 · 3−3 = 13.

The input indices are scrambled by using 15−�′
3−�′′

(mod 16), and the output indices
are scrambled by using 15�′

3�′′
(mod 16). Then

V ′
1

V ′
11

V ′
9

V ′
3

V ′
15

V ′
5

V ′
7

V ′
13

=

ω1 ω3 ω9 ω11

ω11 ω1 ω3 ω9

ω9 ω11 ω1 ω3

ω3 ω9 ω11 ω1

ω15 ω13 ω7 ω5

ω5 ω15 ω13 ω7

ω7 ω5 ω15 ω13

ω13 ω7 ω5 ω15

ω15 ω13 ω7 ω5

ω5 ω15 ω13 ω7

ω7 ω5 ω15 ω13

ω13 ω7 ω5 ω15

ω1 ω3 ω9 ω11

ω11 ω1 ω3 ω9

ω9 ω11 ω1 ω3

ω3 ω9 ω11 ω1

v1

v3

v9

v11

v15

v13

v7

v5

.

The matrix has been partitioned to show the four cyclic convolutions that have formed.
If the Fourier transform is in the complex field, the blocks are related as complex
conjugates. This is more evident if the matrix equation is rewritten as

V ′
1

V ′
11

V ′
9

V ′
3

V ′
15

V ′
5

V ′
7

V ′
13

=

ω1 ω3 ω9 ω11

ω11 ω1 ω3 ω9

ω9 ω11 ω1 ω3

ω3 ω9 ω11 ω1

ω−1 ω−3 ω−9 ω−11

ω−11 ω−1 ω−3 ω−9

ω−9 ω−11 ω−1 ω−3

ω−3 ω−9 ω−11 ω−1

ω−1 ω−3 ω−9 ω−11

ω−11 ω−1 ω−3 ω−9

ω−9 ω−11 ω−1 ω−3

ω−3 ω−9 ω−11 ω−1

ω1 ω3 ω9 ω11

ω11 ω1 ω3 ω9

ω9 ω11 ω1 ω3

ω3 ω9 ω11 ω1

v1

v3

v9

v11

v15

v13

v7

v5

.

Notice that the bottom four rows are the complex conjugates of the top four rows. If
the input v is real, then only computations associated with the first four rows need be
performed. Hence one way to proceed is to write the computation of the first four rows
as the sum of a pair of cyclic convolutions as follows:

V ′
3x

3 + V ′
9x

2 + V ′
11x + V ′

1 = (ω11x3 + ω9x2 + ω3x + ω)(v11x
3 + v9x

2 + v3x + v1)

+ (ω−11x3 + ω−9x2 + ω−3x + ω−1)(v5x
3 + v7x

2

+ v13x + v15) (mod x4 − 1).

101 3.7 The Rader–Winograd algorithm

We shall develop an alternative method for the complex field by viewing the above
matrix equation as a two-point cyclic convolution of blocks written in the form[

V
′
1

V
′
2

]
=

[
1 1
1 −1

][
1
2 (W 1 + W 2) 0

0 1
2 (W 1 − W 2)

][
1 1
1 −1

][
v1

v2

]
,

where

1
2 (W 1 + W 2) =

cos θ cos 3θ cos 9θ cos 11θ

cos 11θ cos θ cos 3θ cos 9θ

cos 9θ cos 11θ cos θ cos 3θ

cos 3θ cos 9θ cos 11θ cos θ

and

1
2 (W 1 − W 2) =

j sin θ j sin 3θ j sin 9θ j sin 11θ

j sin 11θ j sin θ j sin 3θ j sin 9θ

j sin 9θ j sin 11θ j sin θ j sin 3θ

j sin 3θ j sin 9θ j sin 11θ j sin θ

 ,

and where θ = 2π/16. Notice that of the two cyclic convolutions now indicated, one
is purely real and one is purely imaginary. For real input data, we need to compute the
two real cyclic convolutions of the form

s(x) = [cos 3θx3 + cos 9θx2 + cos 11θx + cos θ]d(x) (mod x4 − 1)

and

s ′(x) = [sin 3θx3 + sin 9θx2 + sin 11θx + sin θ]d ′(x) (mod x4 − 1).

To reduce this computation, we use the Chinese remainder theorem for polynomials
with the factorization

x4 − 1 = (x2 − 1)(x2 + 1)

and note that θ = π/8, so cos 11θ = −cos 3θ , sin 11θ = −sin 3θ , cos 9θ = −cos θ ,
and sin 9θ = −sin θ . Therefore some terms drop out because

cos 3θx3 + cos 9θx2 + cos 11θx + cos θ = 0 (mod x2 − 1)

and

sin 3θx3 + sin 9θx2 + sin 11θx + sin θ = 0 (mod x2 − 1).

This means that the multiplications associated with the residue modulo x2 − 1 are not
needed. The residues modulo x2 + 1 will each use three multiplications. Hence the two
cyclic convolutions require a total of only six multiplications.

In the next section, we shall see that four more multiplications are needed to process
the rows and columns with even indices. Altogether, by incorporating all these devices,

102 Fast algorithms for the discrete Fourier transform

Table 3.3 Performance of Winograd small FFT
algorithms

Number of Number
Blocklength Number of real nontrivial real of real
n multiplications∗ multiplications additions

2 2 0 2
3 3 2 6
4 4 0 8
5 6 5 17
7 9 8 36
8 8 2 26
9 11 10 44

11 21 20 84
13 21 20 94
16 18 10 74
17 36 35 157
19 39 38 186

∗ Including multiplications by ±1 or ±j

the sixteen-point Fourier transform of a real vector v requires a total of ten nontrivial
real multiplications. If the input vector v is complex, the algorithm can be applied
separately to the real part and the imaginary part of v and the results then added. This
requires twenty real multiplications.

3.8 The Winograd small fast Fourier transform

The Winograd small fast Fourier transform is a method of efficiently computing the
discrete Fourier transform for small blocklengths. It is built from three ideas: the Rader
prime algorithm of Section 3.6, the Rader–Winograd algorithm of Section 3.7, and the
Winograd convolution algorithm to be given in Chapter 5. We have already touched on
this merger of algorithms in the previous section and this section is an elaboration of
that section.

There are three cases that must be treated: blocklength equal to a prime; blocklength
equal to a power of an odd prime; and blocklength equal to a power of two. The most
suitable blocklengths for the Winograd small FFT are 2, 3, 4, 5, 7, 8, 9, and 16. The
performance of the Winograd small FFT algorithms of these blocklengths is given in
Table 3.3. (The algorithms themselves can be found in Appendix B.) The number of
real multiplications is given in two ways in Table 3.3. Only the number of nontrivial
multiplications matters if the small FFT itself is to be computed. However, if the small
FFT is to be used as a building block in the nesting algorithms of Chapter 12, then the

103 3.8 The Winograd small fast Fourier transform

multiplications by ±1 and ±j will propagate into nontrivial multiplications (and also
into additions) in the larger algorithm. This is why we always record the total number
of multiplications as well.

There are also some trivial additions that are included in Table 3.3. These are
additions of a purely real number and a purely imaginary number, which are not
really executed as additions. We choose not to distinguish between trivial additions
and nontrivial additions in the bookkeeping. When the real input vector is replaced
by a complex input vector, all additions are nontrivial complex additions because the
purely real numbers and the purely imaginary numbers both become nontrivial complex
numbers.

Blocklength a prime The first step is to change the Fourier transform to a convolution.
If n is a small prime, use the Rader prime algorithm to express the transform as
a convolution, which is computed using a Winograd small convolution algorithm.
Generally, one writes out the equations longhand, so it is not practical to take n

too large. The Rader prime algorithm changes the discrete Fourier transform into a
convolution using only scrambling of the indices; no additions or multiplications are
needed in that step. The convolution algorithm itself has the structure of a set of
additions, followed by a set of multiplications, followed by a set of additions.

A five-point Winograd FFT will be constructed that computes

Vk =
4∑

i=0

ωikvi, k = 0, . . . , 4,

where ω = e−j2π/5. First, use the Rader prime algorithm that was discussed in
Section 3.6. This changes the Fourier transform into a cyclic convolution

s(x) = g(x)d(x) (mod x4 − 1),

where the Rader polynomial

g(x) = (ω3 − 1)x3 + (ω4 − 1)x2 + (ω2 − 1)x + (ω − 1)

has fixed coefficients. The input to the filter and the output from the filter are the
polynomials

d(x) = v2x
3 + v4x

2 + v3x + v1,

s(x) = (V3 − V0)x3 + (V4 − V0)x2 + (V2 − V0)x + (V1 − V0)

whose coefficients are scrambled coefficients of v and V . The polynomial d(x) is
formed by scrambling the coefficients of v(x). The polynomial V (x) is obtained
by unscrambling the coefficients of the polynomial s(x) and adding V0 to each
coefficient.

104 Fast algorithms for the discrete Fourier transform

Figure 3.15 A five-point Winograd small FFT algorithm

The five-point Winograd small FFT is obtained by computing the product g(x)d(x)
by using a small convolution algorithm. Refer to Table 5.4 of Chapter 5, which gives a
four-point cyclic convolution algorithm with five multiplications. We can rewrite this
to do the Fourier transform. Incorporate the scrambling and unscrambling operations
into the matrices of the convolution by scrambling the appropriate rows and columns.
Also, the coefficients of g(x) are fixed complex numbers, so it is possible to precompute
the product of g and its matrix of preadditions. When these changes are made to the
four-point convolution algorithm, and the terms V0 and v0 are included, it becomes the
five-point Winograd small FFT. Figure 3.15 shows the five-point FFT algorithm in a
standard matrix form. This standard form will prove useful for the nesting techniques
studied in Chapter 12. Notice that, in Figure 3.15, the matrix of preadditions and the
matrix of postadditions are not square. The five-point input vector is expanded to a
six-point vector, and this is where the multiplications occur. The top two rows inside the
braces have to do with v0 and V0, and have no multiplications. The other five rows come
from the four-point cyclic convolution algorithm. One of the multiplying constants
turns out to be a one, so there are really only five multiplications in the algorithm. The
algorithm has five nontrivial multiplications and one trivial multiplication.

105 3.8 The Winograd small fast Fourier transform

Figure 3.15 illustrates another important point. Although we have given no reason
to expect it, the diagonal elements turn out to be purely real or purely imaginary.2

This is important because it means that each diagonal element is responsible for only
one real multiplication if the input data is real and is responsible for only two real
multiplications if the input data is complex. This phenomenon is quite general, as we
show next.

Whenever p is odd, we can write

xp−1 − 1 = (x(p−1)/2 − 1)(x(p−1)/2 + 1).

The factors of xp−1 − 1 divide one of the two terms on the right. Hence, whenever
the Winograd convolution algorithm is built on the factors of xp−1 − 1, the following
theorem describes the situation.

Theorem 3.8.1 Let g(x) be a Rader polynomial. For every odd prime p, the coefficients
of g(x) (mod x(p−1)/2 − 1) are real numbers and the coefficients of g(x) (mod x(p−1)/2 +
1) are imaginary numbers.

Proof The Rader polynomial of blocklength p − 1 is given by

g(x) =
p−2∑
k=0

(ωπk − 1)xk,

First break this sum into two sums

g(x) =
(p−3)/2∑

k=0

(ωπk − 1)xk +
p−2∑

k=(p−1)/2

(ωπk − 1)xk

and set k = k′ + (p − 1)/2 in the second summation so that

g(x) =
(p−3)/2∑

k=0

(ωπk − 1)xk +
(p−3)/2∑

k′=0

(ωπk′+(p−1)/2
)xk′+(p−1)/2.

Because π is primitive, πp−1 = 1, which means that π (p−1)/2 = −1. Therefore

g(x) =
(p−3)/2∑

k=0

[
(ωπk − 1) ∓ (ω−πk − 1)

]
xk (mod x(p−1)/2 ± 1).

The theorem now follows by choosing, in turn, the plus sign and then the minus
sign. �

2 If so desired, one can suppress j from the diagonal matrix by introducing j into the matrix of postadditions.
Then the elements of the diagonal matrix will be purely real.

106 Fast algorithms for the discrete Fourier transform

We have shown how the Winograd small FFT of blocklength n can be derived
whenever n is a prime. A Winograd small FFT also can be derived whenever n is a
prime power. This construction requires a method like the Rader algorithm for turning
a Fourier transform of size pm, p a prime, into a convolution. However, the set of
integers modulo pm is not a field, and an element π of order pm − 1 does not exist.
Therefore a customized development is needed, as was discussed in Section 3.7.

There are two cases, p equal to two and p equal to an odd prime, that require
somewhat different techniques. We first treat the case of p an odd prime.

Blocklength a power of an odd prime The construction is a bit complicated. We
first remove all integers that contain the factor p from the set {1, 2, . . . , pm − 1} to
get a cyclic group with pm−1(p − 1) elements. This cyclic group leads to a cyclic
convolution of length pm−1(p − 1), which is the core of the Fourier transform. As
before, it is computed with a fast convolution algorithm. The output of the convolution
must be unscrambled and then augmented by the pm−1 rows and columns that were
dropped to form the convolution. As we shall see, one can find smaller convolutions in
these auxiliary terms because they contain smaller Fourier transforms.

For example, with N = 9 = 32, we delete the integers 0, 3, and 6 to obtain the set
{1, 2, 4, 5, 7, 8}, which forms a cyclic group under multiplication modulo 9 and is iso-
morphic to Z6, the additive group of integers {0, 1, 2, 3, 4, 5} under addition modulo 6.
The integer 2 generates the multiplicative group, because the powers of 2 modulo 9 are
1, 2, 4, 8, 7, 5. Thus there are six rows and six columns within the nine-point Fourier
transform that can be isolated, scrambled, and then computed as a convolution, It is
not hard to anticipate that the remaining rows and columns (those with index 0, 3,
and 6) will have a structure akin to that of a three-point Fourier transform, and so some
of the correction terms can be expressed as a smaller convolution.

The development of the nine-point Winograd FFT proceeds as follows. Write out
the matrix equation

V0

V1

V2

V3

V4

V5

V6

V7

V8

=

1 1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7 ω8

1 ω2 ω4 ω6 ω8 ω ω3 ω5 ω7

1 ω3 ω6 1 ω3 ω6 1 ω3 ω6

1 ω4 ω8 ω3 ω7 ω2 ω6 ω ω5

1 ω5 ω ω6 ω2 ω7 ω3 ω8 ω4

1 ω6 ω3 1 ω6 ω3 1 ω6 ω3

1 ω7 ω5 ω3 ω ω8 ω6 ω4 ω2

1 ω8 ω7 ω6 ω5 ω4 ω3 ω2 ω

v0

v1

v2

v3

v4

v5

v6

v7

v8

.

By looking at this matrix we can see that rows and columns with index 0, 3, or 6 are
novel because they contain repeated elements. Permute the rows and columns of the
matrix to bring these to the top and left and to bring the other rows into the order 1, 2,

107 3.8 The Winograd small fast Fourier transform

4, 8, 7, 5, the powers of two modulo 9, and the columns into the order 1, 5, 7, 8, 4, 2,
the powers of 2−1 modulo 9. Then

V0

V3

V6

V1

V2

V4

V8

V7

V5

=

1 1 1 1 1 1 1 1 1
1 1 1 ω3 ω6 ω3 ω6 ω3 ω6

1 1 1 ω6 ω3 ω6 ω3 ω6 ω3

1 ω3 ω6 ω1 ω5 ω7 ω8 ω4 ω2

1 ω6 ω3 ω2 ω1 ω5 ω7 ω8 ω4

1 ω3 ω6 ω4 ω2 ω1 ω5 ω7 ω8

1 ω6 ω3 ω8 ω4 ω2 ω1 ω5 ω7

1 ω3 ω6 ω7 ω8 ω4 ω2 ω1 ω5

1 ω6 ω3 ω5 ω7 ω8 ω4 ω2 ω1

v0

v3

v6

v1

v5

v7

v8

v4

v2

.

The matrix has been partitioned to show the cyclic convolutions that have formed.
There is one six-point cyclic convolution, and there are also six two-point cyclic
convolutions. However, those two-point cyclic convolutions in the second and third
column are a repetition of the same computation, and those in the second and third row
can be combined into one by writing[
V3

V6

]
=

[
ω3 ω6

ω6 ω3

][
v1 + v7 + v4

v5 + v8 + v2

]
+

[
v0 + v3 + v6

v0 + v3 + v6

]
.

Thus the Fourier transforms can be broken into a six-point cyclic convolution and two
two-point cyclic convolutions by appropriately partitioning and scrambling the input
data. We should anticipate that all of this will require twelve complex multiplications.
However, the following theorem shows that two things will happen.
1 All multiplications will be by a purely real or a purely imaginary number, so the

twelve complex multiplications reduce to twelve real multiplications.
2 Two of the coefficients are equal to zero, so the number of multiplications is reduced

to ten.
Actually, we will write the final algorithm with eleven multiplications. The extra
multiplication is an unneeded multiplication by one and used only to bring row zero
into the algorithm in the same form as the others.

Theorem 3.8.2 Let p be an odd prime and let m be an integer larger than one. Let
b = (p − 1)pm−1. Let g(x) be the generalized Rader polynomial

g(x) =
b−1∑
k=0

ωπk

xk,

where ω is a pmth root of unity and π is an integer of order b under multiplication
modulo pm. Then

(i) the coefficients of g(x) (mod xb/2 − 1) are real numbers;

108 Fast algorithms for the discrete Fourier transform

(ii) the coefficients of g(x) (mod xb/2 + 1) are imaginary numbers;
(iii) the coefficients of g(x) (mod xb/p − 1) are zero.

Proof The proof of the first two parts is similar to the proof of Theorem 3.8.1. Because
π has order b, and b is even, we know that πb = 1 modulo pm, and πb/2 = −1 modulo
pm. Then the coefficients of g(x) (mod xb/2 ± 1) are

gk = ωπk ∓ ωπ (k+b/2)
.

Because πb/2 = −1, the first two parts of the theorem follow simply by noting that
ωπk ∓ ω−πk

is real or imaginary depending on the choice of sign.
To prove part (iii), let

g′(x) = g(x) (mod xb/p − 1)

=
b−1∑
k=0

ωπk

xk (mod xb/p − 1).

The polynomial g′(x) has b/p coefficients, and each of these coefficients is the sum of
p coefficients of g(x). For nonzero r , the coefficient g′

r is given by

g′
r =

p−1∑
i=0

ωπr+ib/p

, r = 1, . . . , (b/p) − 1.

We shall first prove that g′
r equals zero for all nonzero r . Rewrite the equation as

g′
r =

p−1∑
i=0

[ωπr

]π
ib/p

, r = 1, . . . , (b/p) − 1.

Because ωπr

is a pmth root of unity when r is nonzero, the sum reduces to a sum of p

ones, and a sum of p ones is zero modulo p. It only remains to carry out the proof for
the case in which r is equal to zero. The coefficient g′

0 is the sum of those gk for which
k is a multiple of b/p. In this case,

g′
0 =

p−1∑
i=0

ωαi

,

where α = πb/p has order p. Thus, αi is a permutation of the integers of Zp, so with
h = αi , the expression becomes

g′
0 =

p−1∑
h=0

ωh = 1 − ωp

1 − ω
,

where ω is a pth root of unity. Hence g′
0 = 0, and the proof is complete. �

We can construct a Winograd small FFT in this way for any blocklength equal to a
prime power. The pm by pm matrix describing that Fourier transform will break down

109 3.8 The Winograd small fast Fourier transform

into one cyclic convolution of blocklength (pm − pm−1), and pm−1 + 1 cyclic convolu-
tions of blocklength (p − 1). Theorem 3.8.2 guarantees that all these convolutions can
be computed by using the Winograd cyclic convolution algorithms with only purely
real or purely imaginary multiplications.

Blocklength a power of two The Fourier transforms of blocklength equal to a power
of two must be studied separately because only half of the integers less than 2m are
coprime to 2. These, of course, are the odd integers. By rearranging the matrix of the
Fourier transform to put the rows with even indices first followed by the rows with odd
indices, and putting the columns with even indices first followed by the columns with
odd indices, the matrix is partitioned into four n/2 by n/2 subarrays.

The submatrix in which the rows and columns both have even indices can be
expressed separately in terms of several Fourier transforms of size 2m−1. This portion of
the computation can use any 2m−1-point Fourier transform algorithm. The partitioning
into even and odd indices has some similarity to a single stage of a radix-two Cooley–
Tukey algorithm.

Starting with the elementary expression,

Vk =
n−1∑
i=0

ωikvi, k = 0, . . . , n − 1,

the components of V with even values of k can be rewritten, using 2k′ in place of k, as

V2k′ =
(n/2)−1∑

i ′=0

(vi ′ + vi ′+n/2)ω2i ′k′
, k′ = 0, . . . , (n/2) − 1.

This is a 2m−1-point Fourier transform that can be computed by an FFT algorithm
of that blocklength, 2m−1. In this way, the components of V with an even index are
computed with a smaller Fourier transform of smaller blocklength.

The components with odd values of k can be rewritten, using 2k′ + 1 in place of k,
as

V2k′+1 =
(n/2)−1∑

i ′=0

v2i ′ω
2i ′(2k′+1) +

(n/2)−1∑
i ′=0

v2i ′+1ω
(2i ′+1)(2k′+1).

With a little manipulation, the first term can be made into a Fourier transform of
blocklength 2m−2 because ω4 is a 2m−2th root of unity. Thus

V2k′+1 =
(n/4)−1∑

i=0

[ω2i ′(v2i ′ − v2i ′+n/4)]ω4i ′k′

+
(n/2)−1∑

i ′=0

v2i ′+1ω
(2i ′+1)(2k′+1), k′ = 0, . . . , (n/2) − 1,

110 Fast algorithms for the discrete Fourier transform

where the first term needs only to be computed for k′ = 0, . . . , (n/4) − 1, because it
then repeats. To compute the first term, if the input data is real, requires (n/2) − 6 real
multiplications plus an n/4-point Fourier transform and, if the input data is complex,
requires (3/4)n − 8 real multiplications plus an n/4-point Fourier transform.

The second term in the equation for V2k′+1 can be computed by a generalized form
of the Rader algorithm, as was discussed in the previous section. The odd integers
do not form a cyclic group under multiplication modulo 2m (except when m = 1
or m = 2). Rather, the set of odd integers is isomorphic to Z2 × Z2m−2 . Because
of this, the construction of a Winograd FFT of blocklength 2m requires one more
embellishment. First, we pick out the 2m−1 rows and the 2m−1 columns whose index
is odd, as was done in Section 3.7. This portion of the matrix is rearranged –
not into a single cyclic convolution – but into four cyclic convolutions. This will
require two cyclic convolutions of blocklength 2m−2. The following theorem shows
that when these cyclic convolutions are computed by using the Chinese remainder
theorem, some of the multiplications will be multiplications by zeros and can be
dropped.

Theorem 3.8.3 Let m be an integer larger than 2. Let g(x, y) be the two-dimensional
generalized Rader polynomial

g(x, y) =
n′−1∑
i=0

1∑
i ′=0

ω3i (−1)i
′
xiyi ′,

where ω is a 2nth root of unity. Then
(i) the coefficients of g(x, y) (mod y − 1) are real numbers;

(ii) the coefficients of g(x, y) (mod y + 1) are imaginary numbers;
(iii) the coefficients of g(x, y) (mod xn′/2 − 1) are zero.

Proof The proof is similar to the proof of Theorem 3.8.2. �

The first two parts of the theorem tell us that the cyclic convolutions (mod xn/4 − 1)
are real cyclic convolutions (more precisely, one convolution is purely real and one
is purely imaginary). The second part of the theorem tells us that, when computing
the cyclic convolution, only the residue modulo xn/8 + 1 needs to be computed. The
remaining residues are zero. Because xn/8 + 1 is irreducible, this requires 2(n/8) − 1
real multiplications.

We now have decomposed the 2m-point Fourier transform into the following pieces:
(1) a 2m−1-point Fourier transform, (2) a 2m−2-point Fourier transform preceded by
2m−2 − 1 complex multiplications, and (3) two products of real polynomials modulo
the irreducible polynomial xn/8 + 1.

111 3.8 The Winograd small fast Fourier transform

The eight-point Fourier transform breaks into the two parts
V0

V2

V4

V6

 =

1 1 1 1
1 ω2 ω4 ω6

1 ω4 1 ω4

1 ω6 ω4 ω2

v0 + v4

v1 + v5

v2 + v6

v3 + v7

 ,

which is a four-point Fourier transform, and
V1

V3

V5

V7

 =

1 1
1 ω4

1 1
1 ω4

[
ω0(v0 − v4)
ω2(v2 − v6)

]
+

ω1 ω3 ω5 ω7

ω3 ω1 ω7 ω5

ω5 ω7 ω1 ω3

ω7 ω5 ω3 ω1

v1

v3

v5

v7

 .

The second term is rearranged first as
V ′

1

V ′
3

V ′
7

V ′
5

 =

ω1 ω3 ω7 ω5

ω3 ω1 ω5 ω7

ω7 ω5 ω1 ω3

ω5 ω7 ω3 ω1

v1

v3

v7

v5

 .

We now proceed more directly than in the general case. Using ω4 = −1, rewrite the
equation as follows:

V ′
1

V ′
3

V ′
7

V ′
5

 =

ω1 −ω7 ω7 −ω1

−ω7 ω1 −ω1 ω7

ω7 −ω1 ω1 −ω7

−ω1 ω7 −ω7 ω1

v1

v3

v7

v5

 .

Then[
V ′

1

V ′
7

]
=

[
ω1 ω7

ω7 ω1

][
v1 − v5

v7 − v3

]
,[

V ′
5

V ′
3

]
= −

[
ω1 ω7

ω7 ω1

][
v1 − v5

v7 − v3

]
= −

[
V ′

1

V ′
7

]
.

The cyclic convolution can be computed by[
V ′

1

V ′
7

]
=

[
1 1
1 −1

][
cos θ 0

0 j sin θ

][
1 1
1 −1

][
v1 − v5

v7 − v3

]
.

These are the only two nontrivial multiplications used by the eight-point Winograd
FFT. In addition, there are six trivial multiplications.

For blocklengths equal to a large power of two, it becomes clumsy to explicitly list all
of the equations needed to compute the Winograd FFT. It is better to express the radix-
two FFT in recursive form. This we will postpone until Chapter 4. In Section 4.8 we

112 Fast algorithms for the discrete Fourier transform

will give an efficient radix-two FFT based on putting Winograd’s ideas into recursive
form.

Problems for Chapter 3

3.1 Given a device that computes an n-point Fourier transform in the complex field,
describe how it can be used to simultaneously compute the Fourier transforms
of two real vectors of length n.

3.2 Given a device that computes an n-point Fourier transform, describe how it can
be used to compute an n-point inverse Fourier transform.

3.3 Sketch a circuit that computes a five-point Fourier transform using the Bluestein
chirp algorithm.

3.4 a Prove that two is a primitive element in GF (11).
b Use the Rader prime algorithm to express the eleven-point Fourier transform

over the complex numbers

Vk =
10∑
i=0

ωikvi

in terms of a convolution

s(x) = g(x)d(x),

writing out the polynomials d(x), s(x), and g(x) and in terms of V , v, and ω.
3.5 Find prime integers n and n′ with n less than n′ such that the n-point Winograd

small FFT uses more multiplications than the n′-point Winograd small FFT.
3.6 How many real multiplications will there be in a 25-point Winograd small FFT

if all convolutions are optimal? How does this compare with a procedure that
uses the Cooley–Tukey algorithm to combine two five-point Winograd FFT
algorithms?

3.7 Show that by conjugating the input and output, one can use any FFT algorithm
to compute an inverse Fourier transform.

3.8 State the inverse discrete cosine transform and prove its correctness.
3.9 Suppose that v is a vector of blocklength n of real numbers. Convert v to a vector

u of blocklength 2n by following v by its time reversal

µi =
{

vi, i = 0, . . . , n − 1,

v2n−1−i , i = n, . . . , 2n − 1.

How does the discrete cosine transform of v relate to the discrete Fourier trans-
form of u?

113 Problems

3.10 Using only elementary algebraic and trigonometric properties, restructure the
four-point discrete cosine transform to minimize the number of real multiplica-
tions.

3.11 The Good–Thomas algorithm reindexes the input and output differently. Show
that one can interchange the input and output indexing scheme without any basic
change in the algorithm.

3.12 Given a two-point and a five-point Fourier transform computed in the straight-
forward way (with four multiplications and 25 multiplications, respectively),
a Count the number of multiplications used by each of the following schemes

for computing a 100-point Fourier transform:

100

5

5

2 2

4

20

100

10

5252

10

100

4

2255

25

Use the Good–Thomas algorithm when possible; otherwise, use the Cooley–
Tukey algorithm. Count all multiplications including trivial ones (those by
±1, ±j).

b Repeat, but do not count trivial multiplications (those by ±1, ±j).
c Now suppose you are given a subroutine that computes a two-point Fourier

transform with no (nontrivial) multiplications and another subroutine that
computes a five-point Fourier transform with five (nontrivial) real multipli-
cations. Repeat part b.

3.13 The optimality of the Winograd small FFT does not follow immediately from the
choice of an optimal convolution algorithm to compute the cyclic convolution
generated by the Rader algorithm. This is because the coefficients of the Rader
filter are not arbitrary; they are definite powers of ω, and conceivably there may
be dependencies that can be exploited to reduce the number of multiplications.
Specifically, we have seen that complex multiplications degenerate to real multi-
plications, and sometimes coefficients are equal to zero. Prove that the Winograd
five-point FFT is optimal as measured by the number of multiplications.

3.14 A sixteen-point Winograd FFT uses eighteen multiplications, eight of which are
trivial, and 74 additions.
a Describe how to build a 256-point FFT by using the Cooley–Tukey algorithm

to build up from the sixteen-point Winograd FFT.
b How many multiplications are needed if the input data is real?
c How many multiplications are needed if the input data is complex?

114 Fast algorithms for the discrete Fourier transform

Notes for Chapter 3

Fast Fourier transform algorithms came into widespread use in digital signal processing
as a result of the well-known paper of Cooley and Tukey (1965) and the companion
paper by Singleton (1969). The Cooley–Tukey work became widely known and had an
immense impact on the field of signal processing. It was later realized by the community
that the essential idea of this algorithm was known privately to Gauss (1866). The
history of this algorithm was discussed by Heideman, Johnson, and Burrus (1984), and
by Huang (1971). A different FFT, using the Chinese remainder theorem, appeared
earlier in the papers of Good (1960) and Thomas (1963). The differences between
these FFT algorithms were discussed by Good (1971). An efficient organization of
the Cooley–Tukey algorithm was given by Rader and Brenner (1976) and modified by
Preuss (1982). Rader (1968) and Bluestein (1970) gave methods for turning a discrete
Fourier transform into a convolution. Rader’s purpose was to compute a discrete Fourier
transform with blocklength equal to a large prime; but ironically, his method turned
out to be important when the blocklength is equal to a small prime. Winograd (1978)
generalized Rader’s prime algorithm to blocklengths that are a power of a prime.

The Winograd FFT was announced in summary form in 1976 and published in detail
in 1978. Our treatment diffuses the presentation of the original work by integrating
the development into other topics. We have tabulated the small FFT modules that
seem to be the most useful. Larger FFT modules have been constructed by Johnson
and Burrus (1981). Other methods of computing the Fourier transform were studied
by Goertzel (1968) and by Sarwate (1978). Fast algorithms for the discrete cosine
transform were studied by Chen, Smith, and Fralick (1977); and by Narasimha and
Peterson (1978), by Makhoul (1980), and by Feig and Winograd (1992).

4 Fast algorithms based on doubling strategies

Many good algorithms can be derived by strategies that double an algorithm for half
of the problem. Given a problem of size n in some parameter, split the problem in
half, if possible, to obtain two problems of size n/2, but each with the same structure
as the original problem. If algorithms for the half problems can be easily combined
into an algorithm for the original problem, then one may have succeeded in finding an
algorithm that is efficient.

A radix-two Cooley–Tukey FFT algorithm can be thought of as an algorithm con-
structed by halving and doubling because an n-point Cooley–Tukey FFT is built out
of two n/2-point FFTs. In Chapter 5, we will describe the iterated filter sections that
also have this doubling structure whereby an n-point filter section can be built out of
two n/2-point filter sections. This chapter will develop other fast algorithms based
on halving and doubling. These algorithms are important in their own right for signal
processing. They illustrate a way of thinking that can be used to construct algorithms
for many kinds of processing tasks.

4.1 Halving and doubling strategies

Consider the task of computing a polynomial p(x) of degree n, given its set of zeros
β0, β1, . . . , βn−1. This means that the polynomial p(x) can be written as

p(x) = (x − βn−1)(x − βn−2) · · · (x − β0),

and from this expression on the right, the coefficients of p(x) can be computed. The
most natural way to do this computation is to start at one end, say the right end, and to
multiply new factors one at a time by using the following procedure:

p(i)(x) = (x − βi)p
(i−1)(x), i = 1, . . . , n − 1,

and starting with p(0)(x) = (x − β0). This procedure requires i multiplications and i

additions at iteration i, a total of 1
2n(n − 1) multiplications and the same number of

additions.

115

116 Fast algorithms based on doubling strategies

A better algorithm is obtained by halving and doubling. Suppose that n is a power of
two given by 2m. (It is easy to modify the procedure for other values of n by jumping
over some of the steps.) Now let

p′(x) =
(n/2)−1∏

i=0

(x − βi),

p′′(x) =
(n/2)−1∏

i=0

(x − β(n/2)+i),

and

p(x) = p′′(x)p′(x).

This last equation requires (n/2)2 multiplications as it is written. If p′(x) and p′′(x) are
each computed in the direct way, they each require 1

2 (n/2)((n/2) − 1) multiplications.
The total number of multiplications is(n

2

)2
+ 2

1

2

(n

2

) (n

2
− 1

)
= 1

2
n(n − 1),

which is no better than the direct method.
In order to gain any benefit from the doubling strategy, we need a better method to

combine the two parts in the computation

p(x) = p′′(x)p′(x).

But the set of coefficients of p(x) is a linear convolution of the sets of coefficients of
p′(x) and p′′(x). By using a fast Fourier transform, a linear convolution can be done in
fewer than An log2 n operations for some small constant A. Hence the total number of
multiplications is fewer than

M(n) = An log2 n + n

2

(n

2
− 1

)
,

which is an improvement for large n. The number can be reduced further by using the
same idea again to compute p′(x) and p′′(x). Each of these can be split, in turn, and
computed from two half solutions using fewer than A(n/2) log2(n/2) operations – a
total of fewer than An log2(n/2) operations to compute both. By continuing to halve
the problem in this way, the total number of multiplications is reduced to

M(n) = A

m∑
i=1

n log2
n

2i

= A
n

2
(log2

2 n − log2 n).

117 4.1 Halving and doubling strategies

Start Enter

Yes

Exit

1

Notes
 is a global variable
Procedure polycoef computes

 and advances

r n

r

r

x

r

Push down
data stack

/ 2n n

1
?

n

Call
procedure polycoef

Call
procedure polycoef

Call
convolution

() () ()p x p x p x

/ 2n n

Pop up
data stack

()
 1

rp x x
r r

Call
procedure polycoef

Exit

0r

No

()p x

()p x

Figure 4.1 Procedure polycoef

This is less than 1
2n(n − 1) except for very small n, so the halving and doubling strategy

has yielded an improved algorithm.
Figure 4.1 shows an organization of the computation of the polynomial product

using halving and doubling. This procedure is a good example of a kind of procedure
known as a recursive procedure. Recursion is a sophisticated computational principle.
It does not explicitly describe every level of the computation; it describes one level,
but that level contains a copy of the same procedure. The procedure calls itself. This
requires that the temporary data be organized in the form of a push-down stack, as
described in the next section. Each time the procedure is called, it pushes down the
existing stack of data to open a clear workspace.

Similar doubling strategies can be used for many problems. If a computational
problem depends on an integer n that is a power of two, one tries to obtain an answer for
n = 2m from the answers to two half-problems with n = 2m−1. The radix-two Cooley–
Tukey FFT is shown in the recursive form of a doubling algorithm in Figure 4.2. It
can be instructive to reflect on how the sequence of operations differs in Figure 4.2

118 Fast algorithms based on doubling strategies

Enter

Push down
data stack

Yes1
?

n

2

2 1

0, , / 2 1
0, ,(/ 2) 1

/ 2

i i

i i

v v i n
v v i n
n n

0 0V v

Call
procedure FFT

for ,nv

Pop up
data stack

No

v

Call
procedure FFT

for ,v n

v

/2 1/ 2),(0,

2

k
k k k

k
k n k k

V V V

nkV ,VV

n n

Exit

Figure 4.2 Procedure FFT

from the organization to be given in Figure 6.5 of Chapter 6. The recursive form may
require more temporary memory because it will create a stack of temporary Fourier
transforms of various sizes. On the other hand, the recursive form may be easier to use
if a single program is required to be able to compute any radix-two Fourier transform.
It also may be a convenient organization for a mixed-radix FFT because it is easy to
branch to subroutines for other blocklengths.

Doubling strategies usually can be extended to problems where n is not a power of
two. One way is to append enough dummy iterations to make n the next larger power
of two, though in some cases, as for the Fourier transform, this will not work. One can
also split a problem into pieces of some other size, such as thirds or fifths, but splitting
it into halves is usually best if the problem permits it.

119 4.2 Data structures

Root

Figure 4.3 A tree

4.2 Data structures

Any collection of data in a computation must be arranged in some way before it can be
processed. Similarly, intermediate data must be stored in a convenient way. The two
basic methods of organizing data are lists and trees. A list of length L is an ordered set
of L data items; each data item may itself be a complicated collection of data, perhaps
even containing lists of its own.

When the elements of a list are numbers, the list is sometimes called a vector. We
prefer to reserve this term only for an element of a vector space. When the elements
of a list are elements from a finite alphabet, the list may be called a string. A string
need not have a fixed length, but a vector usually does. The difference between a list,
a vector, and a string is a matter of the context of the application.

A variable-length list is one whose length is not fixed, but grows or shrinks with
time. A variable-length list can grow or shrink by adding or deleting items from any
point in the list, but, in many cases, items are added or deleted only at either or both
of the two ends. A list that has additions and deletions only from one end – say, the
top – is called a stack, or a push-down stack, or a last-in first-out (LIFO) buffer. A list
that has insertions only at one end and deletions from the other is called a queue, or a
first-in first-out (FIFO) buffer.

A tree is a data structure in which each data item can be followed by one or more
data items called descendants; a graphical representation is given in Figure 4.3. Each
node represents a data item, and each data item may have several other descending
data items to which it refers. Possibly several nodes in a tree are identical copies of the
same data item. A tree can be compared to a list; in a list, each data item has only one
descendant.

The data items in a list or a tree might be quite complex, perhaps involving text from
a natural language, but for the purpose of studying the list structure, each data item is
treated as a single unit. Lists or trees can be stored in a memory conveniently by using
names for the items; a good name is the memory address where the data item begins.

120 Fast algorithms based on doubling strategies

Data record

Next address Link 1

Next address Link 2

Data item

Next address Link 1

Next address Link 2

Data item

Figure 4.4 A doubly-linked list

The list (or the tree) is stored by listing in sequence the names of the items. The list
need not be stored in close proximity to the data items.

Another method, which is sometimes better, is an indirect addressing method called
a linked list, as shown in Figure 4.4. The data items appear in arbitrary order, and each
entry begins with the starting address of the next data item on the list. Figure 4.4 shows
a doubly-linked list. In a doubly-linked list, the data items are listed in two orders – say,
alphabetical and chronological – but need not be stored twice. If the list is frequently
revised, a linked list is convenient because the data need not be moved. Only the link
addresses need to be changed.

A stack can be constructed out of complex data items simply by giving the address
of the first data item and attaching to each data item the address of the next data item
in the stack. To push down the stack with a new data item on top, simply attach the
address of the previous top entry to the new entry, and change the address of the first
data item in the list to the address of the new item. To pop up the stack, reverse this
procedure.

4.3 Fast algorithms for sorting

The sorting problem is formulated as follows. We are given an arbitrary sequence of
n elements, taken from a set on which we have some notion of a natural order. We

121 4.3 Fast algorithms for sorting

are to rearrange these data items into their natural order. The sorting algorithm may
handle the data item itself and relocate that item in memory. Alternatively, the sorting
algorithm handles not the data item itself, but only some parameters attached to it.
The data is sorted by rearranging a list of indirect addresses. Sorting by rearranging
addresses is useful when the data items are themselves large.

Suppose that each data item has a numerical parameter associated with it. We are to
order the data items in the numerical order of this parameter from largest to smallest.
Any sorting problem can be viewed in this way.

A naive sorting procedure looks at the items one by one to find and tag the largest.
Then it looks at the reduced list to find the new largest item. It continues in this way until
all items are sorted. In everyday life, where n is small, this is a satisfactory procedure.
However, the average number of steps is proportional to n2. For sorting large lists, we
can do much better.

Good sorting algorithms are based on halving and doubling. Mergesort is a sorting
algorithm with a complexity proportional to n log n. Split a list of n data items into
two halves, and sort each half. From the two sorted lists, produce a single sorted
list by merging them. Merging works as follows. Look at the top element of the two
lists and choose the largest as the next entry of the composite list. Delete it from the
half-list when it is moved to the composite list. Because a data item is placed on the
composite list after every comparison, there can be at most n comparisons. Therefore
the complexity C(n) of sorting n data items satisfies the recursion

C(n) ≤ 2C
(n

2

)
+ n.

This implies that the complexity of mergesort is bounded by

C(n) ≤ n log2 n.

There is only one place in the argument where an inequality occurs. A few compar-
isons may not be needed in the merge, so we might save a little. However, we expect
the bound to be rather tight.

There are other ways to split the sorting problem. Quicksort randomly chooses one
of the data parameters as a number used to split the list. The performance of quicksort
is a random variable, quite good on the average, but slow on worst-case data sets.

Quicksort works as follows. If n equals zero or one, then the list is already sorted.
Otherwise, randomly choose an element of the list, then move each other element of
the list above or below that chosen element, according to whether that other element
is larger or smaller than the chosen element with ties going either way. This results in
two half-lists of random length, those above the chosen element and those below. Then
sort each half-list in the same way.

In the worst case, the randomly chosen element at each step is the largest (or the
smallest). Then the two new lists have length zero and n − 1, respectively. If this occurs

122 Fast algorithms based on doubling strategies

at each step, the complexity at step i is n − i, and the total complexity is proportional
to n2.

The two new lists have n − 1 − i and i elements, respectively, where i is a random
variable, equiprobable over the set {0, . . . , n − 1}. Forming these two sets has a com-
plexity proportional to n. The expected complexity of sorting the original set of n data
points is

C(n) = An + 1

n

n−1∑
i=0

C(i) + 1

n

n−1∑
i=0

C(n − 1 − i)

for some constant, A. This gives the recursive formula for C(n) when n is larger than
two:

C(n) = An + 2

n

n−1∑
i=0

C(i).

This is initialized with C(0) = C(1) equal to zero, or perhaps to some small number,
but this detail changes little and has no effect on the asymptotic complexity. We shall
show that for n greater than two, C(n) is less than 2An log n. The argument is by
induction. Assume that for all i less than n, C(i) is less than 2Ai loge i. This holds for
n equal to two. Then

C(n) < An + 4A

n

n−1∑
i=2

i loge i.

Because i loge i is a convex function, the right side can be bounded as follows:

C(n) < An + 4A

n

∫ n

2
x loge xdx.

Hence

C(n) < An + 4A

n

[
n2 loge n

2
− n2

4

]
= 2An loge n.

The average performance of quicksort can be asymptotically better than mergesort, but
the worst case performance is poorer.

4.4 Fast transposition

Whenever one processes a large two-dimensional array, such as a digitized image, it
may be that only a small part of the array is directly accessible within the processor.

123 4.4 Fast transposition

For example, to store a 1024 by 1024 array requires more than a million words of
memory and more than two million words if the data is complex. Most of the array is
held in a bulk memory system and is transferred in sections into local memory within
the processor. Most commonly, the n by n array is stored by columns (or by rows), and
it may be convenient to transfer one column at a time between local memory and bulk
memory to select one element of a row. Hence n columns must be read to form a row.
To transfer two elements from two different columns may be as difficult as transferring
two entire columns. To form each row in turn, n2 columns must be read; direct matrix
transposition reads n2 columns.

A fast transposition algorithm interchanges rows and columns in the bulk memory
in applications where the local memory is small. We shall study the case in which the
local memory can hold two columns of the square array. This is the most interesting
case, and it illustrates all of the main ideas. If the local memory cannot hold two
columns, then the doubling algorithm loses its efficiency; if it can hold more, then
further improvements by a small constant are possible.

Transposing a matrix that is in random-access local memory is trivial, because it is
simply a matter of modifying addresses when calling data. We will assume that taking
a transpose of a small matrix amounts to nothing more than reading an array into local
memory, then reading it out. Let A, a 2m by 2m matrix, be partitioned into blocks of
size 2m−1 by 2m−1 as

A =
[

A11 A12

A21 A22

]
.

Suppose we have a method of computing[
AT

11 AT
12

AT
21 AT

22

]
.

Then to compute

AT =
[

AT
11 AT

21

AT
12 AT

22

]

it suffices to interchange AT
21 and AT

12. This can be done by reading two columns at a
time to interchange one column of AT

12 with one column of AT
21. It requires that n/2

pairs of columns be transferred to complete the interchange.
Now we apply the same idea recursively to compute AT

11, AT
21, AT

12, and AT
22 by

partitioning each of these blocks. Because A11 and A21 appear in the same columns
of the array, both of these transpositions can be done with the same set of column
transfers. Hence, at each level of the recursion, n columns need to be transferred, and

124 Fast algorithms based on doubling strategies

there are log2 n levels in the recursion. Fast matrix transposition uses n log2 n column
transfers, as compared to n2 column transfers used by the direct method.

4.5 Matrix multiplication

The pairwise product of two by two matrices[
c11 c12

c21 c22

]
=

[
a11 a12

a21 a22

][
b11 b12

b21 b22

]

can be written out as

c11 = a11b11 + a12b21,

c12 = a11b12 + a12b22,

c21 = a21b11 + a22b21,

c22 = a21b12 + a22b22,

from which we see that the computation in this form requires eight multiplications
and four additions. The Strassen algorithm is a way to do the computation in seven
multiplications.

The Strassen algorithm first computes the following products:

m1 = (a12 − a22)(b21 + b22),

m2 = (a11 + a22)(b11 + b22),

m3 = (a11 − a21)(b11 + b12),

m4 = (a11 + a12)b22,

m5 = a11(b12 − b22),

m6 = a22(b21 − b11),

m7 = (a21 + a22)b11.

The following equations:

c11 = m1 + m2 − m4 + m6,

c12 = m4 + m5,

c21 = m6 + m7,

c22 = m2 − m3 + m5 − m7

then give the elements of the matrix.

125 4.5 Matrix multiplication

The Strassen algorithm can be expressed in a matrix form as

c11

c12

c21

c22

=

1 1 0 −1 0 1 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 1 −1 0 1 0 −1

G1

G2

G3

G4

G5

G6

G7

0 0 1 1
1 0 0 1
1 1 0 0
0 0 0 1
0 1 0 −1

−1 0 1 0
1 0 0 0

b11

b12

b21

b22

,

where the center matrix is a diagonal matrix whose diagonal elements are given by

G1

G2

G3

G4

G5

G6

G7

=

0 1 0 −1
1 0 0 1
1 0 −1 0
1 1 0 0
1 0 0 0
0 0 0 1
0 0 1 1

a11

a12

a21

a22

 .

The Strassen algorithm uses seven multiplications and eighteen additions. If one of
the two matrices in the product is a constant and is to be used many times, then
some of the additions can be done once off-line, and so only thirteen additions are
required.

In the best case, the Strassen algorithm trades one multiplication for nine additions
as compared to straightforward matrix multiplication. It has no practical advantage for
multiplying two by two matrices.

Now consider the problem of multiplying n by n matrices. The direct method of
matrix multiplication uses n3 multiplications and (n − 1)n2 additions. We suppose that
n is a power of two and can be written as 2m for some m; otherwise, append columns
of zeros on the right and append rows of zeros on the bottom to make n into a power
of two.

The matrix product C = AB can be partitioned as

[
C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

][
B11 B12

B21 B22

]
,

where now each block is 2m−1 by 2m−1 matrix. If we multiply out these blocks as
written, then there are eight matrix multiplications of n/2 by n/2 matrices and four
matrix additions of n/2 by n/2 matrices. If these are computed in the direct way, then

126 Fast algorithms based on doubling strategies

the total number of multiplications is

M(n) = 8
(n

2

)3
= n3,

A(n) = 8
(n

2
− 1

) (n

2

)2
+ 4

(n

2

)2

= (n − 1)n2.

This is the same as before, so halving and doubling has no advantage unless some other
improvement is made. The Strassen algorithm, when applied to matrix blocks, is such
an improvement.

The Strassen algorithm applies when the arguments are matrix blocks because it
does not depend on the commutative property of arithmetic. The Strassen algorithm
first computes the following matrix products:

M1 = (A12 − A22)(B21 + B22),

M2 = (A11 + A22)(B11 + B22),

M3 = (A11 − A21)(B11 + B12),

M4 = (A11 + A12)B22,

M5 = A11(B12 − B22),

M6 = A22(B21 − B11),

M7 = (A21 + A22)B11.

The blocks of C are then computed by

C11 = M1 + M2 − M4 + M6,

C12 = M4 + M5,

C21 = M6 + M7,

C22 = M2 − M3 + M5 − M7.

In the case in which A is a matrix of constants, there are seven n/2 by n/2 matrix
multiplications and thirteen n/2 by n/2 matrix additions here, as compared to eight
such matrix multiplications and four such matrix additions in the usual procedure. If
these are computed in the direct way, the total number of multiplications is

M(n) = 7
(n

2

)3
= 7

8
n3,

which is less than n3. The total number of additions is

A(n) = 7
(n

2
− 1

) (n

2

)2
+ 13

(n

2

)2

=
(

7

8
n + 3

2

)
n2,

which is less than (n − 1)n2 if n is larger than twenty.

127 4.6 Computation of trigonometric functions

The Strassen algorithm gives even better performance if it is applied recursively,
breaking each matrix product into smaller pieces using the same equations. Then the
number of multiplications is

M(n) = 7m = 7log2 n = nlog2 7

= n2.81.

The number of additions is more difficult to state in simple terms. It satisfies the
recursion

A(n) = 7A
(n

2

)
+ 13

(n

2

)2
.

The number of additions is larger than the number of multiplications, but, for large n,
it also grows as n2.81. For large enough n, it will also be less than the direct method.
For n equal to 1024, the number of additions is about the same as the direct method,
but there are only about one-fourth as many multiplications.

4.6 Computation of trigonometric functions

Trigonometric functions are commonly computed using some form of a power series.
Power series methods are very different from the doubling methods we have been
studying. However, there are several other methods, useful in special applications, that
have the flavor of a doubling strategy, and these we shall describe.

The first algorithm we describe is a method for simultaneously computing sin θ and
cos θ when given the angle θ . The computational process is based on the trigonometric
double-angle identities:

sin 2θ = 2 sin θ cos θ

cos 2θ = 1 − 2 sin2 θ.

It will be helpful to write these in the form

sin 2θ = 2 sin θ − 2 sin θ vers θ

vers 2θ = 2 sin2 θ,

where

vers θ = 1 − cos θ.

An initial value is generated by dividing θ by a power of two and using small angle
approximations:

sin
θ

2m
= θ

2m

vers
θ

2m
= 0.

128 Fast algorithms based on doubling strategies

The accuracy of the algorithm can be adjusted as desired by specifying m. The angle
θ is expressed in radians and is limited to ±π . No special quadrant determination is
necessary because the algorithm automatically places the results in the correct quadrant.
The end results of the computation are sin θ and 1 − cos θ .

If the initial numbers are very small, large wordlengths will be required. To avoid
numbers that are too small, new variables are defined:

Xn = 2m

2n
(sin θ)n,

Yn = 2m

2n
(vers θ)n.

The recursive equations then become

Xn = Xn−1 − 2n+1−mXn−1Yn−1,

Yn = 2n+1−mX2
n−1,

where m is the total number of iterations to be executed, and the initial values are
X0 = θ , Y0 = 0.

The accuracy of the algorithm in the initial iteration is determined by the error term

(X0)e = −1

6

(
θ

2m

)3

,

which is the error in the initial approximation. This initial error propagates into a final
error, bounded by

(sin θ)e ≤ 1

6
π32−2m,

(cos θ)e ≤ 1

6
π32−2m.

Hence the numerical error of the algorithm itself reduces with the number of iterations
at a rate of two bits per iteration. To ensure this accuracy, the multiplications must carry
enough bits to support that accuracy.

The second trigonometric algorithm to be described in this section is a method for
coordinate rotation. Either it computes[
x ′

y ′

]
=

[
cos θ sin θ

−sin θ cos θ

][
x

y

]
,

or it computes the polar transformation

θ = tan−1 x

y
, r =

√
x2 + y2,

depending on the way in which it is used. The algorithm is a combination of computa-
tional and look-up techniques. The key to the algorithm is the fact that it is easy to rotate

129 4.6 Computation of trigonometric functions

a vector by a particular angle of the form θ = tan−1 2−k , by using the trigonometric
identities

sin θ = tan θ√
1 + tan2 θ

,

cos θ = 1√
1 + tan2 θ

.

Hence

sin
[
tan−1 2−k

] = 2−k√
1 + (2−k)2

,

cos
[
tan−1 2−k

] = 1√
1 + (2−k)2

.

Therefore a rotation of the vector (x, y) by θk = tan−1 2−k can be written

x ′ = 1√
1 + (2−k)2

[x + 2−ky],

y ′ = 1√
1 + (2−k)2

[y − 2−kx].

To rotate by the negative of tan−1 2−k , the same equations are used but with the sign
of 2−k reversed. The sign reversal does not affect the magnitude term multiplying the
bracket. Therefore the magnitude of the vector is increased by a fixed constant. An
arbitrary angle θ can be expressed as follows:

θ = ±90◦ +
∞∑

k=0

(±tan−1 2−k)

or

θ = ξ−190◦ +
∞∑

k=0

ξk tan−1 2−k

=
∞∑

k=−1

ξkθk,

where ξk for k = −1, 0, 1, . . . is equal to either 1 or −1, according to the table of arc
tangents in Figure 4.5. To rotate by the angle θ , simply rotate by each θk , in turn, with
the sign of the rotation specified by ξk .

After n iterations, the magnification is

m∏
k=1

√
1 + 2−2k

which is independent of the signs of the individual rotations.

130 Fast algorithms based on doubling strategies

Scaling
2 k

Iteration
k

1

0

1

2

3

4

5

6

7

8

9

10

0

1

1/2

1/4

1/8

1/16

1/32

1/64

1/128

1/256

1/512

1/1024

90

45

26.565 051

14.036 243

7.125 016

3.576 334

1.789 911

0.895 174

0.447 614

0.223 811

0.111 906

0.055 953

Angle increment
tan 2 k

i

Figure 4.5 An arc tangent table

The resulting algorithm is shown in Figure 4.6. During the first iteration, the vector
is rotated by ±90◦ by a slightly different rule. Thereafter, at iteration k, by examining
the signs of x and y, a decision is made to rotate either by θk or by −θk . This is
effected by one addition or subtraction with scaling. Because the scale factor is 2−k ,
it consists of a binary shift. Thus the algorithm is almost free of multiplications. The
magnitude expansion produced by the algorithm is a constant independent of θ . It can
be canceled by multiplying by its reciprocal after the iterations are completed. Even
better, it can be buried by absorbing it into constants, if possible, in other places in the
larger application.

To compute tan−1(x/y), the action of the algorithm is reversed. The vector (x, y) is
rotated during each iteration in the direction that will reduce the current magnitude of
y, and the signed values of θk are added to get θ .

4.7 An accelerated euclidean algorithm for polynomials

The euclidean algorithm for polynomials can be accelerated by means of a doubling
strategy to get an algorithm with an asymptotic complexity on the order of n log2 n.
For small n, the overhead seems to make the algorithm unattractive. The euclidean
algorithm consists of the repeated application of the division algorithm, with each
iteration computing, from the current s(x) and t(x), the new quotient polynomial Q(x)
and the new remainder polynomial r(x) that satisfy the equation

s(x) = Q(x)t(x) + r(x).

131 4.7 An accelerated euclidean algorithm for polynomials

Enter
arctan (x, y)

0
0

k

1 if 0
1 if 0 k

y
y

Enter
rotate , by x y

1k

1
?

k YesNo

2

2

k k
k

k
k

k

x yx
y y x

k k

k
k

x y
y x

1k k

No No

Yes

If
rotate
mode

If
arctan
mode

max
?

k k

Exit

1 if 0
1 if 0 k

y
y

Figure 4.6 Coordinate rotation algorithm

Although all coefficients of s(x) and t(x) are used in computing the remainder poly-
nomial, not all coefficients of s(x) and t(x) are used in computing the quotient poly-
nomial. Only some of the high-order coefficients of s(x) and t(x) are needed to compute
Q(x). Moreover, some low-order coefficients of the remainder polynomial may be
unneeded for computing the next quotient polynomial, and even may be unneeded in
several iterations after that. This means that only a portion of the remainder polynomial
needs to be current at each iteration, provided the coefficients of other remainder
polynomials that eventually are needed in later iterations can be computed just in
time to be used. This observation suggests the formulation of a halving and doubling
strategy.

132 Fast algorithms based on doubling strategies

The main computations of the euclidean algorithm are described by the equations

Q(r)(x) =
⌊

s(r−1)(x)

t (r−1)(x)

⌋
and[
s(r)(x)

t (r)(x)

]
=

[
0 1
1 −Q(r)(x)

][
s(r−1)(x)

t (r−1)(x)

]
,

where now t (r)(x) denotes the remainder polynomial at iteration r . The iterations stop
when t (r+1)(x) equals zero. Computation of the quotient polynomial Q(r)(x) requires
only the high-order coefficients of t (r−1)(x). Define

A(r,r ′+1)(x) =
�=r ′+1∏

r

[
0 1
1 −Q(�)(x)

]
,

with the order of the product written in reverse order to respect the noncommutativity
of matrix multiplication. Then[
s(r)(x)

t (r)(x)

]
= A(r,1)(x)

[
s(x)
t(x)

]
,

where A(r)(x) = A(r,1)(x).
Clearly, the computation of A(r,1)(x) as a product of matrices has the same structure

as a polynomial product, which was shown in Section 4.1 to be amenable to a doubling
strategy. We need to partition the terms of the matrix product into two batches of about
the same size. If we can do this so that each batch looks like (or can be made to look like)
the original problem, then the recursive structure will follow. However, there are several
details that must be accommodated. The difficulty is that the number of iterations is
not known in advance, so it is not possible to say when half of the iterations have
been completed. This difficulty can be accommodated by breaking the computation at
a point where approximately half of the iterations will have been completed.

The second difficulty is that the quotient polynomial Q(r)(x) depends on A(r−1)(x)
and, in turn, A(r)(x) depends on Q(r)(x). Hence not all of the factors used in computing
A(r)(x) are known before the time of the computation. Care must be taken in batching
them to ensure that no factor is to be used before it is known. Proposition 4.7.1 will
show that if we split the algorithm at the right point, then the two batches will have a
structure similar to the original problem, and will not use terms that are not yet known.

Let A(r)(x) be factored as

A(r)(x) = A(r,r ′+1)(x)A(r ′)(x).

The first batch of computations needed to compute A(r ′)(x) consists of r ′ iterations
that are nearly identical to the first r ′ iterations of the original problem except that

133 4.7 An accelerated euclidean algorithm for polynomials

the polynomial iterates are truncated. The second batch of computations, needed to
compute A(r,r ′+1) for r = r ′ + 1, . . . , R, is

Q(r)(x) =
⌊

s(r−1)(x)

t (r−1)(x)

⌋
,[

s(r)(x)

t (r)(x)

]
= A(r,r ′+1)(x)

[
s(r ′)(x)

t (r ′)(x)

]
.

The second batch of computations has the same structure as the original computation.
If we compute the two batches in the same way as in the original problem, then the

halving and doubling really has not gained much. To reduce the complexity, we will
truncate the polynomials that are used in the first batch. The following proposition gives
conditions under which it is possible to truncate the divisor and dividend polynomials
without changing the quotient polynomial.

Proposition 4.7.1 Let the two polynomials f (x) and g(x), with deg g(x) less than
deg f (x), each be expressed in two segments as

f (x) = f ′(x)xk + f ′′(x),

g(x) = g′(x)xk + g′′(x),

where f ′′(x) and g′′(x) each have a degree smaller than k, and k satisfies

k ≤ 2 deg g(x) − deg f (x).

Let

f (x) = Q(x)g(x) + r(x)

and

f ′(x) = Q′(x)g′(x) + r ′(x)

each satisfy the division algorithm. Then
(i) Q(x) = Q′(x),

(ii) r(x) = r ′(x)xk + r ′′(x),
where the polynomial r ′′(x) is a polynomial whose degree is smaller than k +
deg f (x) − deg g(x).

Proof This is an easy consequence of the uniqueness of the division algorithm. Start
with

f ′(x) = Q′(x)g′(x) + r ′(x),

which leads to

f ′(x)xk + f ′′(x) = Q′(x)g′(x)xk + r ′(x)xk + f ′′(x).

134 Fast algorithms based on doubling strategies

Now recall the segmentation of f (x) and g(x) to write

f (x) = Q′(x)g(x) + r ′(x)xk + f ′′(x) − Q′(x)g′′(x).

To show that this has the form of the division algorithm, we must show that

deg[r ′(x)xk + f ′′(x) − Q′(x)g′′(x)] < deg g(x).

Then, from the uniqueness of the division algorithm, we can conclude that

Q(x) = Q′(x)

and

r(x) = r ′(x)xk + f ′′(x) − Q′(x)g′′(x).

But, for the conditions of the theorem, the degree condition is easily verified by
checking, in turn, that it holds for each of the three terms on the left side:

(i) deg[r ′(x)xk] < deg g′(x) + k = deg g(x),
(ii) deg f ′′(x) ≤ k − 1 < deg g(x),

(iii) deg[Q′(x)g′′(x)] < deg f ′(x) − deg g′(x) + k

= (deg f (x) − k) − (deg g(x) − k) + k

≤ deg g(x).
The second conclusion of the theorem is obtained by noting in lines (ii) and (iii)
that the polynomial f ′′(x) − Q′(x)g′′(x) has degree smaller than k + deg f (x) −
deg g(x). �

Corollary 4.7.2 Let k satisfy

k ≤ 2 deg g(x) − deg f (x).

When dividing f (x) by g(x), the quotient polynomial Q(x) does not depend on the k

low-order coefficients of f (x) and g(x), and the k low-order coefficients of f (x) and
g(x) affect the remainder polynomial r(x) only in the coefficients of r(x) with index
less than k + deg f (x) − deg g(x).

Proof This follows directly from the theorem. �

According to Proposition 4.7.1 and its corollary, we can obtain the quotient poly-
nomial Q(x) and a segment of the remainder polynomial r(x) by truncating both f (x)
and g(x) to shorter polynomials. We will show next that the missing segment of r(x)
will not impair some of the subsequent iterations of the euclidean algorithm. In fact, if
k is chosen cleverly, about half of the subsequent iterations can be computed without
knowing the missing segment of r(x).

135 4.7 An accelerated euclidean algorithm for polynomials

The next theorem gives a condition such that the quotients of the remainder
sequences, generated by the euclidean algorithm for the unprimed and primed vari-
ables, agree at least until the latter reaches a remainder g′(r)(x) whose degree is less
than half that of f ′(x).

Theorem 4.7.3 Let f (x) = f ′(x)xk + f ′′(x) and g(x) = g′(x)xk + g′′(x), where
deg f ′′(x) < k and deg g′′(x) < k. Let deg f (x) = n and deg g(x) < deg f (x), and
let A(r)(x) and A′(r)(x) be the euclidean matrices computed from the unprimed and
primed variables, respectively. Then

A(r)(x) = A′(r)(x)

for each r , provided that deg g′(r)(x) ≥ (n − k)/2.

Proof The proof consists of applying Corollary 4.7.2 to each iteration of the euclidean
algorithm for the unprimed and primed variables initialized with f (0)(x) = f (x),
g(0)(x) = g(x) and with f ′(0)(x) = f ′(x), g′(0)(x) = g′(x).

Step 1 The corollary can be applied to each iteration, provided that the condition

k ≤ 2 deg g(r)(x) − deg f (r)(x)

is satisfied. But we are given that

deg g′(r)(x) ≥ n − k

2
.

We shall see that this is equivalent to the desired condition by relating the degrees of
the primed polynomials to the degrees of the unprimed polynomials. This follows from
the equations[

f (r)(x)
g(r)(x)

]
=

[
0 1
1 −Q(x)

][
f (r−1)(x)
g(r−1)(x)

]
,[

f ′(r)(x)
g′(r)(x)

]
=

[
0 1
1 −Q(x)

][
f ′(r−1)(x)
g′(r−1)(x)

]
,

and

deg f ′(0)(x) = deg f (0)(x) − k,

deg g′(0)(x) = deg g(0)(x) − k.

Consequently, as long as the quotient polynomial is equal for both the primed and
unprimed polynomials, we have

deg f ′(r)(x) = deg f (r)(x) − k,

deg g′(r)(x) = deg g(r)(x) − k.

136 Fast algorithms based on doubling strategies

Thus we are given that

deg g(r)(x) − k ≥ n − k

2
≥ deg f (r)(x) − k

2

because n = deg f (0)(x) ≥ deg f (r)(x). This immediately reduces to

k ≤ 2 deg g(r)(x) − deg f (r)(x),

and so Corollary 4.7.2 can be applied to each iteration, provided Q(x) was correctly
computed in every previous iteration.

Step 2 By Corollary 4.7.2, each quotient polynomial will be correct, provided every
previous quotient polynomial was correct and there are enough correct coefficients
in the most recent remainder polynomial. To verify the latter requirement, we use
Corollary 4.7.2 again, this time with k replaced by

k(r) = k + deg f (r−1)(x) − deg g(r−1)(x)

and k(0) = k. By Corollary 4.7.2, upon entering the rth iteration, the remainder poly-
nomial will be correct everywhere except possibly in the k(r) low-order coefficients,
and by Corollary 4.7.2, this will not affect the quotient polynomial in the rth iteration,
provided

k(r) ≤ 2 deg g(r)(x) − deg f (r)(x).

We verify that this inequality is satisfied as follows

k(r) − 2 deg g(r)(x) + deg f (r)(x) = k + deg f (r−1)(x) − deg g(r−1)(x)

− 2 deg g(r)(x) + deg f (r)(x)

= k + deg f (r−1)(x) − 2 deg g(r)(x)

≤ k + n − 2

(
n + k

2

)
= 0,

where we have used the inequalities deg f (r−1)(x) ≤ n and

deg g(r)(x) = deg g′(r)(x) + k ≥ n + k

2
.

Therefore,

k(r) ≤ 2 deg g(r)(x) − deg f (r)(x),

and so in the rth iteration the quotient polynomial does not depend on the unknown
coefficients. This completes the proof of the theorem. �

137 4.7 An accelerated euclidean algorithm for polynomials

Enter
procedure eucalg

Push down
data stack

No
1
2

deg ()
deg ()

?

g x
f x

Yes

()xA

f(x) f(x)
(x)

g(x) g(x)
A

?
g(x) = 0

No

Yes

()(x) xA A

Call
procedure

eucalg

()(x) (x) xA A A

()xA

Pop up
data stack

()
()

()
0 1

()
1 ()

f x
Q x

g x

' x
Q x

A

Call
procedure

half eucalg

Figure 4.7 Procedure eucalg

The condition of the theorem, that deg g′(r)(x) ≥ (n − k)/2, can be stated in terms
of the unprimed variables as deg g(r)(x) ≥ (n + k)/2 because the degrees differ by k.
This equivalence is used in formulating the recursive procedure.

The euclidean algorithm is shown split in halves in the flow diagram of Figure 4.7.
The major branch point decides whether to split the problem immediately or to first
perform one normal iteration of the euclidean algorithm, because the splitting and
doubling procedure cannot yet be applied. This latter path is followed only when the
degree of g(x) is smaller than half the degree of f (x). In this case, one normal iteration
of the euclidean algorithm cuts the size of the problem in half, so there is nothing lost
because of the fact that the doubling procedure could not be used.

138 Fast algorithms based on doubling strategies

Enter

1
2

deg ()
deg ()

?

g x
f x

Exit

Call
procedure
half eucalg

()
()

()

0 1
() ()

1 ()

() 0 1 ()
)()(1)(

f x
Q x

g x

x x
Q x

f x f x
g g xQ xx

A A

1
2

() () (()mod)

() () (()mod)

k k

kk

k k

f x x f x f x x

g x x g x g x x

Call
procedure
half eucalg

()x (x) (x)A A APop up
data stack

1 0
()

0 1
A x

Push down
data stack

()xA

() ()
()

() ()
f x f x

x
g x g x

A

(x)A

1
2
deg ()

() () (()mod)

() () (()mod)

k k

kk

k f x

f x x f x f x x

g x x g x g x x

Figure 4.8 Procedure half eucalg

The second half of the split computation has the same form as the original problem
and can be computed, in turn, by again calling the same procedure. The first half of
the split computation has a similar, but not identical, form because it must terminate
when the polynomials become too small. The half computation can itself be split into
two halves, and so we can formulate the computations recursively. Figure 4.8 shows
this recursive procedure. The validity of Figure 4.8 can be established by induction.
We must show that the flow computes those iterations of the euclidean algorithm
specified by Theorem 4.7.3. This always happens when n equals two or one because
then the left path of Figure 4.8 is followed. When the right path is followed, then
by the induction assumption, the first time the procedure of the recursion is called, it
terminates with deg f (x) reduced to (n + k)/2, which equals about three-fourths of

139 4.8 A recursive radix-two fast Fourier transform

the original degree of f (x). The second call of the recursion completes those iterations
specified by Theorem 4.7.3.

4.8 A recursive radix-two fast Fourier transform

The complex radix-two Fourier transform is

Vk =
n−1∑
i=0

ωikvi, k = 0, . . . , n − 1,

where n is equal to 2m with m an integer, and v is a complex vector. In Chapter 3, we
were interested in constructing a small package of equations that would compute the
radix-two Fourier transform by a straight-line computation. This is the right way to do
it when n equals eight or sixteen, but it may be cumbersome for larger n. Accordingly,
we have described various methods for combining these small algorithms into larger
algorithms.

In this section, we shall express the radix-two Fourier transform in recursive form,
repeating much of the treatment of the Winograd small FFT of Section 3.8, but now
with more emphasis on the general structure and recursive formulation of the algorithm.
We shall deal only with complex input data, because for n equal to 32 or greater, a
complex Fourier transform can be more efficient than twice using a Fourier transform
for real input data.

The Fourier transform can be decomposed, as in Chapter 3, into components with
even index and components with odd index. To treat the components with even index,
replace k by 2k′ and write

V2k′ =
(n/2)−1∑

i=0

(vi + vi+n/2)ω2ik′
, k′ = 0, . . . , (n/2) − 1.

This is an n/2-point Fourier transform of the new vector that has components vi +
vi+n/2 and requires n/2 complex additions to prepare. To treat the components with
odd index, replace k by 2k′ + 1 and write

V2k′+1 =
(n/2)−1∑

i=0

v2iω
2i(2k′+1) +

(n/2)−1∑
i=0

v2i+1ω
(2i+1)(2k′+1), k′ = 0, . . . , (n/2) − 1.

The two terms here will be studied separately. It takes n/2 complex additions to combine
them. The first term only needs to be computed for k′ = 0, . . . , (n/4) − 1 because
it then repeats. The first term is an n/4-point Fourier transform of the vector with
components v2iω

2i . The vector with components v2iω
2i is computed with (3/4)n − 8

real multiplications (because there are (n/4) − 4 complex products that will each

140 Fast algorithms based on doubling strategies

use three real multiplications, and two complex products that will each use two real
multiplications) and the same number of additions.

The bulk of the discussion will deal with the computation of the expression

t2k′+1 =
(n/2)−1∑

i=0

v2i+1ω
(2i+1)(2k′+1), k′ = 0, . . . , (n/2) − 1.

The terms in the exponent of ω are integers taken modulo n because ω has order n.
Within the exponents, all operations are multiplications of odd integers modulo n, and
n equals 2m. Under multiplication modulo n, the odd integers form a group that is
isomorphic to Z2 × Zm−2

2 , as will be shown in Theorem 9.1.8 of Chapter 9. Hence the
group has two generators. In fact, 3 and −1 are appropriate generators, and the set of
exponents can be written as the multiplicative group

{3�(−1)�
′

: � = 0, . . . , 2m−2 − 1; �′ = 0, 1}

with multiplication modulo 2m as the group operation. Accordingly, the input indices
will be rewritten as

2i + 1 = 3�(−1)�
′
,

and the output indices will be rewritten as

2k′ + 1 = 3−r (−1)−r ′
.

With the new representation of the indices, the previous equation is changed into

trr ′ =
1∑

�′=0

2m−2−1∑
�=0

v��′ω3�−r (−1)�
′−r′

,
r = 0, . . . , 2m−2 − 1,

r ′ = 0, 1,

where the two-dimensional arrays with elements trr ′ and v��′ take their elements from
the components of the vectors of t2k′+1 and v2i+1, according to the reformulation of the
indices. The equation is now a two-dimensional cyclic convolution:

t(x, y) = g(x, y)v(x, y) (mod x2m−2 − 1) (mod y2 − 1),

where g(x, y) is the generalized Rader polynomial

g(x, y) =
1∑

�′=0

2m−2−1∑
�=0

ω3�(−1)�
′
x�y�′

,

141 4.8 A recursive radix-two fast Fourier transform

and v(x, y) and t(x, y) represent the input and output data as two-dimensional poly-
nomials by

v(x, y) =
1∑

�′=0

2m−2−1∑
�=0

v��′x�y�′
,

t(x, y) =
1∑

�′=0

2m−2−1∑
�=0

t��′x�y�′
.

Only permutations are necessary to set up the polynomial v(x, y) from the components
v2i+1. Similarly, only permutations are necessary to recover t2k′+1 from t(x, y).

The structure may be easier to see if we write this as

v(x, y) = v0(x) + yv1(x),

t(x, y) = t0(x) + yt1(x),

and

g(x, y) =
2m−2−1∑

�=0

ω3�

x� +
2m−2−1∑

�=0

ω−3�

x�y

= g(x) + yg∗(x),

where

g(x) =
2m−2−1∑

�=0

ω3�

x�.

Then[
t0(x)
t1(x)

]
=

[
g(x) g∗(x)
g∗(x) g(x)

][
v0(x)
v1(x)

]
.

If the input data is real, t1(x) = t∗0 (x), and we need to compute only

t0(x) = g(x)v0(x) + g∗(x)v1(x) (mod xn/4 − 1)

to compute this matrix product.
The next step is to use the factorization

xn/4 − 1 = (xn/8 − 1)(xn/8 + 1)

together with the Chinese remainder theorem. Let

g(0)(x) = g(x) (mod xn/8 − 1),

g(1)(x) = g(x) (mod xn/8 + 1),

142 Fast algorithms based on doubling strategies

Set up
computations

Call
12 -point FFTm

2
Call

2 -point FFTm

32mn

Call
polynomial product

modulo 1
four times

nx

Combine
partial results

Exit

Enter 2 -point FFTm

Figure 4.9 Recursive form of the radix-two Winograd FFT

and similarly for the other polynomials. By Theorem 3.8.3, g(0)(x) = 0, so we need to
deal only with the terms involving g(1)(x):[
t

(1)
0 (x)

t
(1)
1 (x)

]
=

[
g(1)(x) g(1)∗(x)

g(1)∗(x) g(1)(x)

][
v

(1)
0 (x)

v
(1)
1 (x)

]
.

Next, use a two-point cyclic convolution algorithm to write[
t

(1)
0 (x)

t
(1)
1 (x)

]
=

[
1 1
1 −1

][
1
2

[
g(1)(x) + g(1)∗(x)

]
1
2

[
g(1)(x) − g(1)∗(x)

]]

×
[

1 1
1 −1

][
v

(1)
0 (x)

v
(1)
1 (x)

]
.

The term 1
2 [g(1)(x) + g(1)∗(x)] is a purely real polynomial, while the term 1

2 [g(1)(x) −
g(1)∗(x)] is a purely imaginary polynomial. Therefore we have reduced the computation
to four real polynomial products modulo xn/8 + 1. Each of those, in principle, requires

143 Problems

Table 4.1 Performance of some recursive radix-two FFT algorithms

Real input data Complex input data

Number of real Number of real
multiplications multiplications

Blocklength
n Nontrivial Total Nontrivial Total

Number of real Number of real
additions additions

2 0 2 2 0 4 5
4 0 4 8 0 8 16
8 2 8 26 4 16 52

16 10 18 74 20 36 148
32 36 50 68 96
64 102 124 188 232

128 258 294 468 540
256 608 666 1092 1208
512 1370 1464 2444 2632

1024 2994 3146 5316 5620

(n/4) − 1 real multiplications to compute, although when n is larger than 32, practical
algorithms will use more multiplications.

Figure 4.9 shows an outline for a flow of the FFT computation in recursive form.
Table 4.1 tabulates the performance that may be achieved in this way.

Problems for Chapter 4

4.1 Find a doubling algorithm for multiplying a column vector by a Toeplitz matrix.
4.2 Use mergesort to sort the list (3, 1, 5, 2, 7, 3, 9, 8, 2, 6, 1, 4, 9, 2, 5, 1).
4.3 a Give a flow diagram for a decimation-in-frequency radix-two Cooley–Tukey

FFT expressed as a doubling algorithm.
b Give a flow diagram of a doubling algorithm in recursive form for computing a

filter section whose blocklength is a power of two.
c Give a flow diagram in recursive form for a doubling algorithm to compute a

polynomial product.
4.4 Let n be a power of two, and let a and b be two arbitrary n digit integers. Use

doubling to find an efficient algorithm for multiplying a and b.
4.5 Develop a matrix transposition algorithm for a processor that can store four

columns of an array at one time in local memory. Give the algorithm in the
form of a flow diagram. How many column transfers are needed?

144 Fast algorithms based on doubling strategies

4.6 How many multiplications are needed to compute the following coordinate trans-
formation?[
x ′

y ′

]
=

[
cos θ sin θ

−sin θ cos θ

][
x

y

]
.

4.7 Calculate tan−1(2/1) by using the coordinate rotation algorithm (cordic). By com-
paring with the true value, estimate the precision of the algorithm.

4.8 Using the Strassen algorithm, compute the matrix product[
1 5
7 3

][
4 8
6 2

]
.

Notes for Chapter 4

Strategies that use halving and doubling are basic and arose in many places. This
short chapter has only touched on this corner of the general theory of algorithms. A
broader introduction can be found in the work of Knuth (1968) or Aho, Hopcroft,
and Ullman (1974). Common examples of doubling are the sorting algorithm such as
mergesort, which we have discussed, as well as the heapsort and quicksort algorithms
introduced by Williams (1964) and Hoare (1962), respectively. Many other sorting
algorithms are known. The doubling strategy as a view of the Cooley–Tukey FFT was
emphasized by Steiglitz (1974). Fiduccia (1972) developed the Cooley–Tukey FFT by
taking the polynomial evaluation idea of the Goertzel algorithm, then using halving
and doubling. Doubling was used for matrix transposition by Eklundh (1972). The first
accelerated form of the euclidean algorithm by doubling appears in the book by Aho,
Hopcroft, and Ullman (1974), where it is limited to computing the greatest common
denominator.

The Strassen algorithm (1969) is the best known fast matrix multiplication algorithm
and is practical for large blocklengths. The Coppersmith–Winograd algorithm (1990)
is the fastest known matrix multiplication algorithm, but only for extremely large
matrices.

The coordinate rotation algorithm has been in use for many years under the name
cordic algorithm, and is usually attributed to Volder (1959) with elaborations by
Walther (1971). The sine and cosine doubling algorithm was developed by Blahut,
and published by Blahut and Waldecker (1970).

5 Fast algorithms for short convolutions

The best-known method for calculating a convolution efficiently is to use the convolu-
tion theorem and a fast Fourier transform algorithm. This is usually quite convenient;
and while better methods exist, the performance is often satisfactory. However, in
applications in which it is worth the trouble to make the computational load even less,
one can turn to other methods. When the blocklength is small, the best convolution
algorithms, as measured by the number of multiplications and additions, are the Wino-
grad convolution algorithms. The Winograd algorithms form the major topic of this
chapter. Later chapters show how to build large convolution algorithms by piecing
together small convolution algorithms. The large algorithms will be good only if the
small algorithms are good. This is why we are interested in finding the best possible
small convolution algorithms.

The details of the convolution algorithms that we derive may depend on the field in
which the convolution takes place, but the general idea behind the algorithms does not
depend on the field. We shall give methods to derive convolution algorithms for any
field of interest, but, of course, the most important applications are in the real field and
the complex field.

5.1 Cyclic convolution and linear convolution

A linear convolution can be written compactly as a polynomial product:

s(x) = g(x)d(x).

The coefficients of s(x) are given by

si =
N−1∑
k=0

gi−kdk, i = 0, . . . , L + N − 2,

where deg g(x) = L − 1 and deg d(x) = N − 1.
The obvious way to compute the polynomial product involves a number of multi-

plications and additions that are each approximately equal to LN , the product of the
degrees of g(x) and d(x), but other ways to compute it involve fewer computations.

145

146 Fast algorithms for short convolutions

The cyclic convolution

s(x) = g(x)d(x) (mod xn − 1),

where deg g(x) = n − 1 and deg d(x) = n − 1, has coefficients given by

si =
n−1∑
k=0

g((i−k))dk, i = 0, . . . , n − 1,

where the double parentheses denote modulo n, and involves n2 multiplications and
n(n − 1) additions when computed in the obvious way. The cyclic convolution can
be computed by first finding the linear convolution, then reducing it modulo xn − 1.
Hence efficient ways of computing a linear convolution lead to efficient ways of
computing a cyclic convolution. Conversely, efficient algorithms for computing a
cyclic convolution are easily turned into efficient algorithms for computing a linear
convolution.

A popular method of computing a cyclic convolution uses the convolution theorem
with the discrete Fourier transform. The convolution theorem says that in the frequency
domain,

Sk = GkDk, k = 0, . . . , n − 1,

so we can compute the cyclic convolution with a Fourier transform, a point-by-point
product, and an inverse Fourier transform. This is illustrated in Figure 5.1. The middle
block contains n complex multiplications, which is small in comparison with n2. If
n is highly composite, a fast Fourier transform, described in Chapter 3, may be used
to reduce the number of computations in the first and third blocks, also to something
small in comparison with n2.

The procedure of Figure 5.1 will also compute a cyclic convolution of two complex
sequences. Thus we should expect that when the sequences are real, the algorithm
is stronger than necessary and its efficiency can be improved. It is possible, with
some modifications, to do two real convolutions at once with nearly the same algo-
rithm. The discrete Fourier transform of a real data sequence satisfies the symmetry
condition

Vk = V ∗
n−k, k = 0, . . . , n − 1.

Suppose that d ′ and d ′′ are real vectors of length n, and that d is the complex vector of
length n with components

di = d ′
i + jd ′′

i , i = 0, . . . , n − 1.

Then the discrete Fourier transform has components

Dk = D′
k + jD′′

k , k = 0, . . . , n − 1,

147 5.1 Cyclic convolution and linear convolution

Enter

Compute
1

0
1

0

 0, , 1

 0, , 1

n
ik

k i
i
n

ik
k i

i

D d k n

G g k n

Compute

 0, , 1k k kS G D k n

Compute
1

0

1
 0, , −1

n
ik

i k
k

s S i n
n

Exit

,

,

,

,

Figure 5.1 Computing a cyclic convolution with the Fourier transform

where, in general, D′
k and D′′

k are both complex. Therefore

D∗
n−k = D′∗

n−k − jD′′∗
n−k, k = 0, . . . , n − 1

= D′
k − jD′′

k .

We now conclude that

D′
k = 1

2
[Dk + D∗

n−k],

D′′
k = 1

2j
[Dk − D∗

n−k], k = 0, . . . , n − 1.

Using these formulas, we can compute the Fourier transforms of two real sequences with
one computation of a discrete Fourier transform and some straightforward auxiliary
additions.

The idea can be applied in reverse, starting with the two complex transforms of two
real data sequences. Given the complex transform-domain vectors D′ and D′′ whose
inverse transforms are known to be real, define

Dk = D′
k + jD′′

k , k = 0, . . . , n − 1,

148 Fast algorithms for short convolutions

1

0
1

0

 0, , 1

 0, , 1

n
ik

k i i
i
n

ik
k i i

i

D d jd k n

G g jg k n

Compute

1
4

1
4

 0, , 1

k k n k k n k

k k n k k n k

k k k

S G G D D

S G G D D

S S jS k n

Compute

1

0

1
 0, , 1

Re
Im

n
ik

i k
k

i i

i i

s S i n
n

s s
s s

Compute

Exit

Enter

j ,

,

j

j

,

,

Figure 5.2 Computing two real cyclic convolutions with the Fourier transform

where in general both D′
k and D′′

k are complex numbers. Computation of the inverse
Fourier transform gives

di = d ′
i + jd ′′

i , i = 0, . . . , n − 1,

from which the real sequences are immediately recovered.
By using this idea, we can replace Figure 5.1 with a more efficient procedure for

performing two real convolutions. The procedure is summarized in Figure 5.2.

5.2 The Cook–Toom algorithm

The Cook–Toom algorithm is an algorithm for linear convolution that is derived as a
method of multiplying two polynomials. Write the linear convolution as a polynomial
product

s(x) = g(x)d(x),

149 5.2 The Cook–Toom algorithm

2,0,
0, , 2

k

k

d k L N
g k L N

Compute

0, , 2k k ks g d k L N
Compute

−2

0
()

L N
j k j

k
k j k k j

x
s x s

Exit

Enter

,

,

,

Figure 5.3 Structure of Cook–Toom algorithm

where

deg d(x) = N − 1,

deg g(x) = L − 1.

The output polynomial s(x) has degree L + N − 2, and so it is uniquely determined by
its value at L + N − 1 points. Let β0, β1, . . . , βL+N−2 be a set of L + N − 1 distinct
real numbers. If we know s(βk) for k = 0, . . . , L + N − 2, then we can compute s(x)
by Lagrange interpolation. In Theorem 2.7.11, we proved that

s(x) =
n−1∑
i=0

s(βi)

∏
j �=i(x − βj)∏
j �=i(βi − βj)

is the unique polynomial of degree n − 1 that has the value s(βk) when x takes the
value βk for k = 0, . . . , n − 1. The idea of the Cook–Toom algorithm is to first compute
s(βk) for k = 0, . . . , n − 1 and then to use Lagrange interpolation.

Figure 5.3 illustrates the Cook–Toom algorithm. The multiplications are given by

s(βk) = g(βk)d(βk), k = 0, . . . , L + N − 2.

There are L + N − 1 such equations, so there are L + N − 1 multiplications here; and
if we pick βk cleverly, those mutiplications will be the only general multiplications.

150 Fast algorithms for short convolutions

To evaluate d(βk) and g(βk) and to evaluate the Lagrange interpolation formulas, there
will be other multiplications, but these are multiplications by small constants. We do
not count them as general multiplications, but we must be careful not to ignore them
altogether.

The simplest example is a two by two linear convolution:

d(x) = d1x + d0,

g(x) = g1x + g0,

and

s(x) = g(x)d(x).

This computation consists of passing two data samples through a two-tap FIR filter.
The obvious algorithm uses four multiplications and one addition, but we shall find
an algorithm with three multiplications and three additions. This might seem to be too
small a problem for any practical application, but, in fact, a good algorithm for this
small problem is a good building block from which one can construct more elaborate
algorithms for larger problems.

Our first attempt will give an algorithm with three multiplications and five additions;
then we will improve it. Choose the following points:

β0 = 0,

β1 = 1,

β2 = −1.

Three points are needed because s(x) has degree two. Then

d(β0) = d0, g(β0) = g0,

d(β1) = d0 + d1, g(β1) = g0 + g1,

d(β2) = d0 − d1, g(β2) = g0 − g1,

and

s(β0) = g(β0)d(β0),

s(β1) = g(β1)d(β1),

s(β2) = g(β2)d(β2),

which requires three multiplications. If the filter represented by g(x) is fixed, then
the constants g(βk) need not be recomputed each time the filter is used. They are
precomputed once “off-line” and stored. The coefficients of g(x) then do not need to
be stored.

Finally, from the Lagrange interpolation formula

s(x) = s(β0)L0(x) + s(β1)L1(x) + s(β2)L2(x),

151 5.2 The Cook–Toom algorithm

where the interpolation polynomials are

L0(x) = −x2 + 1,

L1(x) = 1
2 (x2 + x),

L2(x) = 1
2 (x2 − x).

This completes the derivation of the Cook–Toom algorithm for computing s(x), but
the computations still can be organized more compactly. The factors of one-half can
be “buried” so that they do not show up in the computation. Simply replace the g(βk)
by new constants to absorb this factor. Let

G0 = g0,

G1 = 1
2 (g0 + g1),

G2 = 1
2 (g0 − g1).

Whenever g(x) is a fixed polynomial, these constants are computed off-line, and it
costs nothing to modify them this way. Then

L0(x) = −x2 + 1,

L1(x) = x2 + x,

L2(x) = x2 − x.

Figure 5.4(a) shows the algorithm we have derived, written in the compact matrix–
vector notation,

s = C{[B g] · [Ad]},
where the dot denotes the componentwise product of the vector Bg with the vector Ad.
This matrix representation is a convenient way to visualize the algorithm, but, of course,
the computation is not performed as a matrix product. Rather, the multiplications by
matrices A and C are each computed as a sequence of additions. Figure 5.4(b) shows
how the computations might proceed.

The linear convolution itself can be written as a matrix–vector product. In the
example, the convolution iss0

s1

s2

 =

g0 0
g1 g0

0 g1

[
d0

d1

]
,

which will be abbreviated as s = T d, where

T =

g0 0
g1 g0

0 g1

 .

152 Fast algorithms for short convolutions

(a)

00
0

11
1

22

0 1 1 0
2 21

1112
22

1 0 0 1 0
0 1 1 1 1
1 1 1 1 1

where
1 0

s G
d

s G
d

s G

G
g

G
g

G

(b) 0 0

1 0 1

2 0 1

0 0 0

1 1 1

2 2 2

0 0

1 1 2

2 0 1 2

D d
D d d
D d d
S G D
S G D
S G D
s S
s S S
s S S S

(c) 00
0

11
1

22

1 0 0 1 0
0 1 1 1 1
1 1 1 1 1

s G
d

Gs
d

Gs

Figure 5.4 A two by two Cook–Toom convolution algorithm

The Cook–Toom algorithm can be understood as a matrix factorization,s0

s1

s2

 =

 1 0 0
0 1 −1

−1 1 1

g0

1
2 (g0 + g1)

1
2 (g0 − g1)

1 0

1 1
1 −1

[
d0

d1

]
.

The algorithm then has the form

s = CG Ad.

Therefore, as shown in Figure 5.4(c), the Cook–Toom algorithm gives the matrix
factorization

T = CG A,

153 5.2 The Cook–Toom algorithm

where A is a matrix of preadditions, C is a matrix of postadditions, and G is a diagonal
matrix responsible for all the multiplications. The number of multiplications is equal
to the size of the matrix G. This representation often is a useful one for expressing the
structure of an algorithm.

In the general case, a linear convolution can be expressed by the relationship

s = T d,

where the input vector d has length N , the output vector s has length N + L − 1, and
T is an N + L − 1 by N matrix whose elements are the components of the vector g.
Then, in the general case, the Cook–Toom algorithm provides the matrix factorization

T = CG A,

where G is a diagonal matrix and the matrices A and C contain only small integers.
The Cook–Toom algorithm can be modified to give another version with the

same number of multiplications but with fewer additions. Notice that sL+N−2 =
gL−1dN−1. This coefficient can be computed with one multiplication. The modified
polynomial

s(x) − sL+N−2x
L+N−2 = g(x)d(x) − sL+N−2x

L+N−2

has degree L + N − 3 and can be computed by using the ideas of the Cook–Toom
algorithm with L + N − 2 multiplications. The extra multiplication gL−1dN−1 brings
the total back to L + N − 1 multiplications just as before, but there will be fewer
additions.

We shall derive the modified Cook–Toom algorithm for the two by two linear
convolution. We will choose β0 = 0 and β1 = −1. Then

d(β0) = d0, g(β0) = g0,

d(β1) = d0 − d1, g(β1) = g0 − g1,

and

t(β0) = g(β0)d(β0) − g1d1β
2
0 ,

t(β1) = g(β1)d(β1) − g1d1β
2
1 ,

where t(x) = g(x)d(x) − g1d1x
2. From the Lagrange interpolation formula,

s(x) − g1d1x
2 = t(β1)L1(x) + t(β0)L0(x),

where

L0(x) = x + 1,

L1(x) = −x.

154 Fast algorithms for short convolutions

00
0

101
1

12

01001
11111
10100

s g
d

ggs
d

gs

Figure 5.5 A modified two by two Cook–Toom convolution algorithm

Combining all the pieces gives

s(x) = g1d1x
2 + [−(d0 − d1)(g0 − g1) + g1d1 + g0d0]x + g0d0

as the desired algorithm. This algorithm has three additions. It is expressed in matrix
form in Figure 5.5, which should be compared to the algorithm in Figure 5.4.

The Cook–Toom algorithm is efficient as measured by the number of multiplications,
but as the size of the problem increases, the number of additions increases rapidly. This
is because the good choices for βk are 0, 1, and −1, and these are soon used. For larger
problems, one must also use ±2, ±4, and other small integers. Then the matrices C
and A will contain small integers such as two or four. These can still be computed
as additions by adding a number to itself several times, but this is reasonable only if
the integers are small ones. Because of this, the Cook–Toom algorithm becomes too
cumbersome for convolutions larger than three by four, or perhaps four by four. For
larger problems, one can use the Winograd convolution algorithms described in the
next section, or one can iterate small Cook–Toom convolution algorithms by using the
nesting convolution techniques studied in Chapter 11.

There is another way to think of the Cook–Toom algorithm, and this alterna-
tive provides a bridge to the next section. Rather than choose the set of num-
bers {β0, β1, . . . , βL+N−2}, choose the set of polynomials [x − β0, x − β1, . . . , x −
βL+N−2}. Then write

g(βk) = Rx−βk
[g(x)],

d(βk) = Rx−βk
[d(x)],

as shown in Figure 5.6. This is a more complicated way of saying the same thing as
before. The advantage is that, in the next section, the polynomials of degree one will
be replaced by polynomials of larger degree, thereby greatly increasing the number of
available design options. With this more sophisticated viewpoint, and for the special
case in which all residue polynomials are polynomials of degree one, the Lagrange
interpolation formulas can be seen as the inverse equations associated with the Chinese
remainder theorem. In the more general case, Lagrange interpolation is discarded in
favor of the Chinese remainder theorem.

155 5.3 Winograd short convolution algorithms

Enter

Compute

 0, , 2

 0, , 2
k

k

k x

k x

g R g x k L N

d R d x k L N

Compute

 0, , 2k k ks g d k L N

2

0
()

L N

k k
k

s x L x s

Exit

,

,

,

Figure 5.6 Another description of the Cook–Toom algorithm

5.3 Winograd short convolution algorithms

Suppose we want to compute

s(x) = g(x)d(x) (mod m(x)),

where m(x) is a fixed polynomial of degree n in the field F , and g(x) and d(x) are
polynomials of degree less than n in the same field. The computational problem of a
linear convolution

s(x) = g(x)d(x)

can be put into this form. Simply let n be an integer larger than the degree of s(x),
and choose for m(x) any polynomial of degree n. A trivial restatement of the linear
convolution is

s(x) = g(x)d(x) (mod m(x)).

This is equivalent because the reduction modulo m(x) has no effect on s(x) when
the degree of m(x) exceeds that of s(x). In this way, the computation of a linear

156 Fast algorithms for short convolutions

convolution becomes included in the general method to be discussed in this section.
The same general method includes the computation of the cyclic convolution

s(x) = g(x)d(x) (mod xn − 1)

simply by taking m(x) equal to xn − 1.
To develop the Winograd convolution algorithm, we will replace the computational

problem

s(x) = g(x)d(x) (mod m(x))

by a set of smaller computations. To break the problem into pieces, factor m(x) into
pairwise coprime polynomials m(k)(x) over some suitable subfield of F so that

m(x) = m(0)(x)m(1)(x) · · · m(K−1)(x).

Usually, if F is the real field or the complex field, one would choose the field of
rationals as the subfield for the factorization. For example, if m(x) = x6 − 1 and F is
the real field, one would take

x6 − 1 = (x − 1)(x + 1)(x2 − x + 1)(x2 + x + 1)

as the appropriate factorization. Similarly, if the convolution is in the finite field
GF (pm), then one would usually choose the prime subfield GF (p) for the factor-
ization. The procedure will minimize the number of multiplications in the field F , but
will not attempt to minimize the number of multiplications in the subfield. In most
cases of interest, these multiplications in the subfield turn out to be multiplications by
small integers, usually by −1, 0, or 1, and so are trivial. Multiplication by rationals will
not be counted as multiplications from now on, but one should check that the rationals
are indeed small integers.

The fast convolution algorithm will make use of the residue polynomials

s(k)(x) = Rm(k)(x)[s(x)], k = 0, . . . , K − 1.

By the Chinese remainder theorem for polynomials, s(x) can be computed from this
set of residue polynomials by

s(x) = a(0)(x)s(0)(x) + · · · + a(K−1)(x)s(K−1)(x) (mod m(x))

for appropriate polynomials a(0)(x), . . . , a(K−1)(x), all with rational coefficients. We
divide the computation into three steps. First, compute the residues

d (k)(x) = Rm(k)(x)[d(x)],

g(k)(x) = Rm(k)(x)[g(x)]

157 5.3 Winograd short convolution algorithms

Enter

)()(

)()(
() () (mod ())
() () (mod ())

 0, , 1

kk

kk
d x d x m x
g x g x m x

k K

() () () ()() () () (mod ())

 0, , 1

k k k ks x d x g x m x

k K

1
() ()

0
() () () mod ()

K
k k

k
s x s x a x m x

Exit

Figure 5.7 Structure of a Winograd short convolution

for k = 0, . . . , K − 1. Computation of the residues d (k)(x) and g(k)(x) requires no
multiplications. Next, compute

s(k)(x) = g(k)(x)d (k)(x) (mod m(k)(x))

= Rm(k)(x){Rm(k)(x)[g(x)] · Rm(k)(x)[d(x)]}
= Rm(k)(x)[g

(k)(x)d (k)(x)].

Finally, compute

s(x) = a(0)(x)s(0)(x) + · · · + a(K−1)(x)s(K−1)(x) (mod m(x)).

Because a(k)(x) has only rational coefficients, this last step involves no multi-
plications.

The structure of a Winograd convolution algorithm is summarized in Figure 5.7.
Only the short convolutions represented by the polynomial products g(k)(x)d (k)(x) in
the second step require multiplications of numbers. All together,

∑K−1
k=0 [deg m(k)(x)]2

multiplications are required if each of the small polynomial products is computed in the
obvious way because the number of coefficients in g(k)(x) or in d (k)(x) is equal to the
degree of m(k)(x). This can be a considerable reduction in the number of multiplications.

158 Fast algorithms for short convolutions

Enter

Frequency
domain convolution

ik

D Wd
G Wg

W

where is the by matrixn nW

 0, , 1

k k kS G D

k n

1
inverse Fourier transform

s W S

convolution (mod 1)nx

Enter

Winograd
convolution

D Ad
G Bg

 0, , () 1

k k kS G D

k M n

where is an by ()
matrix of small integers

s
n M n

CS
C

Exit

where and are () by
matrices of small integers

M n nA B

Exit

convolution (mod ())m x

D Ad
G Bg

Figure 5.8 Comparison of two convolution methods

We shall see later that the short convolutions can, in turn, be improved upon by using
the same idea to break each of them down into yet smaller pieces.

Figure 5.8 gives an instructive comparison of a Winograd convolution algorithm
and a cyclic convolution computed by using a discrete Fourier transform. To make
this comparison most evident, the Winograd convolution algorithm is expressed in
a convenient matrix notation. The terms of the algorithm are gathered together and
expressed as the matrix equation

s = C{[B g] · [Ad]},

where the dot denotes the componentwise product of the vector B g and the vector Ad.
The Winograd convolution algorithm is also written in the more suggestive form

s = CG Ad,

159 5.3 Winograd short convolution algorithms

where now G is an M(n) by M(n) diagonal matrix with the elements of the vector
Bg on the diagonal. In this form the multiplication by matrix A summarizes all the
preadditions, and the multiplication by matrix C summarizes all the postadditions.
The numerical multiplications are summarized by the multiplication by the diagonal
matrix G.

The comparison in Figure 5.8 makes it evident that the Winograd convolution algo-
rithm is a generalization of the method of computing a convolution using the Fourier
transform and the convolution theorem.

As an example of a Winograd convolution, we shall take the linear convolution of a
three-point vector with a two-point vector. Let

g(x) = g1x + g0,

d(x) = d2x
2 + d1x + d0.

Direct calculation requires six multiplications and two additions. We will first derive
an algorithm that uses five multiplications and twelve additions. It is not a very good
algorithm, but the derivation is instructive. Later, we will give a better algorithm, one
with four multiplications and seven additions.

The linear convolution s(x) = g(x)d(x) has degree three. Choose

m(x) = x(x − 1)(x2 + 1)

= m(0)(x)m(1)(x)m(2)(x).

The factors are pairwise coprime. There are other polynomials that could be chosen
for the polynomial m(x); this choice illustrates the method. The residues are

g(0)(x) = g0, d (0)(x) = d0,

g(1)(x) = g1 + g0, d (1)(x) = d2 + d1 + d0,

g(2)(x) = g1x + g0, d (2)(x) = d1x + (d0 − d2).

Therefore

s(0)(x) = g0d0,

s(1)(x) = (g1 + g0)(d2 + d1 + d0),

s(2)(x) = (g1x + g0)(d1x + (d0 − d2)) (mod x2 + 1).

It takes one multiplication to compute s(0)(x), one multiplication to compute s(1)(x),
and, as we shall see, three multiplications to compute s(2)(x). The computation of
s(2)(x) involves computing the two terms

s
(2)
0 = g

(2)
0 d

(2)
0 − g

(2)
1 d

(2)
1 ,

s
(2)
1 = g

(2)
0 d

(2)
1 + g

(2)
1 d

(2)
0

160 Fast algorithms for short convolutions

Table 5.1 Chinese remainder polynomials

k m(k) M (k)(x) n(k)(x) N (k)(x)

0 x x3 − x2 + x − 1 x2 − x + 1 −1

1 x − 1 x3 + x −1

2
(x2 + x + 2)

1

2

2 x2 + 1 x2 − x −1

2
(x2 − 2) −1

2
(x − 1)

(which, incidentally, have the same structure as complex multiplication). An algorithm
for this side computation is[
s

(2)
0

s
(2)
1

]
=

[
1 0 −1
1 1 0

]g
(2)
0

(g(2)
1 − g

(2)
0)

(g(2)
1 + g

(2)
0)

1 1

1 0
0 1

[
d

(2)
0

d
(2)
1

]
,

which has three multiplications. The last step of computing s(x) is

s(x) = a(0)(x)s(0)(x) + a(1)(x)s(1)(x)

+ a(2)(x)s(2)(x) (mod x4 − x3 + x2 − x),

where a(0)(x), a(1)(x), and a(2)(x) are determined by the Chinese remainder theorem
for polynomials as follows. Because m(k)(x) and M (k)(x) = m(x)/m(k)(x) are coprime,
the relationship

n(k)(x)m(k)(x) + N (k)(x)M (k)(x) = 1

leads us to construct Table 5.1. Then a(k)(x) = N (k)(x)M (k)(x). Hence

s(x) = −(x3 − x2 + x − 1)s(0)(x) + 1
2 (x3 + x)s(1)(x)

+ 1
2 (x3 − 2x2 + x)s(2)(x) (mod x4 − x3 + x2 − x).

We can rewrite this as a matrix equation
s0

s1

s2

s3

 =

1 0 0 0

−1 1 1 1
1 0 −2 0

−1 1 1 −1

s
(0)
0

1
2s

(1)
0

1
2s

(2)
0

1
2s

(2)
1

 .

Now we must put all the pieces together to get the desired algorithm. There are five
multiplications that we choose to write with a uniform notation as

Sk = GkDk, k = 0, . . . , 4.

161 5.3 Winograd short convolution algorithms

We define new notation as needed to fit this chosen form. Combining the steps already
developed gives the definition of D:

D0

D1

D2

D3

D4

 =

1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1

d
(0)
0

d
(1)
0

d
(2)
0

d
(2)
1

=

1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1

1 0 0
1 1 1
1 0 −1
0 1 0

d0

d1

d2

=

1 0 0
1 1 1
1 1 −1
1 0 −1
0 1 0

d0

d1

d2

 .

We define G similarly, except that we also incorporate into the definition the denomina-
tors that would otherwise appear in the matrix of postadditions. Hence, in the following
definition of G, the leftmost matrix contains factors of one-half, which have been pulled
out of the matrix of postadditions and buried here. Then

G0

G1

G2

G3

G4

 =

1

1
2

1
2

1
2

1
2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1
0 0 1 1

1 0
1 1
1 0
0 1

[
g0

g1

]

=

1 0
1
2

1
2

1
2 0

− 1
2

1
2

1
2

1
2

[
g0

g1

]
.

Because the computation of G is an off-line computation, there is no need to keep that
computation simple.

162 Fast algorithms for short convolutions

0
0

01
1

12
2

23
3

4

1 10
2 2

1 1
22
1 13
2 2

4 1 1
2 2

1 0 0
1 0 0 0 0

1 1 1
1 1 2 1 1

1 1 1
1 0 2 0 2

1 0 1
1 1 0 1 1

0 1 0
1 0

0

G
s

dG
s

dG
s

dG
s

G

G
G
G
G
G

0

1

g
g

Figure 5.9 Example of a Winograd convolution algorithm

Finally, the matrix of postadditions is obtained as follows:
s0

s1

s2

s3

 =

1 0 0 0

−1 1 1 1
1 0 −2 0

−1 1 1 −1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 −1
0 0 1 1 0

S0

S1

S2

S3

S4

=

1 0 0 0 0

−1 1 2 1 −1
1 0 −2 0 2

−1 1 0 −1 −1

S0

S1

S2

S3

S4

 .

The algorithm is summarized in matrix form in Figure 5.9. As expressed in the figure,
the order in which the additions are done is not really specified. One can experiment
with the order of the additions to minimize their number. It is easy to see how to do the
preadditions with four real additions. The following sequence of equations does the
postadditions with eight real additions:

s0 = S0,

c1 = S4 − S2,

c3 = S3 + S4,

s2 = c1 + c1 + S0,

s1 = S1 + c3 − s2,

s3 = −c3 − S0 + S1.

This completes the example of the basic construction of a Winograd convolution
algorithm, but we have not yet done our best. A more general form of the Winograd

163 5.3 Winograd short convolution algorithms

algorithm can be obtained by choosing an m(x) with a somewhat smaller degree. This
will produce an incorrect convolution, but one that can be corrected with a few extra
computations.

By the division algorithm for polynomials, we can write

s(x) = Q(x)m(x) + Rm(x)[s(x)].

We have already studied the case where deg m(x) > deg s(x), in which case the quotient
polynomial Q(x) is identically zero. If deg m(x) ≤ deg s(x), the Winograd algorithm
will produce only s(x) modulo m(x). The term Q(x)m(x) is an omitted term that can
be determined by a side computation and corrected. The simplest instance is the case
in which deg m(x) = deg s(x). Then Q(x) must have degree zero and so is a scalar.
If m(x) is a monic polynomial of degree n, then, clearly, Q(x) = sn, where sn is the
coefficient of xn in the polynomial s(x). Consequently,

s(x) = snm(x) + Rm(x)[s(x)]

and sn can be easily computed with one multiplication as the product of the leading
coefficients of g(x) and d(x).

This modified procedure can be formally absorbed into the basic Winograd con-
volution algorithm by replacing m(x) with the formal expression m(x)(x − ∞). The
statement

s(x) = s(x) (mod m(x)(x − ∞))

is only a convenient shorthand for the more proper expression given above.
With this modification, let us return to the earlier example and derive another algo-

rithm for the convolution

s(x) = (g1x + g0)(d2x
2 + d1x + d0).

We now use x(x − 1)(x + 1)(x − ∞) as the modulus polynomial. There will be four
multiplications; the factor (x − ∞) symbolizes the product g1d2, and the other multi-
plications are products of the residues modulo x, x − 1, and x + 1. We immediately
have that

S0

S1

S2

S3

 =

1 0
1 1
1 −1
0 1

[
g0

g1

] •

1 0 0
1 1 1
1 −1 1
0 0 1

d0

d1

d2

 .

The coefficients of s(x) are recovered by using the Chinese remainder theorem:

s(x) = a(0)(x)S0 + a(1)(x)S1 + a(2)(x)S2 + x(x − 1)(x + 1)S3

= (−x2 + 1)S0 + (
1
2x2 + 1

2x
)
S1 + (

1
2x2 − 1

2x
)
S2 + (x3 − x)S3.

164 Fast algorithms for short convolutions

0
0 1 00 121

112 0 12 2
3

1

0010001
1111110
1110111
1001000

g
s

dg gs
d

s g g d
s

g

Figure 5.10 Another Winograd convolution algorithm

Hence
s0

s1

s2

s3

 =

1 0 0 0
0 1 −1 −1

−1 1 1 0
0 0 0 1

S0
1
2S1

1
2S2

S3

 .

The final form of the algorithm is shown in Figure 5.10. It requires four multiplications
and seven additions, provided that the diagonal matrix is precomputed.

5.4 Design of short linear convolution algorithms

The Winograd short convolution algorithm, discussed in the previous section, gives
good convolution algorithms. However, that construction does not cover all possible
ways of obtaining good algorithms. Sometimes, a good algorithm can be found simply
by clever factorization. Consider the following identities:

g0d0 = g0d0,

g0d1 + g1d0 = (g0 + g1)(d0 + d1) − g0d0 − g1d1,

g0d2 + g1d1 + g2d0 = (g0 + g2)(d0 + d2) − g0d0 + g1d1 − g2d2,

g1d2 + g2d1 = (g1 + g2)(d1 + d2) − g1d1 − g2d2,

g2d2 = g2d2.

With these factorizations, we can compute the coefficients of the linear convolution
s(x) = (g0 + g1x + g2x

2)(d0 + d1x + d2x
2) using six multiplications and ten addi-

tions. In matrix form, this algorithm is

s0

s1

s2

s3

s4

 =

1 0 0 0 0 0

−1 −1 0 1 0 0
−1 1 −1 0 1 0

0 −1 −1 0 0 1
0 0 1 0 0 0

g0

g1

g2

(g0 + g1)
(g0 + g2)

(g1 + g2)

1 0 0
0 1 0
0 0 1
1 0 0
1 0 1
0 1 1

d0

d1

d2

 .

165 5.4 Design of short linear convolution algorithms

Table 5.2 Performance of some short linear
convolution algorithms

s(x) = g(x)d(x)
deg g(x) = L − 1
deg d(x) = N − 1

Real convolutions

Number of real Number of
multiplications real additions

Blocklength

L N

2 2 3 3
2 2 4 7
3 3 5 20
3 3 6 10
3 3 9 4
4 4 7 41
4 4 9 15

Complex convolutions

Number of complex Number of
multiplications complex additions

2 2 3 3
3 3 5 15
4 4 7

00
0

101
1

12

1 0 0 1 0
1 1 1 1 1
0 0 1 0 1

s g
d

ggs
d

gs

Figure 5.11 A two by two linear convolution algorithm

The algorithm should be compared with the “naive” algorithm, which uses nine multi-
plications and four additions, and also with the “optimal” algorithm discussed shortly,
which uses five multiplications and twenty additions. It is not possible to say which of
these algorithms is preferable. It depends on the use.

Table 5.2 tabulates the performance of some linear convolution algorithms for real
data sequences developed by the methods of this chapter. Later, in Chapter 11, we shall
build large convolution algorithms by combining small convolution algorithms in such
a way that both the number of multiplications and the number of additions of the large
algorithm depend mostly on the number of multiplications of the small algorithm. In
that construction the number of additions of the small convolution algorithm does not
much matter. Figure 5.11 gives a two by two linear convolution algorithm with three

166 Fast algorithms for short convolutions

1
02

0 1
0 1 221

1
2 0 1 26
3 1

0 1 264

2

00100002
1121221

2 1 3 0 1
1 1 1 1 2

20 0 0 0 1

g
s

g g gs
s g g g
s

g g gs
g

0

1

2

1
1 1 1
1 2 4
0 0 1

d
d
d

Sequence of preadditions Sequence of postadditions

1 1 2

2 2 1

0 0

1 0 1

2 0 2

3 1 1 2 1

4 2

t d d
t d d
D d
D d t
D d t
D t t t D
D d

0 0 0

1 1 1

2 2 2

1 1 2 4

2 0 2 5 4

3 4 5

4 4

s S S
T S S
T S S
s T T T
s s T T S
s T T
s S

3 4 4

4 3 0 3

5 1 2

T S S
T T S S
T S S

Figure 5.12 A three by three linear convolution algorithm

multiplications and three additions. Figure 5.12 gives a three by three linear convolution
algorithm with five multiplications and twenty additions.

The optimal three-point by three-point linear convolution algorithm of Figure 5.12
will be derived as an example. The optimal algorithm, as judged by the number of
multiplications, uses five multiplications. This conclusion is suggested by the Cook–
Toom algorithm, which uses five multiplications, and is formally proved in Section 5.8.
The algorithm we derive is essentially a Cook–Toom algorithm that is obtained by
choosing the polynomial

m(x) = x(x − 1)(x + 1)(x − 2)(x − ∞).

Because all factors are polynomials of degree one, there are five multiplications. The
output polynomial is given by

s(x) = Rx(x−1)(x+1)(x−2)[g(x)d(x)] + g2d2x(x − 1)(x + 1)(x − 2).

Evaluating the residues gives
G0

G1

G2

G3

G4

 =

1 0 0
1 1 1
1 −1 1
1 2 4
0 0 1

g0

g1

g2

 ,

D0

D1

D2

D3

D4

 =

1 0 0
1 1 1
1 −1 1
1 2 4
0 0 1

d0

d1

d2

 ,

167 5.4 Design of short linear convolution algorithms

where G4 and D4 are formally defined as residues modulo (x − ∞). Then Sk = GkDk

for k = 0, . . . , 4. Finally, we use the Chinese remainder theorem (or the Lagrange
interpolation formula) to recover s(x) as

s(x) = 1
2 (x3 − 2x2 − x + 2)S0 + 1

2 (x3 − x2 − 2x)S1

+ 1
6 (−x3 + 3x2 − 2x)S2 + 1

6 (x3 − x)S3

+ (x4 − 2x3 − x2 + 2x)S4.

The last step is to express the equation in matrix form:
s0

s1

s2

s3

s4

 =

2 0 0 0 0

−1 2 −2 −1 2
−2 1 3 0 −1

1 −1 −1 1 −2
0 0 0 0 1

1
2S0
1
2S1
1
6S2
1
6S3

S4

 .

The constant multipliers can be buried in the constants of the diagonal matrix by
redefining Sk and Gk . The convolution requires five multiplications. The matrix of
preadditions can be computed with seven additions, and the matrix of postadditions
can be computed with thirteen additions.

The final algorithm is given in Figure 5.12. Although this algorithm was derived
for real convolutions, it also works perfectly well for complex convolutions. The five
multiplications will become five complex multiplications, and the twenty additions
will become twenty complex additions.

One may also design an algorithm specifically for the complex field. There will still
be five complex multiplications, but there will be fewer complex additions. We will
choose the polynomial

s(x) = x(x − 1)(x + 1)(x − j)(x + j).

Evaluating the residues gives
G0

G1

G2

G3

G4

 =

1 0 0
1 1 1
1 −1 1
1 j −1
1 −j −1

g0

g1

g2

 ,

D0

D1

D2

D3

D4

 =

1 0 0
1 1 1
1 −1 1
1 j −1
1 −j −1

d0

d1

d2

 .

168 Fast algorithms for short convolutions

The Chinese remainder theorem (or the Lagrange interpolation formula) gives

s(x) = (−x4 + 1)S0 + 1
4 (x4 + x3 + x2 + x)S1

+ 1
4 (x4 − x3 + x2 − x)S2 + 1

4 (x4 + jx3 − x2 − jx)S3

+ 1
4 (x4 − jx3 − x2 + jx)S4.

When expressed in the form of a matrix, this is
s0

s1

s2

s3

s4

 =

1 0 0 0 0
0 1 −1 −j j
0 1 1 −1 −1
0 1 −1 j −j

−1 1 1 1 1

S0
1
4S1

1
4S2

1
4S3

1
4S4

 .

The factors of one-fourth can be buried in the diagonal matrix. The algorithm uses
five complex multiplications, the equivalent of six complex additions in the matrix of
preadditions, and the equivalent of nine complex additions in the matrix of postaddi-
tions.

Convolutions bigger than those described in Table 5.2 can also be developed. Large
algorithms derived from the basic Winograd procedure, however, tend to be cumber-
some and to have too many additions. Instead, one can bind small algorithms together
to get large ones. There are several ways that small convolution algorithms can be
built into large convolution algorithms. Examples of these, the method of iterated (or
nesting) convolution algorithms, and the Agarwal–Cooley algorithm will be studied in
Chapter 11. Such algorithms will have a few more multiplications than necessary, but
the number of additions will be considerably fewer.

5.5 Polynomial products modulo a polynomial

We have seen how to break a cyclic convolution or a linear convolution into several
smaller problems. The smaller problems again have the same form

s(x) = g(x)d(x) (mod m(x)),

where deg m(x) = n, and g(x) and d(x) each has a degree smaller than n. This is
a product in the ring of polynomials modulo the polynomial m(x). To get a good
algorithm for the original linear convolution, we need to construct a good algorithm for
each of the smaller polynomial products. We need to consider only the case in which
m(x) is a prime polynomial; otherwise, it would be further factored.

As we shall prove in Section 5.8, the number of general multiplications needed
to compute s(x) is 2n − 1 when m(x) is a prime polynomial. Usually, an algorithm
that uses the least possible number of multiplications will use a large number of

169 5.5 Polynomial products modulo a polynomial

additions. Practical algorithms will attain a reasonable balance between the number of
multiplications and the number of additions. This section studies the practical aspects
of designing such algorithms.

The most direct method is to compute the linear convolution g(x)d(x) (which uses at
least 2n − 1 multiplications) and then to reduce the result modulo m(x) (which uses no
multiplications). This may appear paradoxical at first sight, because we have already
proposed that linear convolutions should be broken into convolutions modulo prime
polynomials, and now we are turning these back into linear convolutions. However, in
this back-and-forth maneuvering, the degree of the linear convolution may be greatly
reduced, and this is how the situation improves.

We have already used the polynomial product

s(x) = g(x)d(x) (mod x2 + 1),

which is formally the same as complex multiplication. At the same time, we can look
at the polynomial products

s(x) = g(x)d(x) (mod x2)

and

s(x) = g(x)d(x) (mod x2 + x + 1).

For each of these examples, g(x) = g1x + g0 and d(x) = d1x + d0. We will modify
the two by two linear convolution algorithm that was derived in Section 5.2. Expressed
in polynomial form, the linear convolution algorithm is

s(x) = g(x)d(x)

= g1d1x
2 + [g1d1 + g0d0 − (g1 − g0)(d1 − d0)]x + g0d0,

which requires three multiplications.
The three quantities of interest are the products g(x)d(x) modulo x2 + 1, x2, and

x2 + x + 1, respectively. These are obtained simply by replacing x2 by −1, 0, and
−x − 1, respectively. Then

s(x) = g(x)d(x) (mod x2 + 1)

= [g1d1 + g0d0 − (g1 − g0)(d1 − d0)]x + g0d0 − g1d1,

s(x) = g(x)d(x) (mod x2)

= [g1d1 + g0d0 − (g1 − g0)(d1 − d0)]x + g0d0,

s(x) = g(x)d(x) (mod x2 + x + 1)

= [g0d0 − (g1 − g0)(d1 − d0)]x + g0d0 − g1d1.

170 Fast algorithms for short convolutions

Table 5.3 Performance of some algorithms for polynomial
products modulo a prime polynomial

Number of Number of
Prime polynomial p(x) multiplications additions

x2 + x + 1 3 3
x4 + 1 9 15

7 41
x4 + x3 + x2 + x + 1 9 16

7 46
x6 + x3 + 1 15 39
x6 + x5 + x4 + x3 + x2 + x + 1 15 53
x18 + x9 + 1 75 267

In matrix form, the three algorithms are[
s0

s1

]
=

[
1 −1 0
1 1 −1

]g0

g1

g0 − g1

 1 0

0 1
−1 1

[
d0

d1

]
,

[
s0

s1

]
=

[
1 0 0
1 1 −1

]g0

g1

g0 − g1

 1 0

0 1
−1 1

[
d0

d1

]
,

and[
s0

s1

]
=

[
1 −1 0
1 0 −1

]g0

g1

g0 − g1

 1 0

0 1
−1 1

[
d0

d1

]
,

respectively. The second algorithm is not a good way to compute g(x)d(x) (mod x2).
We have allowed the formalism to produce an algorithm that is inferior to the one we
would obtain by inspection, namely,[
s0

s1

]
=

[
1 0 0
0 1 1

]g0

g0

g1

1 0

0 1
1 0

[
d0

d1

]
,

which uses only one addition.
The performance of some available algorithms for polynomial products modulo

a prime polynomial is tabulated in Table 5.3. In some cases, the figure gives the
performance of two algorithms for the same problem. For example, using modulo
x4 + 1 one can construct a polynomial with nine multiplications and fifteen additions,
or an algorithm with seven multiplications and forty-one additions. In selecting between

171 5.6 Design of short cyclic convolution algorithms

such possibilities, one must use judgment and an understanding of how this computation
fits into a larger computation, as discussed in Chapters 11 and 12. It often happens that
a slight advantage in the number of multiplications in a small algorithm will project
into a large advantage when this small algorithm is embedded into a large algorithm,
while a large disadvantage in the number of additions will project into only a small
disadvantage in the larger setting. Hence the modulo x4 + 1 algorithm with seven
multiplications can actually offer more than it seems.

5.6 Design of short cyclic convolution algorithms

A library of good algorithms for short cyclic convolutions can be constructed as
Winograd short convolution algorithms by reducing the polynomial product modulo
xn − 1 to many polynomial products, one product modulo each polynomial factor of
xn − 1. To get a good Winograd cyclic convolution algorithm, one must ensure that
each of the smaller polynomial products itself has a good algorithm. We will refer
to the collection of algorithms that was developed in the previous section to do these
subcomputations.

In this section, we shall construct a few good algorithms for cyclic convolution as
examples. A more extensive collection of short cyclic convolution algorithms, written
in the concise form

s = CG Ad,

is given in Appendix A. These short cyclic convolution algorithms can be combined to
make long cyclic convolution algorithms by using a method known as the Agarwal–
Cooley algorithm, which will be discussed in Chapter 11.

Consider the computation of the cyclic convolution

s(x) = g(x)d(x) (mod xn − 1),

where g(x) and d(x) each have degree n − 1. We could compute this convolution by
first computing a linear convolution and then reducing the result modulo xn − 1.

However, we can get the cyclic convolution more directly by choosing the modulus
polynomials as the prime polynomial factors of m(x), denoted m(0)(x), . . . , m(K−1)(x).

For a simple example, consider the cyclic convolution of blocklength four

s(x) = g(x)d(x) (mod x4 − 1).

The prime factors of x4 − 1 are given by

x4 − 1 = (x − 1)(x + 1)(x2 + 1)

= m(0)(x)m(1)(x)m(2)(x).

172 Fast algorithms for short convolutions

These prime factors are known as cyclotomic polynomials; they will be defined and
studied in Section 9.5. In this construction, the cyclotomic polynomials, as the prime
factors of xn − 1, are the modulus polynomials that the Winograd algorithm must use.
The coefficients of the residues are

d
(0)
0

d
(1)
0

d
(2)
0

d
(2)
1

 =

1 1 1 1
1 −1 1 −1
1 0 −1 0
0 1 0 −1

d0

d1

d2

d3

 ,

g

(0)
0

g
(1)
0

g
(2)
0

g
(2)
1

 =

1 1 1 1
1 −1 1 −1
1 0 −1 0
0 1 0 −1

g0

g1

g2

g3

 .

We have already seen several algorithms for polynomial multiplication modulo x2 + 1.
One is

[
s0

s1

]
=

[
1 0 −1
1 1 0

]g0

g1 − g0

g1 + g0

1 1

1 0
0 1

[
d0

d1

]
.

Define the internal variables
D0

D1

D2

D3

D4

 =

1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1

1 1 1 1
1 −1 1 −1
1 0 −1 0
0 1 0 −1

d0

d1

d2

d3

and

G0

G1

G2

G3

G4

 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1
0 0 1 1

1 1 1 1
1 −1 1 −1
1 0 −1 0
0 1 0 −1

g0

g1

g2

g3

 .

Then Sk = GkDk for k = 0, . . . , 4. Now we must recover s(x). The Chinese remainder
theorem gives

s(x) = 1
4 (x3 + x2 + x + 1)s(0)(x) − 1

4 (x3 − x2 + x − 1)s(1)(x)

− 1
2 (x2 − 1)s(2)(x) (mod x4 − 1).

173 5.6 Design of short cyclic convolution algorithms

0
0 0

1
1 1

2
2 2

3
3 3

4

0

1

2

3

4

1 1 1 1
1 1 1 0 1

1 1 1 1
1 1 1 1 0

1 1 1 1
1 1 1 0 1

1 0 1 0
1 1 1 1 0

0 1 0 1

where

1 1 1 1
1 1 1 1

1
2 0 2 0

4
2 2 2

G
ds

G
ds

G
ds

G
ds

G

G
G
G
G
G

0

1

2

3
2

2 2 2 2

g
g
g
g

Figure 5.13 An algorithm for four-point cyclic convolution

Therefore
s0

s1

s2

s3

 =

1 1 1 0
1 −1 0 1
1 1 −1 0
1 −1 0 −1

1
4s

(0)
0

1
4s

(1)
0

1
2s

(2)
0

1
2s

(2)
1

=

1 1 1 0
1 −1 0 1
1 1 −1 0
1 −1 0 −1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 −1
0 0 1 1 0

1
4S0
1
4S1
1
2S2
1
2S3
1
2S4

=

1 1 1 0 −1
1 −1 1 1 0
1 1 −1 0 1
1 −1 −1 −1 0

1
4S0
1
4S1
1
2S2
1
2S3
1
2S4

 .

In constructing the algorithm, arbitrary choices were made in arranging the terms. The
rows can be permuted in the matrix of preadditions, and the columns can be permuted
in the matrix of postadditions without effect. The final algorithm is summarized in
Figure 5.13.

Table 5.4 gives the performance of some of the best algorithms known for short
cyclic convolutions. These algorithms, some of which are given in Appendix A, are
constructed in the way we described. Sometimes, additional techniques, such as are
described in the remainder of this section, have been used to reduce the number of
additions.

174 Fast algorithms for short convolutions

Table 5.4 Performance of some short
cyclic convolution algorithms

s(x) = g(x) d(x) (mod xn − 1)
deg g(x) = n − 1
deg s(x) = n − 1

Real convolutions

Blocklength Number of real Number of
n multiplications real additions

2 2 4
3 4 11
4 5 15
5 8 62
5 10 31
7 16 70
8 12 72
8 14 46
9 19 74

16 33 181
16 35 155

A column for complex convolutions could be appended to Table 5.4. Because every
real cyclic convolution algorithm can be used for complex cyclic convolution, entries
from the columns for real cyclic convolutions could be entered into the columns for
complex cyclic convolutions. However, sometimes the polynomial xn − 1 may factor
into more prime polynomials over the complex rationals than it does over the rationals.
Then one has additional design options in the complex field.

The Winograd algorithms can be viewed as a method of factoring certain matrices.
Let s, g, and d be vectors of length n, whose components are the coefficients of s(x),
g(x), and d(x). The cyclic convolution s(x) = g(x)d(x) (mod xn − 1) can be written
as a matrix product

s0

s1

s2
...

sn−1

 =

g0 gn−1 · · · g2 g1

g1 g0 g3 g2
...

...
gn−2 gn−3 g0 gn−1

gn−1 gn−2 · · · g1 g0

d0

d1

d2
...

dn−1

 ,

which is abbreviated as

s = T d.

The Winograd algorithm written

s = C[(Bg) · (Ad)]

175 5.6 Design of short cyclic convolution algorithms

can be written more compactly as

s = CG Ad,

where A is an M(n) by n matrix, G is an M(n) by M(n) diagonal matrix, and C is
an n by M(n) matrix. The coefficients of the filter g(x) determine the elements of
the diagonal matrix G. Thus the Winograd algorithm can be thought of as the matrix
factorization

T = CG A,

where G is a diagonal matrix and C and A are matrices of small integers.
Whenever g(x) represents a fixed FIR filter, or a FIR filter whose coefficients change

infrequently, the computation G = Bg occurs infrequently and can be neglected. Hence
the complexity of the matrix B is not significant.

The matrices A and B have symmetric roles, so they can be interchanged just by
renaming d and g. The Winograd convolution algorithm may produce matrices A and
B that differ only in row permutations and so have the same complexity; but, in general,
one would choose the one with the lesser complexity to play the role of A. Surprisingly,
it is even possible to interchange the roles of C and A in a cyclic convolution algorithm.
The following theorem gives a way to do this.

Theorem 5.6.1 (Matrix exchange theorem) If a matrix S can be factored as

S = C DE,

where D is a diagonal matrix, then it also can be factored as

S = (E)T D(C)T,

where E is the matrix obtained from E by reversing the order of its columns, and C is
the matrix obtained from C by reversing the order of its rows.

Proof Let J be an exchange matrix the same size as S. Then

ST = J S J

= (J C)D(E J)

= C DE.

To complete the proof, take the transpose of both sides, noting that D is a diagonal
matrix. �

An algorithm

s = C[(B g) · (Ad)]

= C[(Bd) · (Ag)],

176 Fast algorithms for short convolutions

which means that either A or B can be chosen as the multiplier of g. But this can be
written as

s = C D Ag,

where D is a diagonal matrix with diagonal elements equal to Bd. By Theorem 5.6.1,
we can write

s = (A)T D(C)T g.

The theorem says that for a cyclic convolution algorithm, the most complex of the three
matrices A, B, and C can be chosen as the multiplier of g and buried in G.

5.7 Convolution in general fields and rings

Any convolution algorithm, such as the Cook–Toom algorithm or the Winograd convo-
lution algorithm, is an identity involving the defining properties of the field operations
including the properties of associativity, distributivity, and commutativity. An algorithm
derived in one field can be used in any extension of that field. Similarly, a convolution
algorithm derived for a given field can be used in a commutative ring that contains the
field. By using algorithms derived for a subfield, we have a large collection of good
algorithms for the extension field. These may not be as good, however, as algorithms
derived directly in the extension field.

Specifically, an algorithm for the convolution of sequences of real numbers can be
used without change to convolve sequences of complex numbers. If M and A represent
the number of real multiplications and real additions to compute the real convolution,
then it will take M complex multiplications and A complex additions to compute the
complex convolution – a total of 4M real multiplications and 2A + 2M real additions
if the conventional rule for complex multiplication is used. If, instead, the complex
multiplication described in Section 1.1 is used and one side of the convolution consists
of fixed constants, then only 3M real multiplications and 2A + 3M real additions are
needed.

It is possible to do even better for complex cyclic convolutions whose blocklength
is a power of two. To explain this, we begin with a discussion of convolution modulo
x2i + 1. Within the ring of polynomials modulo x2i + 1, i ≥ 1, there is an element that
is the square root of minus one. This is because

−1 = x2i

(mod x2i + 1),

so we have

√−1 = x2i−1

177 5.7 Convolution in general fields and rings

in this ring. We shall use this element to write a polynomial product modulo x2i + 1,
in terms of two real convolutions.

To calculate the polynomial product

s(x) = g(x)d(x) (mod x2i + 1),

where

g(x) = gR(x) + jgI(x)

and

d(x) = dR(x) + jdI(x),

one can compute the four real convolutions gR(x)dR(x), gI(x)dR(x), gR(x)dI(x), and
gI(x)dI(x) modulo x2i + 1 and write

sR(x) = gR(x)dR(x) − gI(x)dI(x),

sI(x) = gR(x)dI(x) + gI(x)dR(x).

A better procedure, which has half the number of multiplications, is to define the
polynomials

a(x) = 1
2 (gR(x) − x2i−1

gI(x))(dR(x) − x2i−1
dI(x)) (mod x2i + 1),

b(x) = 1
2 (gR(x) + x2i−1

gI(x))(dR(x) + x2i−1
dI(x)) (mod x2i + 1).

These two polynomials each require one real convolution to compute. From these, the
complex polynomial s(x) (mod x2i + 1) then is given by

sR(x) = (a(x) + b(x)),

sI(x) = x2i−1
(a(x) − b(x)) (mod x2i + 1).

We shall use this relationship to compute the complex cyclic convolution

s(x) = g(x)d(x) (mod xn − 1)

where n is a power of two. Write

xn − 1 = (x − 1)(x + 1)(x2 + 1)(x4 + 1) · · · (xn/2 + 1),

so we have multiple short complex convolutions of the form

s(i)(x) = g(i)(x)d (i)(x) (mod x2i + 1).

The polynomial products modulo x − 1 and modulo x + 1 are products of scalars
and are computed as products of complex numbers. They contribute very little to the
computational complexity. The other polynomial products can each be computed with
two real convolutions, as we have seen above. Thus, with this method, a complex cyclic
convolution takes about twice as much computation as a real cyclic convolution.

178 Fast algorithms for short convolutions

This method is in competition with the method of factoring the polynomial xn − 1
in the complex field to write

xn − 1 = (x − 1)(x + 1)(x − j)(x + j) · · · (xn/4 − j)(xn/4 + j).

Now the individual subproblems are smaller, but their arithmetic is complex.

5.8 Complexity of convolution algorithms

Given an algorithm for some computation, should one be satisfied with it, or should
one attempt to find a better algorithm? This is a difficult question to answer for several
reasons. First, it is difficult to decide on criteria for declaring an algorithm to be the best
algorithm. Then, even if criteria are agreed on, it is difficult to deduce the performance
of the optimal algorithm according to the chosen criteria.

For many problems, one declares the optimal algorithm to be the one with the fewest
multiplications. This criterion is simple enough so that we can prove some theorems
giving the performance of the optimal algorithm. Of course, after we find the optimal
algorithm, we might not like it, perhaps because of the number of additions, or perhaps
because of its irregular structure.

In this section, we shall find the performance of the optimal algorithms for convolu-
tion as judged by the number of multiplications. To do this, we need to sharpen up our
idea of what a multiplication is, and we sharpen it in the way that allows our questions
to be answered. Specifically, we want to define the idea of multiplication so that d · g

is a multiplication when d and g can take on arbitrary real values, and yet 2g is not a
multiplication because it can be computed as g + g. This distinction is easy to accept,
but then what about 3g or 5

7g? For the purpose of this section, we choose a definition that
leads to useful results. The computation d · g is a multiplication if both factors can take
on arbitrary real values, but it is not a multiplication if only one of the factors can take
real values. We shall see that meaningful results follow from the definition, even though
it initially appears to be a somewhat hollow one. Notice also that our criterion might
appear suspect because in applications all numbers have finite wordlength, and so all
numbers in applications are rational. Nevertheless, if, in principle, the variables can
take on any real values, the computation is called a multiplication.

The Winograd short cyclic convolution algorithms are optimum in this sense. No
n-point cyclic convolution algorithm can have fewer multiplications than a Winograd
short convolution algorithm. The proof of this fact is one of the major tasks of this
section. The major facts we shall prove are the following.
1 The linear convolution of two sequences of lengths L and N cannot be computed

with fewer than L + N − 1 general multiplications.
2 The cyclic convolution of two sequences modulo xn − 1 cannot be computed with

fewer than 2n − t general multiplications, where t is the number of prime factors of
xn − 1.

179 5.8 Complexity of convolution algorithms

3 The polynomial product g(x)d(x) modulo p(x) cannot be computed with fewer
than 2n − t general multiplications, where t is the number of prime factors
of p(x).
Of course, the second statement is a special case of the third, but it is important

enough to be stated separately.
The ideas can be developed for any field. Let F be a field, called the field of the

computation, and let E be a subfield of F , called the field of constants or the ground field.
The elements of E are called scalars. Let d = (d0, . . . , dn−1) and g = (g0, . . . , gr−1)
be arbitrary vectors of elements of F of fixed lengths n and r . The components of d
and g will be referred to as indeterminates or as variables. These n + r indeterminates
are independent; there are no fixed relationships between them. An algorithm is a
rule for computing a sequence of elements f1, . . . , ft of F that satisfies the following
properties: each element fi of the sequence is equal to either (1) a component of d or of
g or the sum, difference, or product of two such components; (2) the sum, difference,
or product of a component of d or of g and an element fj of the sequence with j less
than i; (3) the sum, difference, or product of two elements, fj and fk , of the sequence
with both j and k less than i; or (4) an element of the ground field E.

We say that the algorithm computes an output vector s if the components of s are
included in the sequence f1, . . . , ft . It must be emphasized that s is a vector whose
components are variables that have some functional relationship to the variables that
make up the components of d and g. An algorithm that computes s is a fixed procedure
that computes the correct s for every possible assignment of values from the field F to
d and g.

Notice that the definition includes no provision for division or for branching. For
the algorithms we deal with, the operations of division and branching are unnecessary,
and they cannot be used to reduce the number of multiplications.

The definition of an algorithm can be illustrated by the problem of complex multi-
plication. First, write it in the form

[
e

f

]
=

[
c −d

d c

][
a

b

]
.

Then

f1 = ca,

f2 = db,

f3 = f1 − f2,

f4 = da,

f5 = cb,

f6 = f4 + f5

180 Fast algorithms for short convolutions

is a description of the algorithm in the form of a sequence. We can also write complex
multiplication as[

e

f

]
=

[
1 0 1
0 1 1

](c − d) 0 0
0 (c + d) 0
0 0 d

1 0

0 1
1 −1

[
a

b

]
.

Then

f1 = a − b,

f2 = c − d,

f3 = c + d,

f4 = f2a,

f5 = f3b,

f6 = df1,

f7 = f4 + f6,

f8 = f5 + f6

is a description of the alternative algorithm in the form of a sequence.
Consider the collection of all such sequences that compute the complex multiplica-

tion. An optimal algorithm is one with the minimum number of multiplications of any
algorithm in that collection.

We are now ready to formalize the definition of a computational problem. We shall
study only problems of the form

s = Hd,

where d is an input data vector of length k, and s is an output vector of length n. The
elements of the matrix H are linear combinations of the r indeterminates g0, . . . , gr−1.
Typically, r is less than the number of elements of H , and each indeterminate may
appear more than once in H . This structure includes all of the convolution problems
that we have studied.

We think of the elements of H not as field elements, but as linear combinations of
the indeterminates of the form

Hij =
r−1∑
k=0

αijkgk,

where each αijk is a scalar. Two such linear forms can be added or multiplied by a
scalar, and the set of such linear forms is closed under these operations. Thus the set
of such linear forms over the field E is a vector space denoted by E[g0, . . . , gr−1].
Further, H is a matrix over the set of such linear forms. Many familiar properties of
matrices over a field do not hold for H , because H is not a matrix over a field (nor even

181 5.8 Complexity of convolution algorithms

over a ring), but rather over the set E[g0, . . . , gr−1]. In particular, the row rank need
not equal the column rank. We shall see that the row rank and the column rank each
provides a lower bound on the number of multiplications needed to compute s = Hd.
By interchanging the roles of g and d, each of these two bounds may be applied in two
ways.

The row rank is defined in the obvious way as follows; the column rank is defined
in a similar way. Each row hi of H is a vector of length k of elements from the set1

E[g0, . . . , gr−1]. A linear combination of rows of H is also a vector of length k of
elements of the same set, given by

∑n
i=1 βihi where βi for i = 1, . . . , n is an element

of the field E. The row rank of H is the size of the largest linearly independent set of
rows. This is a set of rows such that no nonzero linear combination is equal to zero.

As an example, the matrix

H =

 4g0 −g0 g0

2g1 −g1 0
2g1 − 2g0 g0 g1

has column rank equal to two with respect to the rationals (or the reals), because

1

2

 4g0

2g1

2g1 − 2g0

 +

−g0

−g1

g0

 −

g0

0
g1

 =

0
0
0

 ,

but no linear combination of only two columns is identically equal to zero.

Theorem 5.8.1 (Row rank theorem) The number of multiplications used by any algo-
rithm that computes s = Hd is at least as large as the row rank of H .

Proof Without loss of generality, we can assume that the first ρ rows of H are linearly
independent and we shall deal only with these rows. Let M be the matrix formed by
these rows, and consider only the partial computation s0

...
sρ−1

 = Md.

The proof will identify an appropriate matrix A over the field E for which known
properties of matrices over fields can be invoked.

Suppose that, in the algorithm specified by the sequence f1, . . . , fN , there are �

multiplication steps given by the � terms from the sequence e1, . . . , e�. Then the first

1 The set is itself a vector space, but it is better to call it a set than to risk confusion by speaking of “vectors of
vectors.”

182 Fast algorithms for short convolutions

ρ components of s must be linear combinations of these product terms and of linear
terms and elements of the ground field. That is, s0

...
sρ−1

 = A

e1
...
e�

 +

 b0
...

bρ−1

 ,

where the elements of A are from the ground field E and the elements of b are linear
combinations of the indeterminates and of elements of the ground field.

Now suppose that ρ is larger than �. Then A has more rows than columns, so the
rows of A are linearly dependent, and there exists a vector c over the field E such that
cT A = 0T. Therefore

cT(Md) = cT(Ae + b),

and, because cT A = 0T, this reduces to

(cT M)d = cTb.

Now the right side has no products of two indeterminates because c contains only
elements of E, and b has no products of indeterminates. Therefore the left side can have
no products of indeterminates. Then, because every component of d is an indeterminate,
cT M can contain no indeterminates. But cT M is a vector of linear combinations of
indeterminates. Because cT M contains no indeterminates, it equals zero, and the rows
of M are dependent. The contradiction proves that � is larger than ρ, and the number
of multiplications is as least as large as the row rank of H . �

Theorem 5.8.2 (Column rank theorem) The number of multiplications used by any
algorithm that computes s = Hd is at least as large as the column rank of H .

Proof The proof is by induction. If the column rank is one, then any algorithm must
use at least one multiplication. Suppose the theorem is true whenever the column rank
is � − 1. That is, if the column rank of H is � − 1, then any algorithm that computes
s = Hd must use at least � − 1 multiplications. The induction step will infer the
corresponding conclusion when the column rank is �.

Suppose we have an algorithm to compute:

s = Hd,

where H has column rank �. Without loss of generality, we may assume that the last
column of H contains at least one nonzero element (otherwise it could be deleted from
H). Hence d� appears in some product term, say, the last product term.

That is, the sum
∑

i αidi , for some set of scalars αi is a factor in a multiplication with
α� �= 0. We are free to suppose that α� equals one because multiplication by scalars is
free. Then d� + ∑�−1

i=0 αidi is a factor in a multiplication.

183 5.8 Complexity of convolution algorithms

To complete the proof, we devise from any algorithm for the given problem an
algorithm for an artificial problem

s′ = H ′d ′

that has rank � − 1, and which can be solved with the given algorithm by deleting one
multiplication. By the induction assumption, every algorithm for the new problem uses
at least � − 1 multiplications, so the original problem must use at least � multiplications.

To do this, replace d� in the given problem by −∑�−1
i=0 αidi . Then the last product term

that involves the sum d� + ∑�−1
i=0 αidi is a multiplication by zero and so can be deleted

from the algorithm. But the algorithm now does solve some problem. Specifically, it
solves the problem

s′ = H ′d ′,

where d ′ is the vector of length � − 1 obtained from d by deleting the last component,
and H ′ is obtained from H by replacing the j th column hj with hj − αjh�. Then

H ′

d0

d1
...

d�−1

 = H

d0

d1
...

d�−1

−∑�−1
i=0 αidi

 .

Thus the algorithm computes H ′d ′, and the proof is complete. �

Theorem 5.8.3 Every algorithm to compute the linear convolution

s(x) = g(x)d(x),

where deg g(x) = L − 1 and deg d(x) = N − 1, uses at least L + N − 1 multiplica-
tions.

Proof The computation can be written as a matrix–vector product

s = Hd,

where

H =

g0 0 · · · 0 0
g1 g0 · · · 0 0
...
0 · · · gL−1 gL−2

0 · · · 0 gL−1

184 Fast algorithms for short convolutions

is an L + N − 1 by N matrix. As elements of E[g0, . . . , gL−1], the rows of H clearly
are independent, so Theorem 5.8.1 implies that there are at least L + N − 1 multipli-
cations. �

Theorem 5.8.4 Let p(x) be a prime polynomial of degree n. Every algorithm to com-
pute the polynomial product

s(x) = g(x)d(x) (mod p(x))

uses at least 2n − 1 multiplications.

Proof Suppose there are t multiplications. Then the output of the computation is a
linear combination of these t product terms:

s = AS,

where A is an n by t matrix over E and S is a vector of length t containing all the
product terms.

Clearly, one can always choose d(x) and g(x) to make any component of s(x)
nonzero and all other components equal to zero. Therefore the n rows of A must be
linearly independent, so A also contains n linearly independent columns. Without loss
of generality, we can take the first n columns as linearly independent. Then we can
block A as

s = [A′ | A′′]S,

where A′ is an n by n invertible matrix. Multiply by C, the inverse of A′,

Cs = [I : P]S

= C Hd.

Using the fact that p(x) is irreducible, we will show that all columns of any row of H
are linearly independent, as are all columns of any linear combination of rows of H .
This statement is a consequence of standard results of matrix theory. We will prove it
separately as Theorem 5.8.6 at the end of this section. Consequently, all columns of
the first row of C H are linearly independent, so by Theorem 5.8.2, it takes at least n

multiplications to compute the first element of C Hd.
On the other hand, the first row of

Cs = [I : P]S

uses at most 1 + (t − n) multiplications, because S is a vector of length t containing
all the products and P has (t − n) columns. Hence

1 + (t − n) ≥ n

185 5.8 Complexity of convolution algorithms

so that

t ≥ 2n − 1,

which proves the theorem. �

As an application of this theorem consider complex multiplication, which can be
viewed as multiplication modulo (x2 + 1). The theorem says that at least three real
multiplications are required to compute one complex multiplication.

Theorem 5.8.4 also can be proved for polynomial multiplication modulo p(x)� as
long as p(x) is a prime polynomial, although we shall not do so. We consider, instead,
the case where p(x) is not prime but has k prime factors. Then the Chinese remainder
theorem can be used to break the problem into k subproblems, each of length ni , with∑

i ni = n. These subproblems can be combined without multiplications. Hence using
Theorem 5.8.4 for each of the smaller problems says that if the Chinese remainder
theorem is used, then at least

k∑
i=1

(2ni − 1) = 2n − k

multiplications are required. The following theorem says that no algorithm can do
better than one that uses the Chinese remainder theorem in this way.

Theorem 5.8.5 Let p(x), a polynomial of degree n, be a product of k distinct prime
polynomials. Any algorithm to compute the polynomial product

s(x) = g(x)d(x) (mod p(x))

uses at least 2n − k multiplications.

Proof The Chinese remainder theorem is an invertible transformation without multi-
plications, so it suffices to consider the computation s = Hd in the block-diagonal
form

s1

s2
...

sk

 =

H1 0 · · · 0
0 H2
...
0 Hk

d1

d2
...

dk

 ,

where

si = H i di

corresponds to the ith subproblem formed with the Chinese remainder theorem.

186 Fast algorithms for short convolutions

Now we mimic the proof of Theorem 5.8.4. Suppose there are t multiplications in
an algorithm. Then, it must be possible to write

s = AS,

where S is a vector of length t containing all the product terms and A is an n by t

matrix over the field E. Because A must contain n linearly independent rows, it must
contain n linearly independent columns, which we can take to be the first n columns.
Then

s = [A′ : A′′]S

and

Cs = [I : P]S,

where C is the inverse of A′. Consequently, it takes at most 1 + (t − n) multiplications
to compute the first element of Cs. But we also have

Cs = C

H1

H2

. . .

Hk

 d.

Now take any linear combination of the rows of H . Any linear combination of rows of
H i has only linearly independent columns. Hence there are at least n − (k − 1) linearly
independent columns in any linear combination of rows of H . By Theorem 5.8.2, it takes
at least n − (k − 1) multiplications to compute the first element of C Hd. Therefore
the upper and lower bounds on the number of multiplications needed to compute the
first element of Cs yield the inequality

1 + (t − n) ≥ n − (k − 1)

so that

t ≥ 2n − k,

which proves the theorem. �

Now we must finish a detail that was left hanging in the proof of Theorem 5.8.4.

Theorem 5.8.6 Let

s = Hd

be the matrix representation of the polynomial product

s(x) = g(x)d(x) (mod p(x)),

187 5.8 Complexity of convolution algorithms

where p(x) is a prime polynomial and H is a matrix of indeterminates whose elements
are coefficients of g(x). Then all columns of any row of H are linearly independent, as
are all columns of any linear combination of rows of H .

Proof
Step 1 Let Cp be the companion matrix of the polynomial p(x), defined as the n by n

matrix

Cp =

0 0 · · · 0 −p0

1 0 · · · 0 −p1

0 1 · · · 0 −p2
...

...
...

0 0 · · · 1 −pn−1

 .

Then the ith column of H is equal to C i
p g, and H can be written in terms of

its column vectors:

H = [g Cp g C2
p g · · · Cn−1

p g].

Let w be any row vector, and let wH be a linear combination of rows of H .
We must show that no linear combination of columns of wH is zero. Assume
that

0 =
n−1∑
i=0

(wC i
p g)ai =

[
w

n−1∑
i=0

aiC i
p

]
g.

This must hold for any g, so we have

w · a(Cp) = 0,

where

a(Cp) =
n−1∑
i=0

aiC i
p

is an n by n matrix computed from Cp. Because w is nonzero, we must have
that a(Cp) is a singular matrix; otherwise, w · a(Cp) could not be zero. Hence
we must show that the only singular matrix computed in this way as a matrix
polynomial of degree at most n − 1 is the all-zero polynomial.

Step 2 It is well-known and easy to verify that any prime polynomial, p(x), is zero
when evaluated at its own companion matrix. That is,

p(Cp) = 0,

where 0 is the all-zero n by n matrix. Let a(x) be a polynomial of degree at
most n − 1 such that a(Cp) is a singular matrix, and let v be a nonzero vector

188 Fast algorithms for short convolutions

in the null space of a(Cp). Then, because p(x) is a prime polynomial of degree
n, there exist Bézout polynomials A(x) and P (x) such that

A(x)a(x) + P (x)p(x) = 1.

Therefore

[A(Cp)a(Cp) + P(Cp) p(Cp)]v = Iv.

But p(Cp) = 0, so we have that

A(Cp)a(Cp)v = v,

which is a contradiction because a(Cp)v = 0. Hence there exists no polynomial
a(x) of degree n − 1 or less such that a(Cp) is singular, except the all-zero
polynomial. This completes the proof of the theorem. �

Problems for Chapter 5

5.1 a The complex multiplication (e + jf) = (a + jb)(c + jd) can be computed
with three real multiplications and five real additions by

e = (a − b)d + a(c − d),

f = (a − b)d + b(c + d).

Let c and d be constant and represent the multiplication algorithm in the
matrix form[

e

f

]
= B D A

[
a

b

]
,

where A and B represent the preadditions and the postadditions, and D is a
diagonal matrix.

b A two-point cyclic convolution, s(x) = g(x)d(x) (mod x2 − 1), can be com-
puted by the algorithm[
s0

s1

]
=

[
1 1
1 −1

][
1
2 (g0 + g1) 0
0 1

2 (g0 − g1)

][
1 1
1 −1

][
d0

d1

]
.

Suppose that d(x) and g(x) are complex polynomials. How many real multi-
plications and real additions are required here if the complex arithmetic is
done in the straightforward classical way?

c Now represent the input and output data by real vectors of length four. Give
an integrated algorithm that has six real multiplications. How many real
additions are there?

189 Problems

5.2 Given a device that computes the linear convolution of two sequences, each of
length n, describe how it can he used to compute the crosscorrelation function

n−1∑
i=0

gi+j di

of two sequences of length n.

5.3 Use the Cook–Toom algorithm to construct a convolution algorithm for filtering
a sequence of four data inputs with a three-tap FIR filter.

5.4 a Starting with the two-point linear convolution algorithm

s(x) = g1d1x
2 + [g1d1 + g0d0 − (g1 − g0)(d1 − d0)]x + g0d0,

construct an algorithm for

s(x) = g(x)d(x) (mod x2 − x + 1).

b Repeat, starting with

s(x) = g1d1x
2 + [(g1 + g0)(d1 + d0) − g1d1 − g0d0]x + g0d0.

Which is to be preferred?
5.5 Give two distinct reasons why the Rader prime algorithm combined with

the Winograd convolution algorithm leads to good FFT algorithms, while the
Bluestein chirp algorithm combined with the Winograd convolution algorithm
does not. Can you give a third?

5.6 Show that when the Cook–Toom algorithm with the n points βi = e−(j2π/n)i

is used to linearly convolve two sequences of length n/2, it gives the same
algorithm as when a Fourier transform with the convolution theorem is used.

5.7 Suppose that one has a device (a circuit module or a software subroutine) that
computes 315-point cyclic convolutions. This device is to be used to pass a
vector of 1000 data points through a 100-tap FIR fitter. Describe how to break
up the data to feed the convolver and to assemble the convolver outputs to get
the desired answer.

5.8 Derive an algorithm for a four-point cyclic convolution of complex sequences
that uses four complex multiplications. Compare this with an algorithm for
a four-point cyclic convolution of real sequences that is used for convolving
complex sequences.

5.9 One way to define the complex field is as an extension of the real field using
the prime polynomial p(x) = x2 + 1 over the real field. Complex multiplication
becomes

e + f x = (a + bx)(c + dx) (mod x2 + 1).

190 Fast algorithms for short convolutions

Use this viewpoint to convert a linear convolution algorithm into an algorithm
for complex multiplication.

5.10 a Use only the factorization

x16 − 1 = (x − 1)(x + 1)(x2 + 1)(x4 + 1)(x8 + 1)

to get modulus polynomials. How many multiplications are needed to perform
a sixteen-point cyclic convolution using the Winograd algorithm?

b Suppose factorization over the “complex rationals” (numbers of the form
(a + jb) where a and b are rationals) is allowed. How many complex
multiplications are now needed using a set of modulus polynomials that
includes 1, ±j as coefficients? (Note: we now have complex numbers
as intermediate variables, and we do not count multiplication by j as a
multiplication.)

c Does part (b) have an advantage over part (a)? (Hint: is the cyclic convolution
a real convolution or a complex convolution?)

5.11 Set up all equations for a Winograd four-point by three-point linear convolution
algorithm using

m(x) = x2(x + 1)(x − 1)(x2 + 1).

5.12 A double-precision representation of a number in a computer may be expressed
as a polynomial d0 + d1x. Give an algorithm for double-precision multiplication
without roundoff that uses three single-precision multiplications and four single-
precision additions.

5.13 Use the algorithm

s0

s1

s2

s3

s4

 =

1 0 0 0 0 0

−1 −1 0 1 0 0

−1 1 −1 0 1 0

0 −1 −1 0 0 1

0 0 1 0 0 0

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

g0

g1

g2

•

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

d0

d1

d2

191 Problems

and the transformation principle to construct five new algorithms. Which of
these are interesting?

5.14 Prove that, for any even n larger than one, the best algorithm for computing

s(x) = g(x)d(x) (mod xn + 1)

in the field of real numbers uses more multiplications than the best algorithm
for computing

s(x) = g(x)d(x) (mod xn − 1).

5.15 Find an n and an n′ with n less than n′ such that the n-point cyclic convolution
requires more multiplications than the n′-point cyclic convolution.

5.16 Using your knowledge of fast convolution algorithms, construct an algorithm
for the three-point Fourier transform

Vk =
2∑

i=0

ωikvi, k = 0, 1, 2

that uses only two real (nontrivial) multiplications.
5.17 Construct algorithms for the following:

a s(x) = g(x)d(x) (mod x3 + x + 1);
b s(x) = g(x)d(x) (mod x3);
c s(x) = g(x)d(x) (mod x3 + x2 + 1).

5.18 a How many real multiplications are required by the method of Section 5.7
to compute a complex cyclic convolution modulo x8 − 1 in the complex
field?

b How many complex multiplications are required by the Winograd complexity
theorem to compute the cyclic convolution modulo x8 − 1 in the complex
field?

c Explain any apparent inconsistency.
5.19 a Prove that it requires six real multiplications to compute two complex

products

e + jf = (a + jb)(c + jd),

e′ + jf ′ = (a′ + jb′)(c′ + jd ′)

with the understanding that all variables are independent real numbers; there
are no unstated dependencies.

192 Fast algorithms for short convolutions

b How many multiplications are needed to simultaneously compute the follow-
ing two complex products

e + jf = (a + jb)(c + jd),

e′ + jf ′ = (a − jb)(c + jd),

where, in this case, variables are repeated?
c How many multiplications are needed to compute simultaneously the follow-

ing two complex products

e + jf = (a + jb)(c + jd),

e′ + jf ′ = (a − jb)(c − jd)?

5.20 a Prove that the computation[
s0

s1

]
=

[
g0 g1

g1 g0

][
d0

d1

]
,

where all variables are complex, requires six real multiplications.
b Prove that the computation[

s ′
0 + js ′′

0

s ′
1 + js ′′

1

]
=

[
g′

0 jg′′
1

−jg′′
1 g′

0

][
d ′

0 + jd ′′
0

d ′
1 + jd ′′

1

]
,

where all indicated variables arc real, also requires six real multiplications.
Hence setting g′′

0 and g′
1 equal to zero does not reduce the number of required

multiplications.
c Prove that the computation[

s0

s1

]
=

[
g0 g1

−g1 g0

][
d0

d1

]
,

where all variables are complex, requires six real multiplications.
d Prove that the computation[

s ′
0 + js ′′

0

s ′
1 + js ′′

1

]
=

[
g′

0 jg′′
1

jg′′
1 g′

0

][
d ′

0 + jd ′′
0

d ′
1 + jd ′′

1

]
,

where all indicated variables are real, requires four real multiplications. In
this case, setting g′′

0 and g′
1 equal to zero reduces the number of required

multiplications.
5.21 Derive an algorithm for a four-point cyclic convolution over the complex field.

Contrast this algorithm with the use of a fast Fourier transform and the convo-
lution theorem.

193 Notes

Notes for Chapter 5

A few fast convolution algorithms of small blocklength were first constructed by
Agarwal and Cooley (1977) to go with their multidimensional nesting technique, but
without any general theory. Winograd (1978) gave the general method of construction
that we have described. His 1980 monographs (Winograd, 1980a, b) gives examples of
his methods. Winograd (1977) also proved his important theorems about the optimality
of these convolution algorithms in the real field and the complex field.

6 Architecture of filters and transforms

Now that we have a large collection of algorithms for convolutions and for the discrete
Fourier transform, it is time to turn to how these algorithms are used in applications of
signal processing. Our major purpose in this chapter is to discuss the role of algorithms
in constructing digital filters. We shall also study other tasks such as interpolation
and decimation. By using the methods of nesting and concatenation, we will build
large signal-processing structures out of small pieces. The fast algorithms for short
convolutions that were studied in Chapter 5 will be used to construct small filter
segments.

The most important device in signal processing is the finite-impulse-response filter.
An incoming stream of discrete data samples enters the filter, and a stream of discrete
samples leaves. The streams of samples at the input and output are very long; in some
instances millions of samples per second pass through the filter. Fast algorithms for
filter sections always break the input stream into batches of perhaps a few hundred
samples. One batch at a time is processed. The input samples are clocked into an input
buffer, then processed one block at a time after that input block has been completed.
The resulting block is placed into an output buffer, and the samples are clocked out of
the output buffer at the desired rate.

6.1 Convolution by sections

Many algorithms for the discrete Fourier transform were studied in Chapter 3. Some
of these algorithms were derived directly, and some were constructed on top of the fast
convolution algorithms that will be developed in this chapter. The fast Fourier transform
algorithms can be used, in turn, to do cyclic convolutions efficiently, especially when
the blocklength is long. This is because the convolution theorem tells us that the cyclic
convolution

si =
n−1∑
k=0

g((i−k))dk, i = 0, . . . , n − 1

in the time domain becomes

Sk = GkDk, k = 0, . . . , n − 1

194

195 6.1 Convolution by sections

in the frequency domain. Consequently, one way to compute the cyclic convolution is
by using a Fourier transform, followed by a componentwise product in the transform
domain, and then an inverse Fourier transform.

A Fourier transform can also be used to do a linear convolution by choosing the
parameters of the computation so that the linear convolution is the same as a cyclic
convolution. Choose a convenient n at least as long as the blocklength of s, and for
which the Fourier transform is easy to compute. Then lengthen the vectors g and d by
appending zeros such that those components with index i = 0, . . . , n − 1 retain their
assigned values, and s is still related to g and d by a cyclic convolution. However, now
the length is n′.

This requires that the length of the linear convolution be short enough to be accom-
modated by the blocklength of a practical Fourier transform. However, most filtering
applications involve a linear convolution that is much too long for this, usually of
unlimited length. Then other methods must be used.

Many techniques are available for reducing a long linear convolution to a sequence of
short cyclic convolutions. It is commonly necessary in applications to pass a sequence
that is so long as to appear infinite through an FIR filter with a fixed number of taps. The
filtering operation must be computed piecemeal on the fly. It is not feasible to collect
all of the input data before the computation of the output is begun because of the delay,
because there would be too much data to buffer, and because good algorithms do not
use all of the input data at once. Therefore the input data is segmented into blocks.
As each block of data becomes available, processing on it begins. When processing of
a block is complete, that output block is concatenated with previous output blocks to
form the filter output.

First, we shall describe a technique known as the overlap–save method. We regard
the data sequence d as represented by a polynomial d(x) of arbitrarily large degree,
with data sample di as the ith coefficient of the polynomial d(x). Suppose we have a
device for doing cyclic convolutions of blocklength n, and we want to multiply g(x), a
polynomial whose degree A is smaller than n, and d(x), a polynomial whose degree is
larger than n. Usually, the degree of d(x) is very large, and we will treat it as unbounded.
From d(x), form a set of polynomials {d (0)(x), d (1)(x), . . .}, with each polynomial of
the set having degree n − 1 or less. The definition of the (overlapping) coefficients is
as follows:

d
(0)
i = di, i = 0, . . . , n − 1,

d
(1)
i = di+(n−A), i = 0, . . . , n − 1,

d
(2)
i = di+2(n−A), i = 0, . . . , n − 1,

d
(3)
i = di+3(n−A), i = 0, . . . , n − 1,

...
...

...

where enough such polynomials are formed so that all coefficients of d(x) are assigned.
This may require that an indefinitely long sequence of such polynomials will be formed,

196 Architecture of filters and transforms

and we regard the sequence as unending. Notice that the coefficients of the polynomials
d (�)(x) are overlapped by A coefficients. For each �, let

s(�)(x) = g(x)d (�)(x) (mod xn − 1).

But, because

s(x) = g(x)d(x),

the desired coefficients of s(x), except for the first A coefficients, can be found among
the coefficients of the s(�)(x). Thus

si = s
(0)
i , i = A, . . . , n − 1,

si+(n−A) = s
(1)
i , i = A, . . . , n − 1,

si+2(n−A) = s
(2)
i , i = A, . . . , n − 1,

and so on. In this way, an unending stream of filter output data is computed. The A low-
order coefficients of s(x) are not computed. In many applications of linear convolution,
lost data at the start-up of the filter does not matter. However, if the first A output
coefficients are needed, simply replace d(x) by the polynomial xAd(x) in the above
discussion. All output coefficients will then be obtained, but with index offset by A.

Each cyclic convolution, except the last one, produces n − A coefficients of the
linear convolution and A unwanted coefficients, which are discarded. Because the last
input segment d (r)(x) can have degree smaller than n − 1, the last convolution may
produce more than n − A meaningful coefficients.

The overlap–save method does not actually require that a complete cyclic convolution
be computed. Only n − A of the output coefficients need to be computed, not all of them.
Consequently, it may be possible to develop an algorithm that is somewhat simpler
than a full cyclic convolution algorithm by suppressing the unneeded coefficients. Such
an algorithm, whether computed by using a cyclic convolution or computed directly, is
called a filter section. We shall study algorithms for filter sections in the next section.

A finite-impulse-response filter constructed by using the overlap–save technique is
shown in Figure 6.1. Functionally, the FIR filter looks like a tapped delay line, but the
actual construction of the filter can look very different. As datawords arrive, they are
entered into a cyclic buffer memory that typically is about twice as large as the filter
section. As the filter section processes the data in one part of the input buffer, data for
the next filter section is filling the next block of memory words in the input buffer and
will be ready in time for the next computation. Each new section will be addressed in
a manner overlapped with the section that precedes it. The filter section must process
a block of length n in the time it takes to collect n − A new data samples. At the same
time, data from a preceding block is shifted out of the output buffer to the user.

The input buffer is cyclic, as is the output buffer. This means that, after its last
memory location is filled, subsequent inputs are written by starting from the first
memory location. In this way, stale data is discarded by being overwritten. It is usually

197 6.1 Convolution by sections

Input
datastream

Output
datastream

(a) Functional description

FIR filter

Delay

Output
datastream

Input
datastream

(b) Implementation

FIR filter

Cyclic
input
buffer

Filter-
section

algorithm

Cyclic
output
buffer

Figure 6.1 Construction of an FIR filter

convenient to make the length of the input buffer a power of two. The number in a binary
register designates the address where the next input is to be stored, and this register is
incremented after each input. The cyclic property of the buffer is implemented simply
by allowing the address register to overflow after it reaches the all-ones value.

The filter section finds its block of data at memory locations with addresses
((b)), . . . , ((b + n − 1)), where b is a starting address and the double parentheses
denote modulo the buffer memory length. After each section is finished, b is replaced
by ((b + A)), and the next section begins.

The block output of the filter section is placed in an output buffer. This buffer is
managed by the same techniques used for the input buffer. Because it takes time to fill
and empty buffers as well as to do the computation, the overlap–save method always
entails some delay. This is shown in the functional description in Figure 6.1 so as to
make the two representations equivalent.

The overlap–save method overlaps the blocks of input data and discards a portion of
each output block. It uses a cyclic convolution algorithm with the same blocklength as
the data blocks. Another method, known as the overlap–add method, does not overlap
the input data but uses a linear convolution algorithm with a blocklength larger than
the data blocks. It uses all components in the output block, using a small amount of
computation to add together the overlapped segment of the output blocks. The two
overlap methods are illustrated in Figure 6.2 and Figure 6.3.

To explain the overlap–add method, suppose again that we have a device for doing
linear convolutions of output length n. We want to multiply g(x), a polynomial whose
degree A is smaller than n, and d(x), a polynomial whose degree is larger than n. The

198 Architecture of filters and transforms

 Overlap–save
Input datastream

Section

 input
samples
n -Point

Cyclic
Convolution

n output
samples
n

Discard
Discard

Select
second value

Output datastream

point
linear

convolution

m

Figure 6.2 Convolution by overlap–save sections

Input datastream

Section

input
samples

n A -Point
Cyclic

Convolution

n output
samples
n

Add

Output datastream

point
linear

convolution

n

Figure 6.3 Convolution by overlap–add sections

degree of d(x) can be very large, and we shall treat it as indefinitely large. From d(x),
form a sequence of polynomials of degree at most n − A − 1, defined as follows:

d
(1)
i = di, i = 0, . . . , n − A − 1,

d
(2)
i = di+(n−A), i = 0, . . . , n − A − 1,

d
(3)
i = di+2(n−A), i = 0, . . . , n − A − 1.

Notice that these new polynomials are not overlapped, but each length is smaller than
n. Then d(x) can be expressed as

d(x) =
∞∑

�=1

d (�)(x)x(�−1)(n−A)

199 6.2 Algorithms for short filter sections

and

s(x) = g(x)d(x) =
∞∑

�=1

g(x)d (�)(x)x(�−1)(n−A).

For each �, let

s(�)(x) = g(x)d (�)(x).

The coefficients of s(x) are given by

si = s
(1)
i , i = n − A − 1,

si+(n−A) = s
(2)
i + s

(1)
i+(n−A), i = n − A − 1,

si+2(n−A) = s
(3)
i + s

(2)
i+(n−A), i = n − A − 1,

and so on. This completes the computations of the overlap–add method.
The overlap–add method was described using a linear convolution. However, because

deg g(x) = A and deg d (�)(x) = n − A − 1, a cyclic convolution can be used just as
well. A cyclic convolution of blocklength n then will actually produce a linear convo-
lution; all output points are correct values for the linear convolution.

Notice that both the overlap–save method and the overlap–add method produce n −
A output samples for each n-point convolution computed. The overlap–save method
has a slight advantage in that there are no additions after the cyclic convolutions are
computed, and so it is usually preferred. On the other hand, the overlap–add method
can use a linear convolution with only n − A nonzero values at the input. The linear
convolution algorithm can be designed with fewer input additions.

For example, in Section 11.4, we will study ways to iterate algorithms for small
linear convolutions into algorithms for large linear convolutions. In particular, a two-
point by two-point linear convolution algorithm can be iterated to give a 256-point by
256-point linear convolution algorithm. This can be used with the overlap–add method.
The parameters are: n equals 511 output samples; A equals 255, corresponding to a
256-tap filter; and n − A equals 256 input samples. After the overlap and add, 256
output samples are produced for every convolution. To produce each batch of 256
output samples, this construction will use 6561 multiplications and 19 171 additions,
including the overlap additions. Thus the 256-tap FIR filter is implemented by using
25.6 multiplications and 74.9 additions per output sample.

6.2 Algorithms for short filter sections

Discrete FIR filters can be constructed by using the overlap methods described in the
previous section. To apply these methods, we need good algorithms for the individual
filter sections. In this section, we will develop good algorithms for short filter sections

200 Architecture of filters and transforms

directly. In Section 6.3, we will describe how to combine them to obtain longer filter
sections.

The overlap–save method can be described as a matrix–vector operation. In this
section, we write the matrix equation explicitly, omitting from the computation those
output samples of a convolution that would be discarded were they computed. Thus

sr−1

sr

sr+1
...

sn+r−2

 =

dr−1 . . . d2 d1 d0

dr . . . d3 d2 d1
...

...
dn+r−2 . . . dr−1

g0

g1
...

gr−1

=

gr−1 gr−2 gr−3 . . . 0 0

0 gr−1 gr−2 . . . 0 0
0 0 gr−1 . . . 0 0
...

...
0 0 0 . . . gr−1

d0

d1

d2
...

dn+r−2

 .

This equation computes a batch of n outputs of an r-tap FIR filter. An unending
sequence of outputs can be computed, one batch at a time, by appropriately advancing
the indices after each batch is computed. We call the batch computation an (r, n)-filter
section or, when r equals n, an n-tap filter section. Such a problem is a truncated
convolution. As we shall prove later, an (r, n)-filter section requires r + n − 1 multi-
plications, and an algorithm that uses r + n − 1 multiplications may be regarded as an
optimum algorithm. This could be a misleading description, however, because such an
algorithm will have too many additions unless r and n are small. These algorithms are
valued primarily when r and n are small.

Algorithms for filter sections can be obtained from algorithms for linear convolu-
tions. The following theorem gives a general principle for turning an algorithm for one
computation into an algorithm for the other.

Theorem 6.2.1 (Transformation principle) Given the algorithm

s = T d

= CG Ad,

where G is a diagonal matrix and A and C are matrices of small constants, then

e = ATGCT f

is an algorithm for computing e = T T f . If the first algorithm has the minimum number
of multiplications for computing s, then the second algorithm has the minimum number
of multiplications for computing e.

201 6.2 Algorithms for short filter sections

Proof The algorithm for computing s is the matrix factorization

T = CG A.

Therefore, because G is a diagonal matrix, the transpose is

T T = ATGCT

so that

T T f = ATGCT f .

The second claim of the theorem is easy to see, because if an algorithm with fewer
multiplications exists for computing e, then the first part of the theorem can be used to
obtain an algorithm for computing s with that lesser number of multiplications. �

The transformation principle can be used to construct a short filter section. We start
with the linear convolutions0

s1

s2

 =

g0 0
g1 g0

0 g1

[
d0

d1

]

=

 1 0 0
−1 1 −1

0 0 1

g0

g0 + g1

g1

1 0

1 1
0 1

[
d0

d1

]
.

Then, by Theorem 6.2.1, we can write[
e0

e1

]
=

[
g0 g1 0
0 g0 g1

]f0

f1

f2

=

[
1 1 0
0 1 1

]g0

g0 + g1

g1

1 −1 0

0 1 0
0 −1 1

f0

f1

f2

 .

Next, replace (e0, e1) by (s2, s1) and replace (f0, f1, f2) by (d2, d1, d0) to give the
algorithm for a two-tap filter section:[
s2

s1

]
=

[
g0 g1 0
0 g0 g1

]d2

d1

d0

=

[
1 1 0
0 1 1

]g0

g0 + g1

g1

1 −1 0

0 1 0
0 −1 1

d2

d1

d0

 .

202 Architecture of filters and transforms

Table 6.1 Performance of some algorithms for
short filter sections

Number of Number of Number of Number of
taps outputs multiplications additions

2 2 3 4
2 3 4 8
3 2 4 8
3 3 5 15
3 4 6 20
4 3 6
4 4 7
5 3 7

This is an optimum algorithm for a two-tap filter section. It uses three multiplications
and four additions; the addition involving the filter taps g0 + g1 is not counted.

The algorithm can be used to compute an unending stream of filter outputs, two
outputs at a time, by writing[
sr+2

sr+1

]
=

[
g0 g1 0

0 g0 g1

]dr+2

dr+1

dr

 ,

then applying the factorization of the algorithm.
Algorithms for other short filter sections can be derived in the same way. The

performance of some of these filter sections is given in Table 6.1.

6.3 Iterated filter sections

By iterating an algorithm for a small filter section, one can obtain an algorithm for
a larger filter section that will compute a long block of filter output samples. The
performance of some iterated filter sections is tabulated in Table 6.2. An unending
stream of output samples can be formed by concatenating any number of these filter
sections by the overlap–save method, discussed in Section 6.1.

The small convolution algorithms we have studied do not make use of the fact that
multiplication of numbers is commutative. Any algorithm for the linear convolution

si =
N−1∑
k=0

gi−kdk

that does not use division and does not use the commutative property of multiplication
remains a valid algorithm even if the elements are from an arbitrary ring, possibly a

203 6.3 Iterated filter sections

Table 6.2 Performance of some real FIR filter algorithms

Number of Number of Number of Number of Multiplications Additions
taps outputs/section multiplications additions per output per output

2 2 3 4 1.5 2
3 3 5 15 1.67 5
9 9 25 120 2.78 13.33

16 16 81 260 5.06 16.25
27 27 125 735 4.63 27.22
32 32 243 844 7.59 26.37
81 81 625 4080 7.72 53.70

noncommutative ring. For example, we may want to compute a convolution of matrices

Si =
N−1∑
k=0

Gi−k Dk,

where now Di is the ith matrix in a list of N matrices, and Gi is the ith matrix in a
list of L matrices. The convolution algorithms we have developed can be used here
just as before. The additions then become additions of matrices and the multiplications
become multiplications of matrices.

To illustrate, we will iterate the algorithm for a two-tap filter section to obtain
algorithms for larger filter sections. The small algorithm, developed in Section 6.2, can
be written in the form

[
s1

s2

]
=

[
0 1 −1
1 1 0

](d2 − d1)
d1

(d1 − d0)

1 0

1 1
0 1

[
g0

g1

]
.

The algorithm requires 1.5 multiplications and two additions per filter output sample.
It can be used repeatedly to compute two outputs at a time, always at the cost of
1.5 multiplications and two additions per output sample. However, a two-tap filter is
too small for most practical applications. Algorithms for larger filters that compute 2m

outputs from a 2m-tap filter can be designed by iterating this two-tap algorithm.
To illustrate the idea, we derive an algorithm for a four-tap filter section by computing

four outputs of a four-tap filter. This can be written in matrix form as
s3

s4

s5

s6

 =

d3 d2 d1 d0

d4 d3 d2 d1

d5 d4 d3 d2

d6 d5 d4 d3

g0

g1

g2

g3

 .

204 Architecture of filters and transforms

If we partition this equation into two by two blocks, we obtain the block matrix
equation[

S1

S2

]
=

[
D1 D0

D2 D1

][
G0

G1

]
,

where

D0 =
[
d1 d0

d2 d1

]
, D1 =

[
d3 d2

d4 d3

]
, D2 =

[
d5 d4

d6 d5

]
,

G0 =
[
g0

g1

]
, G1 =

[
g2

g3

]
,

and

S1 =
[
s3

s4

]
, S2 =

[
s5

s6

]
.

This problem now has exactly the same form as the earlier problem. Scalars have
been replaced by matrices, and the algorithm is a valid algebraic identity. We have

[
S1

S2

]
=

[
0 I −I
I I 0

](D2 − D1) 0 0
0 D1 0
0 0 (D1 − D0)

I 0

I I
0 I

[
G0

G1

]
.

As before, the additions G0 + G1 can be precomputed and need not be counted. There
is a total of four matrix additions and three matrix multiplications here. First we inspect
the matrix additions. Two of them are

D2 − D1 =
[
d5 − d3 d4 − d2

d6 − d4 d5 − d3

]
,

D1 − D0 =
[
d3 − d1 d2 − d0

d4 − d2 d3 − d1

]
.

There are five distinct additions of numbers. (Later, we shall see how one of the
additions can be reused so that four additions will suffice here.) There are two more
additions of two-point vectors after the multiplications are complete. This takes four
more real additions.

Each of the three matrix multiplications is itself seen to have exactly the same form
as a two-tap filter section. Each matrix multiplication can be computed with three field
multiplications and four field additions. Hence there are nine multiplications and 21
additions in this computation of the four-tap filter section.

205 6.3 Iterated filter sections

If the algorithm is to be used repeatedly to compute four outputs at a time from a
four-tap filter, then one of the additions drops away because d6 − d4 for one batch is
the same as d2 − d0 in the next batch, so this term can be reused.

The iteration process is quite general. We can partition the matrix of the computation
of n outputs of an n-tap filter into four n/2 by n/2 blocks whenever n is even. When we
apply the two-tap algorithm, we see that we obtain an n-tap filter section by using an
n/2-tap filter section three times. The number of multiplications is three times as many
as needed by the n/2-tap filter section. The number of additional additions needed to
compute D1 − D0 in this case is n − 1, and the number of additional additions then
needed to compute D2 − D1 is n/2. This is because all the matrices are n/2 by n/2
Toeplitz matrices. To compute D1 − D0, only subtractions in the top row and left
column need to be done. Some of these terms are repeated in D2 − D1, so to compute
D2 − D1 only n/2 subtractions are needed. If the algorithm is used repeatedly, then,
by reusing earlier terms, D1 − D0 and D2 − D1 can be computed by using only n/2
additions each. The output vector additions use n additional additions. To summarize, if
an n/2-tap filter section can be done by using M multiplications and A additions, then,
from the two-tap algorithm, we have an n-tap filter section using 2n + 3A additions
and 3M multiplications.

If n = 2m, then the procedure can be iterated, building a 2m-tap filter section out of
several 2m−1-tap filter sections, which, in turn, are built out of 2m−2-tap filter sections.
The number of multiplications is 3m = n1.585. The number of additions satisfies the
recursion A(n) = 2n + 3A(n/2) with A(1) = 0.

If n is not a power of two, then filter sections of other lengths can be designed to
be used as building blocks. Another approach is to pad the filter tap vector with zeros,
adding a few more taps equal to zero to bring the number up to a power of two.

For large enough n, the iterated algorithms with n1.585 multiplications will become
inferior to an FIR filter based on an FFT with O(n log n) multiplications. The value of n

at which this happens can be postponed if the radix-two iterated filter-section algorithm
is replaced with a radix-four filter-section algorithm with seven multiplications. Then
the number of multiplications will grow as 7m/2 = n1.404.

To further illustrate the richness of the designer’s options, we shall construct a
sequence of algorithms to compute 16 outputs from a 16-tap filter. The structure of the
algorithms is illustrated in Figure 6.4.

Algorithm 1 The outputs of the filter are computed in the obvious way. This algorithm
uses 16 × 16 = 256 multiplications and 16 × 15 = 240 additions.

Algorithm 2 Use the two-tap filter algorithm to obtain an algorithm that uses any eight-
tap filter section three times and needs 4 × 8 = 32 additional additions. If we compute
the eight-tap filter section in the obvious way, we need 8 × 8 = 64 multiplications and

206 Architecture of filters and transforms

Number of
multiplications

Number of
additions

256 240

Algorithm 1
Execute 16-point
filter directly

192 200

144 188

108 206

81 260

Algorithm 2

Algorithm 3

Algorithm 4

Algorithm 5

Execute 8-point
filter directly

Execute 4-point
filter directly

Execute 2-point
filter directly

8-point

Call three 8-point filters

Call three 8-point filters

Call three 8-point filters

Call three 8-point filters

8-point

8-point

Call three 4-point filters

4-point

Call three 4-point filters
Call three 2-point filters4-point

2-point

Use fast 2-point
filter algorithm

8-point Call three 4-point filters
Call three 2-point filters4-point

2-point

Figure 6.4 Some algorithms for 16-point FIR filters

8 × 7 = 56 additions. Altogether, the algorithm uses 3 × 64 = 192 multiplications and
32 + 3 × 56 = 200 additions.

Algorithm 3 Use the two-tap algorithm to obtain a new algorithm for an eight-tap
filter section. This algorithm uses 4 × 4 = 16 additions and uses a four-tap filter section
three times. Altogether, the algorithm for a 16-tap filter section uses 32 + 3 × 16 = 80
additions and nine times the computations of the four-tap filter section. The obvious
way of computing a four-tap filter section uses 16 multiplications and 12 additions, so
the algorithm uses 80 + 9 × 12 = 188 additions and 9 × 16 = 144 multiplications.

Algorithm 4 This is a modification of Algorithm 3, obtained by using an algorithm
for the four-tap filter section that uses 4 × 2 = 8 additions and three times an algorithm
for a two-tap filter section. Thus this algorithm for the 16-tap filter section uses 80 +
9 × 8 = 152 additions and uses 27 times the computation of the two-tap filter section.

207 6.4 Symmetric and skew-symmetric filters

Computing the two-tap filter section in an obvious way uses two additions and four
multiplications, so Algorithm 4 uses 152 + 27 × 2 = 206 additions and 27 × 4 = 108
multiplications.

Algorithm 5 This algorithm is obtained by iterating the two-tap algorithm all the way.
Algorithm 5 uses 260 additions and 81 multiplications.

We do not say which of these algorithms is preferable. Only detailed examination of
the algorithm in the context of an application and implementation can decide whether,
for example, the algorithm with 206 additions and 108 multiplications is preferable to
the one with 260 additions and 81 multiplications. All that we intend to do is provide
the designer with the various alternatives.

6.4 Symmetric and skew-symmetric filters

The techniques of the previous section can be enhanced when the coefficients of the
filter g(x) have special properties. Symmetries in the sequence of coefficients can be
exploited in the construction of the algorithms for the small filter sections. This kind
of saving is not readily available if Fourier transform techniques are used.

We shall design algorithms for small symmetric and skew-symmetric FIR filters.
To obtain longer filters, one will need to expand these small filters in some way.
Unfortunately, iteration cannot be used to enlarge a symmetric filter because the filter
that results is no longer symmetric. There is another method, however. We shall see that
a symmetric polynomial modulo a symmetric polynomial is a polynomial that itself is
closely related to a symmetric polynomial. We will pass the savings due to symmetry
up through the levels of the Chinese remainder theorem, building algorithms for large
symmetric filters out of pieces that are small symmetric filters.

The L-tap filter described by the polynomial g(x) is called a symmetric filter if g(x)
equals its reciprocal polynomial, that is, if g(x) = xL−1g(x−1) or, equivalently, if gi =
gL−1−i . The L-tap filter, described by polynomial g(x), is called a skew-symmetric filter
if g(x) equals the negative of its reciprocal polynomial, that is, if g(x) = −xL−1g(x−1)
or, equivalently, if gi = −gL−1−i . We will begin with a discussion of symmetric filters.
There is an obvious algorithm to produce an L-tap symmetric filter that uses, for each
output sample, L − 1 additions but only L/2 multiplications if n is even, or (L + 1)/2
multiplications if n is odd. The obvious algorithm adds together the data point that
is to be multiplied by gi and the data point that is to be multiplied by gL−1−i , before
multiplying by the common coefficient gi . However, one can do much better.

The Winograd convolution algorithm for a symmetric filter is constructed much the
same as before. We will construct an algorithm for passing four data points through a

208 Architecture of filters and transforms

three-tap symmetric filter. Let

g(x) = g0x
2 + g1x + g0,

d(x) = d3x
3 + d2x

2 + d1x + d0,

and write the polynomial product g(x)d(x) as

s(x) = g(x)d(x) (mod (x5 − x)(x − ∞)).

Because deg s(x) is equal to five, the modulo reduction has no effect on s(x). The
modulus polynomial m(x) factors as m(x) = x(x − 1)(x + 1)(x2 + 1)(x − ∞). It has
four prime factors of degree one, and each of these will lead to one multiplication in
the final algorithm. There is also the prime factor x2 + 1, which we may expect would
lead to three multiplications. However, we shall see that, because of symmetry, it leads
to only two multiplications.

Let

s(0)(x) = g(0)(x)d (0)(x) (mod x2 + 1),

where

d (0)(x) = (d1 − d3)x + (d0 − d2)

and

g(0)(x) = g1x + (g0 − g0) = g1x.

Hence s(0)(x) can be computed with only two multiplications. The rest of the algorithm
is developed just as before. The final algorithm is

s0

s1

s2

s3

s4

s5

=

1 0 0 0 0 0
0 1 −1 1 0 −1
0 1 1 0 −1 0
0 1 −1 −1 0 0

−1 1 1 0 1 0
0 0 0 0 0 1

G0

G1

G2

G3

G4

G5

1 0 0 0
1 1 1 1
1 −1 1 −1
1 0 −1 0
0 −1 0 1
0 0 0 1

d0

d1

d2

d3

,

where

G0

G1

G2

G3

G4

G5

=

1 0
1
2

1
4

1
2 − 1

4

0 1
2

0 1
2

1 0

[
g0

g1

]
.

209 6.4 Symmetric and skew-symmetric filters

This algorithm has six multiplications and 14 additions. It can be used for an overlap–
add implementation of a three-tap symmetric FIR filter with 1.5 multiplications per
output sample and 4.5 additions per output sample.

The transposition principle of Theorem 6.2.1 can be used to turn this into a (4, 3)
symmetric filter section with 1.5 multiplications per output sample and four additions
per output sample. This algorithm is given by

s5

s4

s3

s2

 =

d5 d4 d3

d4 d3 d2

d3 d2 d1

d2 d1 d0

g0

g1

g0

=

1 1 1 1 0 0
0 1 −1 0 −1 0
0 1 1 −1 0 0
0 1 −1 0 1 1

G0

G1

G2

G3

G4

G5

×

1 0 0 0 −1 0
0 1 1 1 1 0
0 −1 1 −1 1 0
0 1 0 −1 0 0
0 0 −1 0 1 0
0 −1 0 0 0 1

d0

d1

d2

d3

d4

d5

d6

,

where, as before,

G0

G1

G2

G3

G4

G5

=

1 0
1
2

1
4

1
2 − 1

4

0 1
2

0 1
2

1 0

[
g0

g1

]
.

The reason that the algorithm for the symmetric filter turns out to be better than
the algorithm for the nonsymmetric filter is because the symmetric polynomial g(x)
modulo x2 + 1 has one coefficient equal to zero. This is a simple case of a phenomenon
that always happens when a symmetric polynomial is reduced modulo a symmetric
polynomial. Let

g(x) = g0x
4 + g1x

3 + g2x
2 + g1x + g0

210 Architecture of filters and transforms

and consider the four remainders

g(1)(x) = g(x) (mod x2 + 1),

g(2)(x) = g(x) (mod x2 + x + 1),

g(3)(x) = g(x) (mod x2 − x + 1),

g(4)(x) = g(x) (mod x4 + 1).

These are easily found to be

g(1)(x) = 2g0 − g2,

g(2)(x) = (g0 + g1 − g2)x + (g0 + g1 − g2)

= (x + 1)(g0 + g1 − g2),

g(3)(x) = (−g0 + g1 + g2)x − (−g0 + g1 + g2)

= (x − 1)(−g0 + g1 + g2),

g(4)(x) = g1x
3 + g2x

2 + g1x

= x(g1x
2 + g2x + g1).

In each case, the number of independent coefficients is two less than the degree of
m(i)(x). Because of the symmetry, one of the independent coefficients is missing.
In general, an extra polynomial, free of indeterminates, is multiplying a symmetric
polynomial whose degree equals deg m(i)(x) − 2. Because we are interested only in
computations of the form

s(i)(x) = g(i)(x)d (i)(x) (mod m(i)(x)),

we can bury this extra polynomial factor by including it in a redefined d (i)(x). Let

d (1)(x) = d(x) (mod x2 + 1),
d (2)(x) = (x + 1)d(x) (mod x2 + x + 1),
d (3)(x) = (x − 1)d(x) (mod x2 − x + 1),
d (4)(x) = xd(x) (mod x4 + 1),

and redefine the g(i)(x) as follows:

g(1)(x) = 2g0 − g2,

g(2)(x) = g0 + g1 − g2,

g(3)(x) = −g0 + g1 + g2,

g(4)(x) = g1x
2 + g2x + g1.

Then s(1)(x), s(2)(x), and s(3)(x) are computed with two multiplications each, while
s(4)(x) is computed as a linear convolution followed by modulo x4 + 1 reduction. The
linear convolution consists of passing four data points through a three-tap symmetric
filter. We have already given an algorithm for this problem that uses six multiplications.

211 6.4 Symmetric and skew-symmetric filters

With these pieces, we can form a linear convolution algorithm for a five-tap sym-
metric filter. Suppose we want to pass six points through the five-tap symmetric filter
g(x). Then choose

m(x) = x(x − 1)(x + 1)(x − ∞)(x2 + 1)(x2 − x + 1)(x2 + x + 1).

Each of the first four polynomial factors will lead to one multiplication. As we have
seen, each of the last three polynomial factors will lead to two multiplications. The
final algorithm will have ten multiplications, which is 1.67 multiplications per filter
output sample.

Suppose, instead, that we want to pass 14 points through the filter. Then append the
new factor x4 + 1 to the m(x) already used. This will lead to six more multiplications.
The final algorithm will have 16 multiplications, which is 1.14 multiplications per filter
output sample.

In general, we shall want to compute symmetric filters with more than five taps.
The following theorem says that we can continue to choose the modulus polynomials
so as to break the large symmetric polynomials into pieces that are small symmetric
polynomials.

Theorem 6.4.1 When a symmetric polynomial g(x) of even degree t is divided by a
symmetric polynomial m(x) of even degree n with t not less than n, the remainder
polynomial r(x) can be written as

r(x) = f (x)r ′(x) (mod m(x)),

where r ′(x) is a symmetric polynomial of degree n − 2 and f (x) is a polynomial that
does not depend on the coefficients of g(x).

Proof Without loss of generality, we can suppose that m(x) is monic. Because m(x)
is a symmetric polynomial of even degree n,

m(x) = xnm(x−1).

Let m′(x) = m(x) if n = t . Otherwise, let

m′(x) = m(x) + xt−nm(x).

This polynomial is a symmetric polynomial of degree t because

xtm′(x−1) = xt [m(x−1) + x−t+nm(x−1)]

= xt−nm(x) + m(x) = m′(x).

Let g′(x) be defined by

xg′(x) = g(x) − g0m
′(x).

212 Architecture of filters and transforms

The polynomial xg′(x) has the same remainder under division by m(x) as does g(x).
Moreover, the polynomial g′(x) is symmetric and has an even degree that is less than
that of g(x) by at least two. If the degree of g′(x) is not less than n, this process
can be repeated. Continue until a polynomial r ′(x) of degree n − 2 is reached. Then
x(t−n+2)/2r ′(x) has the same remainder as g(x) under division by m(x). To complete
the proof, let f (x) = Rm(x)[x(t−n+2)/2], which does not depend on g(x). �

Finally, we turn to algorithms for skew-symmetric filters. These we can deal with
rather quickly by showing how to change an algorithm for a symmetric filter into an
algorithm for a skew-symmetric filter.

Theorem 6.4.2 If L is even, a skew-symmetric filter with L taps can be computed as a
symmetric filter with L − 1 taps. If L is odd, a skew-symmetric filter with L taps can
be computed as a symmetric filter with L − 2 taps.

Proof Suppose L is even and g(x) describes a skew-symmetric filter with L taps.
Then g(1) equals zero because gi = −gL−1−i for i = 0, . . . , (L/2) − 1. Therefore g(x)
has x − 1 as a factor. Define the filter

g′(x) = g(x)/(x − 1).

Then g′(x) is a filter with L − 1 taps. It must be symmetric because

g(x) = −xL−1g(x−1)

implies

(x − 1)g′(x) = −xL−1
(
x−1 − 1

)
g′ (x−1

)
or

g′(x) = xL−2g′ (x−1
)
.

Hence the filter g(x) is equivalent to the filter g′(x), followed (or preceded) by the
two-tap filter with taps described by the polynomial (x − 1).

Next, suppose that L is odd and g(x) describes a skew-symmetric filter with L taps.
Then both one and minus one are zeros of g(x). This is because the center coefficient
of g(x) is zero, and we can write

g(±1) =
(∑

even i

gi + gL−1−i

)
±

 ∑
odd i

gi + gL−1−i

 .

Therefore we can define the filter

g′(x) = g(x)/(x2 − 1),

213 6.5 Decimating and interpolating filters

where g′(x) is a symmetric filter with L − 2 taps. The filter g(x) is equivalent to the
filter g′(x), followed (or preceded) by the filter with taps described by the polynomial
x2 − 1. �

The filter described by x − 1 or by x2 − 1 merely amounts to some input additions
or output additions. Hence, by changing the matrix of preadditions or the matrix of
postadditions, an algorithm for a symmetric filter becomes an algorithm for a skew-
symmetric filter. As always, the algorithm can be left in the form of a linear convolution
for use with the overlap–add technique. Alternatively, the transformation principle of
Theorem 6.2.1 can be used to turn it into a filter section for use with the overlap–save
technique.

Incidentally, the technique used to turn a symmetric filter into a skew-symmetric
filter also can be used to turn an (L + 1)-point symmetric filter with L odd into an
L-point symmetric filter.

Theorem 6.4.3 An algorithm for an (L + 1)-point symmetric filter, with L odd, can
be constructed from an algorithm for an L-point symmetric filter with no additional
multiplications.

Proof Let g(x) be a symmetric polynomial of odd degree L describing the (L + 1)-
point symmetric filter. Then g(−1) = 0, so (x + 1) is a factor of g(x). Then

g(x) = (x + 1)g′(x),

where g′(x) is a symmetric polynomial of degree L. The original filter is the cascade
of g′(x) and (x + 1), and the latter filter can be computed without multiplications. �

6.5 Decimating and interpolating filters

A decimating FIR filter is one that provides every rth output of the filter, but does not
provide the other outputs. Often r is two or three. The intervening outputs of the filter
are not wanted, and, were they provided, would only be discarded. One can hope to
find a simpler algorithm that does not compute unwanted outputs. An interpolating
FIR filter does the opposite. It is a filter that produces output samples at a higher rate
than the rate at the input to the filter. Decimating and interpolating filters are also called
down-sampling filters and up-sampling filters, respectively.

The design of a decimating or an interpolating FIR filter is similar to the design
of a general FIR filter. Their special characteristics must be exploited, however, if a
more efficient algorithm is to be obtained. In the case of a decimating filter, omitting
the unwanted output samples can lead to a more efficient algorithm. In the case of an

214 Architecture of filters and transforms

interpolating filter, taking note of the omitted input samples, likewise, can lead to a
more efficient algorithm.

The transformation principle of Theorem 6.2.1 does not transform a linear convo-
lution algorithm for a decimating filter into a filter-section algorithm for a decimating
filter. Instead, the transformation principle transforms a linear convolution algorithm
for a decimating filter into a filter-section algorithm for an interpolating filter.

We shall consider a linear convolution of five input points and a two-to-one deci-
mating filter with five taps. The desired output points can be written

s0

s2

s4

s6

s8

 =

g0 0 0 0 0
g2 g1 g0 0 0
g4 g3 g2 g1 g0

0 0 g4 g3 g2

0 0 0 0 g4

d0

d1

d2

d3

d4

=

g0 0 0
g2 g0 0
g4 g2 g0

0 g4 g2

0 0 g4

d0

d2

d4

 +

0 0

g1 0
g3 g1

0 g3

0 0

[
d1

d3

]
.

This partition has broken the condition into the combination of a three by three linear
convolution and a two by two linear convolution. It takes three extra additions to
combine them, so the algorithm for the decimating filter will have eight multiplications
and 26 additions for every five input points. If this algorithm is used with the overlap–
add technique, there will be four more additions for every five input points to combine
the overlap sections. Hence there will be eight multiplications and 30 additions for
every five output points, which is 1.6 multiplications and six additions per output.

Next, we will construct a decimating filter section with five taps and three outputs
for the same situation. This can be written

s4

s6

s8

 =

d4 d3 d2 d1 d0

d6 d5 d4 d3 d2

d8 d7 d6 d5 d4

g0

g1

g2

g3

g4

=

d4 d2 d0

d6 d4 d2

d8 d6 d4

g0

g2

g4

 +

d3 d1

d5 d3

d7 d5

[
g1

g3

]
.

The filter section has broken into the combination of a three-tap filter section and a
(3, 2)-filter section. It takes three extra additions to combine them, so the algorithm for
the decimating filter section will have nine multiplications and 26 additions.

215 6.5 Decimating and interpolating filters

We will transpose these two algorithms to see what we get. In both cases, we shall
find that we have obtained algorithms for interpolating filters. The transposition of the
linear convolution above is

e0

e1

e2

e3

e4

 =

g0 g2 g4 0 0
0 g1 g3 0 0
0 g0 g2 g4 0
0 0 g1 g3 0
0 0 g0 g2 g4

f0

f1

f2

f3

f4

 .

Now replace (e0, e1, e2, e3, e4) by (s8, s7, s6, s5, s4), and replace (f0, f1, f2, f3, f4) by
(d8, d6, d4, d2, d0). Then

s8

s7

s6

s5

s4

 =

g0 g2 g4 0 0
0 g1 g3 0 0
0 g0 g2 g4 0
0 0 g1 g3 0
0 0 g0 g2 g4

d8

d6

d4

d2

d0

=

d8 0 d6 0 d4

0 d6 0 d4 0
d6 0 d4 0 d2

0 d4 0 d2 0
d4 0 d2 0 d0

g0

g1

g2

g3

g4

 .

This is the equation of a section of an interpolating filter; alternate input samples
are zero. Hence the transposition principle gives an algorithm for computing five
output samples of a five-tap one to two interpolating filter section from the algo-
rithm for computing five output samples of a five-tap decimating linear convolu-
tion. The algorithm has eight multiplications, which is 1.6 multiplications per output
sample.

In a similar way, the five-tap decimating filter section, written in the form

s8

s6

s4

 =

g0 g1 g2 g3 g4 0 0 0 0
0 0 g0 g1 g2 g3 g4 0 0
0 0 0 0 g0 g1 g2 g3 g4

d8

d7

d6

d5

d4

d3

d2

d1

d0

,

216 Architecture of filters and transforms

is transposed into an algorithm for the computation

s0

s1

s2

s3

s4

s5

s6

s7

s8

=

g0 0 0
g1 0 0
g2 g0 0
g3 g1 0
g4 g2 g0

0 g3 g1

0 g4 g2

0 0 g3

0 0 g4

d0

d2

d4

 .

This is a linear convolution with alternate input samples equal to zero. It is an interpo-
lating filter. The transposed algorithm uses nine multiplications.

Next, we consider symmetric decimating filters by way of examples. We describe an
algorithm for a 15-tap symmetric filter with two to one decimation and 15 input points.
As in the earlier example, this decomposes into an eight by eight symmetric linear
convolution and a seven by seven symmetric linear convolution. By Theorem 6.4.3,
the first of these can be obtained from an algorithm that passes eight samples through
a seven-tap filter.

We can construct these two symmetric linear convolutions by using the methods of
the previous section. The polynomial

m(x) = x(x − 1)(x + 1)(x − ∞)(x2 + 1)(x2 + x + 1)(x2 − x + 1)(x4 + 1)

has degree 14, and so it can be used for constructing an eight by seven linear convolution
algorithm. In Section 6.4, we determined the number of multiplications due to each
modulus polynomial. There will be a total of 16 multiplications. Similarly, we can drop
one of the linear factors to construct a seven by seven linear convolution algorithm
that uses 15 multiplications. Hence an algorithm for the original problem with 31
multiplications can be constructed.

6.6 Construction of transform computers

A good FFT algorithm will be successful only if its implementation takes advantage
of its special structure. The design of a hardware module or of a software subroutine
requires close consideration of the structure of the algorithm.

A radix-two or radix-four Cooley–Tukey FFT has a regular structure, and its imple-
mentation is relatively straightforward. The algorithm can be specified with few instruc-
tions. Therefore, if the length of the instruction memory in a software implementation
is more important than the running time, such a Cooley–Tukey FFT may be a better

217 6.6 Construction of transform computers

0v

4v

2v

6v

1v

5v

3v

7v

0V

1V

2V

3V

4V

5V

6V

7V

0

0

0

0

0

2

2

0

0

1

2

3

1

1

1

1 1

1

1

1

1

1

1

1

Figure 6.5 Radix-two decimation-in-time Cooley–Tukey FFT

r 1

Figure 6.6 A two-point butterfly

design choice than a faster FFT algorithm. If power dissipation or speed is the
more important consideration, the Winograd FFT or another fast algorithm may be
preferred.

The same considerations may apply to a hardware implementation. The regularity of
the architecture of a hardware transform computer may be more important than the total
number of components. Then a Cooley–Tukey FFT might be preferred because of its
regularity. The regularity of the Cooley–Tukey FFT is made evident by the flow diagram
of the decimation-in-time algorithm, shown in Figure 6.5. During each iteration, a set
of simple two-point discrete Fourier transforms is computed. The basic computational
module consists of a two-point discrete Fourier transform and a phase adjustment,
as described by the two-point decimation-in-time butterfly, shown in Figure 6.6. The
decimation-in-frequency radix-two Cooley–Tukey FFT, shown in Figure 6.7, has a
similar butterfly, this time the two-point decimation-in-frequency butterfly shown in
Figure 6.8.

218 Architecture of filters and transforms

0v

4v

2v

6v

1v

5v

3v

7v

0V

1V

2V

3V

4V

5V

6V

7V

0

0

0

0

0

2

2
0

0

1

2

3

1

1

1

1

1

1

1

1

1

1

1

1

Figure 6.7 Radix-two decimation-in-frequency Cooley–Tukey FFT

r1

Figure 6.8 A two-point butterfly

On the other hand, in a large recurring problem, power dissipation or speed may be
the more important consideration. Then the regularity of the algorithm may not be an
important consideration.

Given a two-point Cooley–Tukey butterfly in the form of a software subroutine or
a hardware module, a decimation-in-time radix-two FFT can be constructed simply
by passing data to the two-point butterfly in the right sequence. As the data is moved
through the two-point butterfly, the Fourier transform is developed, but the indices
become shuffled. In Figure 6.5 the input data is given in shuffled order so that the data
becomes unshuffled during the iterations, and is in the correct order at the output. If
desired, the input data in Figure 6.5 could be listed in its natural order, but then lines
would have complicated crossovers in the flow diagram.

In writing a computer program for the FFT, the most convenient way to write the
program will present the output data in memory in shuffled order. The output data must
be unshuffled before it is useful. Alternatively, the program can be written so that the

219 6.6 Construction of transform computers

unshuffling occurs a little at a time; after each iteration, data is returned to memory
in an order such that the addressing of the next iteration can be the same as the past
iteration. There are many such ways to handle the shuffling and unshuffling; the details
are really part of the structure of a computer program or hardware design. One must
decide to what extent data will be reindexed when stored, to what extent it will be
reindexed when called, and how much working storage will be allowed beyond the
memory locations that hold the input data.

The Winograd large FFT, as described in Section 12.4, is less regular, and so the
implementation will not be as neat. If one is careful to study the structure of the
algorithm when planning the software or the hardware, however, the implementation
can still be quite orderly. We can illustrate some of the ideas by laying out a 63-point
Winograd large FFT built out of a seven-point and a nine-point Winograd small FFT,
as discussed in Chapter 12. Suppose that the matrix factorizations

W 7 = C7 B7 A7

and

W 9 = C9 B9 A9

represent the Winograd small FFT algorithms. The matrix B7 is a nine by nine diagonal
matrix, and the matrix B9 is an 11 by 11 diagonal matrix.

The Winograd large FFT is then written

W 63 = (C7 × C9)(B7 × B9)(A7 × A9)

= (C7 × C9)B63(A7 × A9).

We shall work with each of the two outside factors left in the form of a Kronecker
product, rather than computing new matrices equal to the Kronecker products. The term
B7 × B9 is replaced by the single matrix B63 so that multiplications can be merged
off-line.

To implement the FFT, we begin with the data appropriately shuffled into a two-
dimensional seven by nine array. First, multiply each of the seven columns by A9,
which will expand each column to length 11. Then multiply each of 11 new rows by
A7, which will expand each row to length nine. Now the data is in the form of a nine
by eleven two-dimensional array. Multiply this array, element-by-element, by the nine
by eleven array of constants B63, which could be stored in a read-only memory. (To
be precise, B63 will be described as a 99 by 99 diagonal matrix, but at this point it
is easier to think only of the 99 diagonal elements as arranged in a nine by eleven
array.)

Next, collapse the array, first multiplying each of the nine columns by C9, then
multiplying each of nine rows by C7. Hence, all components of the 63-point Fourier

220 Architecture of filters and transforms

0 13, 14, ,v v v

Tensor product 18
multipliers

Tensor product

PostadditionsPreadditions

13B

12B

11B

Permuation Permuation

0 13, 14, ,V V V

Figure 6.9 Conceptualizing the Winograd large FFT

transform are arranged in a seven by nine array. The 63 components must be unshuffled
into a one-dimensional array.

Figure 6.9 illustrates this structure using a smaller Fourier transform, a 15-point
Winograd FFT. It should be apparent that simple logic circuits can be used repetitively
to implement the indicated functions. Similar structures can be used for other transform
blocklengths. If the application requires that a continuing stream of n-point Fourier
transforms be computed, then one might choose to build a pipelined circuit. Figure 6.10
shows a possible pipelined architecture for a high-performance 1008-point FFT. Such a
structure might be contemplated for a hypothetical radar or sonar problem that needs to
compute a never-ending stream of 1008-point Fourier transforms. Speeds approaching
a million FFTs per second may be achieved very reasonably in this way. The input
data is distributed across a bank of 16-point FFT modules and then is passed to a bank
of 63-point FFT modules. The 16-point FFT modules are ready to start on the next
batch while the 63-point FFT modules continue to work on the current batch. In this
way, computations on two successive FFTs are going on simultaneously. More pipeline
stages may be built into the timing to allow time for the transfers across the data bus.
Then there could be four stages in the pipeline, two for computations and two for data
transfers.

It may be convenient, for example, to choose nine 16-point FFT modules for the first
bank and 18 63-point FFT modules for the second bank. Then each 16-point module
must compute seven of the 63-point FFTs. Each 16-point module selects from the bus
the seven 63-point vectors that it needs by simple techniques of memory management
and memory cycle stealing. Similarly, each 16-point module passes data to the center
bus according to the fixed schedule. Each 63-point module then selects its respective
input data according to its input schedule.

221 6.7 Limited-range Fourier transforms

Data
bus

Data
bus

Data
bus

Frequency
domain

data

Time
domain

data
16-point

FFT
module

Buffer
memory

16-point
FFT

module

Buffer
memory

63-point
FFT

module

Buffer
memory

63-point
FFT

module

Buffer
memory

16-point
FFT

module

Buffer
memory

63-point
FFT

module

Buffer
memory

Figure 6.10 Architecture of a 1008-point FFT

6.7 Limited-range Fourier transforms

Suppose that, from n time samples, one wants to compute fewer than n frequency
components. We may have an application in which 10,000 time samples are collected.
This entitles us to compute 10,000 components of the Fourier spectrum, but we may
not need all of them. Perhaps we need only 100 components of the spectrum. One way
to get the desired components is to compute all components of the spectrum by using
an FFT of blocklength 10,000, and then to discard those that are not needed. A better
method is to use decimating filters and the limited-range Fourier transform.

The limited-range Fourier transform is a topic that more properly belongs to another
branch of the subject of signal processing; it is not a fast algorithm in the sense of this
book. We only want to mention it briefly as another kind of technique, one with a much
different character than most of the algorithms that we have studied. For the most part,
our algorithms have been mathematical identities. Questions of precision enter during

222 Architecture of filters and transforms

Output
spectrumFFT

Lowpass
decimating

filter

Input
data

stream

ai

Figure 6.11 Computation of a limited-range Fourier transform

the implementation of the algorithms but not during the design of the algorithms. If
the answer is not precise, this is not the fault of the theory of the algorithm. Rather, the
lack of precision is because the additions and multiplications were not performed with
infinite wordlength.

In the limited-range Fourier transform, a new phenomenon is encountered. It is not a
mathematical identity, only an approximation, albeit an arbitrarily good approximation.
Figure 6.11 illustrates the general form of a limited-range Fourier transform.

The central theorem for the study of decimation is the sampling theorem. The
sampling rate of a discrete-time signal must be at least as high as the Nyquist rate.
If one reduces the sampling rate to less than twice the frequency of the highest-
frequency nonzero component, then these components will be “folded down” onto
smaller frequencies, thereby creating false “images.”

The limited-range Fourier transform first passes the input datastream through a
lowpass decimating filter that preserves the spectral components of interest and does
not pass those spectral components not of interest. Practical lowpass filters, designed
by the methods of signal processing, are not perfect lowpass filters. They will change
the desired frequency components slightly and will not reject the unwanted frequency
components completely; hence the limited-range Fourier transform is not exact.

After decimation takes place, an FFT algorithm of smaller blocklength can be used
to obtain the desired spectral components. If the band of desired spectral components
does not begin at the zero frequency, then one simply inserts the modulation term ωai ,
as shown in Figure 6.11. This translates the spectrum to place the desired frequency
components so that they start at the zero frequency.

6.8 Autocorrelation and crosscorrelation

The expression

ri =
N−1∑
j=0

gi+j dj , i = 0, . . . , L + N − 2,

which is called an autocorrelation when g and d are the same, and called a crosscor-
relation when g and d are different, is closely related to the convolution. It can be
made to look like a convolution simply by reading one of the sequences backwards. In

223 6.8 Autocorrelation and crosscorrelation

principle, any of the methods that we have studied for computing a linear convolution
can be used to compute either correlation.

However, there is one important difference in practice. An FIR filter is usually short
in comparison to the sequence of data it filters, but, in a correlation, the “filter” g(x) is
actually another data record whose length is about the same as the length of the data
record represented by d(x); often the length of both data records is indefinite and quite
large – perhaps N equals many thousands. Good algorithms for correlation break both
g and d into sections.

We begin with computation of the autocorrelation, given by

ri = 1

N

N−1∑
j=0

djdj+i , i = 0, . . . , (n/2) − 1,

or perhaps this same sum not divided by N . We are interested in problems in which
the data blocklength N is much larger than the truncated blocklength n/2 of the
autocorrelation, so it would be wasteful to choose a Fourier transform with blocklength
on the order of N even if such a Fourier transform were practical. The sum can be
broken into sections of length n in order to fit the problem to a smaller Fourier transform
with blocklength n. Write

ri =
L−1∑
�=0

r
(�)
i ,

where

r
(�)
i = 1

N

(n/2)−1∑
j=0

dj+�(n/2)dj+�(n/2)+i ,
i = 0, . . . , (n/2) − 1,

� = 0, . . . , L − 1,

and L(n/2) = N . Thus the task is to compute the vector r (�) for � = 0, . . . , L − 1. This
we do by computing appropriate cyclic convolutions by using a fast Fourier transform.

We will define two kinds of section of length n. One section is full of data, and one
is half-full and padded with zeros. Later, we will show how to avoid using the first of
these. Let

d
(�)
i =

{
di+�n/2, i = 0, . . . , (n/2) − 1,

0, i = n/2, . . . , n − 1,

and

g
(�)
i = di+�n/2, i = 0, . . . , n − 1.

Then

r
(�)
i =

n−1∑
k=0

d
(�)
k g

(�)
k+i , i = 0, . . . , (n/2) − 1.

224 Architecture of filters and transforms

Let D(�) and G(�) denote the Fourier transforms of d(�) and g(�). Then, as developed in
Problem 1.10, the Fourier transform of the cyclic correlation

s
(�)
i =

n−1∑
j=0

g((i+j))dj , i = 0, . . . , n − 1

is

S
(�)
k = G

(�)
k D

(�)∗
k ,

and half of the values of the cyclic convolution are the desired values

r
(�)
i = 1

N
s

(�)
i , i = 0, . . . , (n/2) − 1.

Therefore we can first compute

Sk =
L−1∑
�=0

G
(�)
k D

(�)∗
k , k = 0, . . . , n − 1,

then compute its inverse Fourier transform s, and set

ri = 1

N
si, i = 0, . . . , (n/2) − 1.

To complete the development, we show how to eliminate some of the work. Instead of
using a fast Fourier transform to get G(�), use the formula

G
(�)
k = D

(�)
k + (−1)kD(�+1)

k .

This is a direct consequence of the delay property of the Fourier transform; multipli-
cation of the transform by ωbk corresponds to cyclically translating the time function
by b positions. When b is equal to n/2, this becomes multiplication of D

(�)
k by (−1)k .

In the time domain, this corresponds to moving the nonzero positions of d(�+1) into the
zero positions of d(�); the sum in the time domain is equal to g(�), so in the frequency
domain, the sum is equal to G(�).

The computation then takes the form

Sk =
L−1∑
�=0

D
(�)
k

[
D

(�)
k + (−1)kD(�+1)

k

]
.

An inverse Fourier transform completes the computation.
A summary flowchart is shown in Figure 6.12. Notice that there is only one Fourier

transform per major loop, except for one more Fourier transform at the start and one
at the finish. Even though computing one cyclic convolution would take three Fourier
transforms for this problem, we have found an algorithm that averages about one
Fourier transform per section.

225 6.8 Autocorrelation and crosscorrelation

Initialize

(0)

1
(0) (0)

0

0
0 0, , 1

 0, , / 2 1
0 / 2 , , 1

 0, , 1

k

i
i

n
ik

k i
i

S k n
d i n

d
i n n

D d k n

(1) (1) ()(1)
 0, , 1

k
k k k k kS S D D D

k n

2()

1
() ()

0

 0, , / 2 1
0 / 2 , , 1

 0, , 1

i n
i

n
ik

k i
i

d i n
d

i n n

D d k n

No

Halt

1

1

0

1

0, , / 2 1

n
ik

i k
k

r S
N

i n

Yes
?

L

Figure 6.12 Computation of an autocorrelation

The flow is written with the L major loops the same, although the last loop computes
the Fourier transform of an all-zero vector padded onto the end of the data sequence.
That Fourier transform can be eliminated by modifying the last loop.

Similar methods apply to computing the cross-correlation. Both data records can be
processed in sections, with the sections combined in the frequency domain to reduce the
number of inverse Fourier transforms. We will show how to bring in other techniques
by way of a fairly detailed example.

The cross-correlation

si =
r−1∑
j=0

dj+igj

can be expressed in matrix form as
s0

s1

s2
...

sn−1

 =

d0 d1 d2 . . . dr−1

d1 d2 d3 . . . dr

d2 d3 d4 . . . dr+1
...

dn−1 dn dn+1 . . . dr+n−2

g0

g1

g2
...

gr−1

with r much larger than n.

We shall describe the structure of an algorithm for the specific example in which n

equals 120 and r equals 10 000. We arbitrarily decide to break the 120 output points

226 Architecture of filters and transforms

into four batches of thirty output points per batch and to organize the computation
around a 60-point Winograd large FFT, which is discussed in Chapter 12.

Block the matrix–vector product as follows:

s0
...

s29

s30
...

s59

s60
...

s89

s90
...

s119

=

d0 . . . d29 d30 . . . d59 . . . d9990 . . . d10049
...

...
...

...
d29 . . . d58 d59 . . . d88 . . . d10019 . . . d10048

d30 . . . d59 d60 . . . d89
...

...
...

...
...

d59 . . . d88 d89 . . . d119

d60 . . . d89
...

...
d89 . . . d118

d90 . . . d119
...

...
d119 . . . d148 . . .

g0
...

g29

g30
...

g59

...

g9990
...

g10019

where twenty extra points, each equal to zero, have been appended to g(x) and to d(x)
so that the new value of r , 10 020, is divisible by 30. Each of the small blocks, such as s0

...
s29

 =

 d0 . . . d29
...

...
d29 . . . d58

 g0

...
g29

 ,

can be computed as the first 30 points of a 60-point cyclic convolution, which can be
computed using a 60-point Winograd FFT.

Now consider the block structure of the computation,

S0

S1

S2

S3

 =

D0 D1 D2 . . . D333

D1 D2 D3 . . . D334

D2 D3 D4 . . . D335

D3 D4 D5 . . . D336

G0

G1

G3
...

G333

=

D0 D1 D2 D3

D1 D2 D3 D4

D2 D3 D4 D5

D3 D4 D5 D6

G0

G1

G2

G3

 +

D4 D5 D6 D7

D5 D6 D7 D8

D6 D7 D8 D9

D7 D8 D9 D10

G4

G5

G6

G7

+ · · · +

D332 D333 D334 D335

D333 D334 D335 D336

D334 D335 D336 D337

D335 D336 D337 D338

G332

G333

G334

G335

 ,

227 6.8 Autocorrelation and crosscorrelation

60-point
Fourier

transform

Input
cyclic
buffer

Buffer
four

transforms

ig

30
words

60 jG

0 1 2 3, , ,G G G GPad
30

zeros

60-point
Fourier

transform

4-point
filter

section*

Four
block

accumulation 4 times

60-point
inverse
Fourier

transform

Sum

240

240 Save
30 points

per
transform

Cyclic
buffer
seven

transforms

0 1 7, , ,D D D
jD60

words

Input
cyclic
buffer

jd

0

1
0

2
1

3
2

4
3

5

6

0 0 0 1 1 1 1
0 0 0 1 0 1 0
0 0 1 1 1 1 0

0 0 0 0 1 1 0 1 1
0 0 0 1 1 0 0

0 0 0 1 1 0 1 1 0
0 0 0 1 0 0 0

0 1 1 0 1 1 0 0 0
0 0 1 1 0 0 0

1 1 0 1 1 0 0 0 0
0 1 1 1 1 0 0
0 1 0 1 0 0 0
1 1 1 1 0 0 0

D
D
D
D
D
D
D

S

S

S

S

0

1

2

3

0 0 0 1
0 0 1 1
0 0 1 0
0 1 0 1
1 1 1 1
1 0 1 0
0 1 0 0
1 1 0 0
1 0 0 0

G
G
G
G

Four-point filter section

Figure 6.13 A device for correlation

where again zero blocks have been appended to make the number of blocks divisible
by four. The computation we need to design is

S0

S1

S2

S3

 =

D0 D1 D2 D3

D1 D2 D3 D4

D2 D3 D4 D5

D3 D4 D5 D6

G0

G1

G2

G3

 .

This we recognize as a four-point filter section. It does not matter to the algorithm, as
designed in Section 6.2, that the blocks are themselves matrices. The algorithm requires
nine multiplications and 21 additions. Each of the multiplications is actually a 30-point
filter section, which we have already decided to compute with a 60-point Winograd
FFT. It must be repeated 84 times, and the outputs added to obtain the desired output.

The correlation algorithm is shown in its final form in Figure 6.13. The symbols
Dj and Gj in the figure denote the Fourier transforms of data blocks dj and gj . The
Fourier transforms of blocks that are used more than once are saved to be reused –
not recomputed. Most additions are performed in the frequency domain, although

228 Architecture of filters and transforms

we have described them in the time domain. This reduces the number of inverse
FFT computations. One can also reduce the number of additions a bit more if the
multiplication by the matrix of postadditions in the filter section is deferred until after
all of the filter sections are added together. Then that matrix of additions is needed only
once.

We judge the complexity of an implementation, in part, by the number of multi-
plications. There are 676 applications of the 60-point Winograd FFT, which requires
48 672 multiplications. There are also 84 applications of the filter section; each uses
nine vector multiplications, and each vector multiplication is a componentwise product
of two 60-point complex vectors, each of which requires three real multiplications.
This requires 146 080 multiplications. The total number of multiplications needed to
correlate 10 000 samples for 120 lags is 194 752. For problems that need a massive
high-speed correlation, such as those that occur in sonar or radar signal processing, the
algorithm, shown in Figure 6.13, could be realized as hardwired digital logic.

Problems for Chapter 6

6.1 Prove that an n-tap filter section with n a power of two, constructed by iterating
a two-tap filter section, uses

M(n) = nlog2 3

multiplications, and that the number of additions satisfies the recursion

A(n) = 2n + 3A(n/2)

with A(1) = 0.
6.2 By iteration, construct a nine-point by nine-point linear convolution algorithm,

starting with a three-point by three-point linear convolution algorithm from
Chapter 5.

6.3 It is possible to form an overlap technique for linear convolution that, in spirit,
is midway between the overlap–add and the overlap–save techniques. Set up the
equations for this hybrid technique. What are the advantages and disadvantages?

6.4 Prove that every algorithm that computes three sequential outputs of a symmetric
four-tap filter must use at least five multiplications.

6.5 Suppose that one has a device (a circuit module or a software subroutine) that
computes 315-point cyclic convolutions. It is desired to pass a vector of 1000
data points through a 100-tap FIR filter. Describe how to break up the data
to feed the convolver and to assemble the convolver output to get the desired
answer.

229 Notes

6.6 a Construct an algorithm using seven multiplications for passing four data
samples through a four-tap symmetric filter.

b Construct an algorithm using six multiplications for passing four data points
through a four-tap skew-symmetric filter.

6.7 When the data sequence d is complex, one usually defines the autocorrelation
as

ri =
N−1∑
k=0

d∗
i+kdk, i = 0, . . . , L + N − 2.

Show how to revise the flow of Figure 6.12 to handle complex data.
6.8 One can use the overlap–save method with an FFT that is too short by appending

correction terms. Lay out a method for computing 25 output values from a
25-tap FIR filter, using a 48-point Winograd FFT. How many multiplications
and additions are required?

6.9 Give an algorithm for a three by three filter section in the complex field. How
many real additions and real multiplications are used?

6.10 Suppose that g(x) factors as g(x) = g1(x)g2(x), where deg g1(x) = deg g2(x) =
n/2. Is it more efficient computationally to compute s(x) = d(x)g(x) directly,
or to compute s(x) = d(x)g1(x)g2(x) as the cascade of two computations? Does
this comparison depend on the value of n?

Notes for Chapter 6

The overlap methods for breaking a long linear convolution into pieces are straight-
forward and have been in use for some time, probably developed independently in
many places. Stockham (1966) was the first to point out that the Cooley–Tukey FFT,
combined with the convolution theorem, gives a good way to compute cyclic convo-
lutions. Agarwal and Burrus (1974) showed how to change a one-dimensional con-
volution into a multidimensional convolution by using a reindexing scheme that we
have called nesting or iteration. This construction is a form of overlap–save section-
ing with the sections arranged into a matrix. The same basic idea, but using a kind
of overlap–add sectioning, was proposed by DuBois and Venetsanopoulos (1978) to
compute large cyclic convolutions. The method of construction of good algorithms
for short filter sections, including symmetric filters and decimating filters, is due to
Winograd (1979, 1980a,b). The construction of sections for interpolating filters is a
straightforward application of Winograd’s methods. The transposition principle was
discussed by Hopcroft and Musinski (1973). The method of sectioning for the auto-
correlation is due to Rader (1970). There are a great many studies of the organization

230 Architecture of filters and transforms

of FFT computations with regard to the management of memory, such as the paper by
Burrus and Eschenbacher (1979).

The use of decimation as an aid in computing the Fourier transform was proposed by
Liu and Mintzer (1978). They go far beyond our brief summary and study the design
of multistage decimating filters. A survey of methods of interpolation and decimation
can be found in the work of Crochiere and Rabiner (1981).

Except for counting multiplications and additions, we have avoided performance
comparison of the various FFT algorithms, because, even for a software rather than
a hardware implementation, the performance depends on the precise version of the
algorithm, the level of the programming language, the architecture of the processor, and
the skill of the programmer. Some studies of performance have been given by Kolba
and Parks (1977); Silverman (1977); Morris (1978); Nawab and McClellan (1979);
Patterson and McClellan (1978); and Panda, Pal, and Chatterjee (1983). It would be
rash to say that this diverse work could be summarized by a single conclusion.

7 Fast algorithms for solving Toeplitz systems

A standard method of solving a system of n linear equations in n unknowns is to
write the system of equations as a matrix equation A f = g, and to solve it either
by computing the matrix inverse and writing f = A−1 g or, alternatively, by using
the method known as gaussian elimination. The standard methods of computing a
matrix inverse have complexity proportional to n3. Sometimes, the matrix has a special
structure that can be exploited to obtain a faster algorithm.

A Toeplitz system of equations is a system of linear equations described by a Toeplitz
matrix A. The problem of solving a Toeplitz system of equations arises in a great
many applications, including spectral estimation, linear prediction, autoregressive filter
design, and error-control codes. Because the Toeplitz system is highly structured,
methods of solution are available that are far superior to the general methods of solving
systems of linear equations. These methods are the subject of this chapter, and are valid
in any algebraic field.

The algorithms of this chapter are somewhat distant from those we have studied
for convolution and for Fourier transforms. Convolutions and transforms are essen-
tially problems of matrix multiplication, whereas this chapter deals with the solu-
tion of a system of linear equations. The solution of a system of linear equations
is closer to the task of matrix inversion. It should be no surprise that we do not
build on earlier algorithms directly, though techniques such as doubling may prove
useful.

7.1 The Levinson and Durbin algorithms

In certain problems related to deconvolution or spectral estimation, one must solve a
Toeplitz system of equations given by the matrix equation

A f = g,

231

232 Fast algorithms for solving Toeplitz systems

where A is an n by n Toeplitz matrix, given by

A =

a0 a1 a2 · · · an−1

a−1 a0 a1 · · · an−2

a−2 a−1 a0 · · ·
...

...
a−n+1 · · · a0

 .

The computational task is to compute the vector f from the vector g and the Toeplitz
matrix A. Of course, one method of solution is to find the inverse of A, but in some
applications, n may be greater than 100 or even greater than 1000, so it is important to
find a more efficient method of solution.

The Levinson algorithm is an efficient iterative algorithm that can be used for the
special case in which A is a symmetric Toeplitz matrix. Then we have the system of
equations

a0 a1 a2 · · · an−2 an−1

a1 a0 a1 · · · an−3 an−2

a2 a1 a0 · · · an−4 an−3
...

...
...

an−2 an−3 an−4 · · · a0 a1

an−1 an−2 an−3 · · · a1 a0

f0

f1

f2
...
fn−2

fn−1

=

g0

g1

g2
...
gn−2

gn−1

.

The matrix and the vectors have been blocked here to show the repetitive bordering
structure upon which the iterative algorithm is based. Each iteration will enlarge A by
appending to the A of the previous iteration a half-border consisting of a new row at
the bottom and a new column at the right.

By using an exchange matrix J , which satisfies J2 = I , the equation

A f = g

can be written

J A J J f = J g.

Because A is a symmetric Toeplitz matrix,

J A J = A,

so we also have

A J f = J g.

233 7.1 The Levinson and Durbin algorithms

Hence we also have the equation
a0 a1 a2 · · · an−1

a1 a0 a1 · · · an−2

a2 a1 a0 · · · an−3
...

...
an−1 an−2 · · · a0

fn−1

fn−2
...
f1

f0

 =

gn−1

gn−2
...
g1

g0

 .

This form of the equation will be used in the derivation of the Levinson algorithm. The
algorithm works with r by r submatrices of A, given by

A(r) =

a0 a1 a2 · · · ar−1

a1 a0 a1 · · · ar−2

a2 a1 a0 · · · ar−3
...

...
ar−1 · · · a0

 ,

which are obtained from A by deleting n − r columns from the right and the same
number of rows from the bottom.

The Levinson algorithm is an iterative algorithm; we index the iterations by r . At
step r , the Levinson algorithm computes the solution to the rth truncated problem:

a0 a1 a2 · · · ar−1

a1 a0 a1 · · · ar−2
...

...
...

...
ar−1 ar−2 ar−3 · · · a0

f
(r)
0

f
(r)
1
...

f
(r)
r−1

 =

g0

g1
...

gr−1

 ,

where the superscript r on the vector f (r) denotes that it is the solution of the rth
truncated equation. Clearly, even though f (r) solves the truncated equation, it is not a
truncated version of the f that solves the original equation. The Levinson algorithm
will recursively update f (r), however, in such a way that f (r) is the required solution
of the rth truncated equation.

In addition to f (r), the Levinson algorithm also iterates a number of working vari-
ables, defined as follows. These working variables are three scalars called αr , βr , and
γr , and a working vector of length r called t (r). The working variables αr , βr , γr , and
t (r) are chosen at each r so that the following side equation is also satisfied:

a0 a1 a2 · · · ar−1

a1 a0 a1 · · · ar−2

a2 a1 a0 · · · ar−3
...

...
...

ar−1 ar−2 · · · a0

t

(r)
0

t
(r)
1
...

t
(r)
r−1

 =

αr

0
...

0

 ,

234 Fast algorithms for solving Toeplitz systems

where all components, but one, of the vector on the right are equal to zero. The
introduction of the working vector t (r) and the side equation is the clever idea that
allows the iterations of the Levinson algorithm to continue. We will define iteration
r + 1 so as to perpetuate equations of the same form. The next iteration begins by
expanding the equations of the previous iteration as

a0 a1 a2 · · · ar−1 ar

a1 a0 a1 · · · ar−2 ar−1
...

...
...

...
ar−1 ar−2 · · · a0 a1

ar ar−1 · · · a1 a0

f

(r)
0

f
(r)
1
...

f
(r)
r−1

0

 =

g0

g1
...

gr−1

γr

 ,

which defines γr , and
a0 a1 a2 · · · ar−1 ar

a1 a0 a1 · · · ar−2 ar−1
...

...
...

...
ar−1 ar−2 · · · a0 a1

ar ar−1 · · · a1 a0

t

(r)
0

t
(r)
1
...

t
(r)
r−1

0

 =

αr

0
...
0
βr

 ,

which defines βr , where the vector on the right side has all zeros in its interior. If
γr = gr and βr = 0, then f (r+1) and t (r+1) are set equal to f (r) and t (r), respectively,
but with a zero appended to each to increase the length. In that case, the iteration is
complete. Otherwise, f (r) or t (r) must be modified to form f (r+1) and t (r+1).

For the recursive algorithm, we initialize the variables so that the equations hold for
r = 0, and we suppose that these equations were satisfied at the end of iteration r − 1.
We need only show how to update them so that they are also satisfied at the end of
iteration r . But we have already seen that we can also write

a0 a1 a2 · · · ar−1 ar

a1 a0 a1 · · · ar−2 ar−1
...

...
...

...
ar−1 ar−2 · · · a0 a1

ar ar−1 · · · a1 a0

0

f
(r)
r−1
...

f
(r)
1

f
(r)
0

 =

γr

gr−1
...

g1

g0

and

a0 a1 a2 · · · ar−1 ar

a1 a0 a1 · · · ar−2 ar−1
...

...
...

...
ar−1 ar−2 · · · a0 a1

ar ar−1 · · · a1 a0

0

t
(r)
r−1
...

t
(r)
1

t
(r)
0

 =

βr

0
...
0
αr

 .

235 7.1 The Levinson and Durbin algorithms

From these equations, we form the next iteration. Let
t

(r+1)
0

t
(r+1)
1

...
t

(r+1)
r−1

t (r+1)
r

 = k1

t

(r)
0

t
(r)
1
...

t
(r)
r−1

0

 + k2

0

t
(r)
r−1
...

t
(r)
1

t
(r)
0

for constants k1 and k2, yet to be chosen. Then write

a0 a1 · · · ar

a1 a0 · · · ar−1
...

...
...

ar−1 ar−2 · · · a1

ar ar−1 · · · a0

t

(r+1)
0

t
(r+1)
1

...
t

(r+1)
r−1

t (r+1)
r

 = k1

αr

0
...
0
βr

 + k2

βr

0
...
0
αr

 =

αr+1

0
...
0
0

 ,

where, to obtain the equality on the right, k1 and k2 must be chosen to satisfy the
condition

0 = k1βr + k2αr.

We will choose k1 = αr and k2 = −βr . Then

αr+1 = k1αr + k2βr = α2
r − β2

r .

However, one could choose a different k1, which may give a different numerical
accuracy. Finally, let

f
(r+1)
0

f
(r+1)
1

...
f

(r+1)
r−1

f (r+1)
r

 =

f

(r)
0

f
(r)
1
...

f
(r)
r−1

0

 + k3

t (r+1)
r

t
(r+1)
r−1

...
t

(r+1)
1

t
(r+1)
0

 ,

where the constant k3 has yet to be chosen; then
a0 a1 · · · ar

a1 a0 · · · ar−1
...

...
ar−1 · · · a1

ar · · · a0

f

(r+1)
0

f
(r+1)
1

...
f

(r+1)
r−1

f (r+1)
r

 =

g0

g1
...

gr−1

γr

 + k3

0
0
...
0

αr+1

 =

g0

g1
...

gr−1

gr

 ,

where, to obtain the equality on the right, k3 is chosen so that

γr + k3αr+1 = gr .

This completes the iteration.

236 Fast algorithms for solving Toeplitz systems

Enter
Levinson algorithm Initialize

0 0

1 0

1
()
() 1

r
f x g a
t x

a

1r r

0

0

r

r i r i
i
r

r i r i
i

a t

a f

1

1
2 2

() ()

() ()

r xr r
rr r x

r r

t x t x x t
g

f x f x x t

2 2
1r r r

1
?

r n NoYes

Input

0 1
0 1

, ,
, ,

n
n

a a
g g

Exit

Figure 7.1 Levinson algorithm

The Levinson algorithm is summarized in Figure 7.1. There the vectors t (r) and f (r)

are represented by polynomials

t(x) = t (r)
r xr + t

(r)
r−1x

r−1 + · · · + t
(r)
1 x + t

(r)
0 ,

f (x) = f (r)
r xr + f

(r)
r−1x

r−1 + · · · + f
(r)
1 x + f

(r)
0 ,

and the superscript r is suppressed in the polynomial representation. There is no need
to actually form the matrix A(r) in the calculations; it is enough to compute only f (x)
and t(x) as iterates.

The rth pass through the loop has a complexity proportional to r , and there are n

passes. Therefore the complexity of the Levinson algorithm is proportional to n2. The
recursions of the algorithm fail only if a division by zero arises, and this occurs only if
one of the principle submatrices is singular.

The Levinson algorithm holds in any field. In particular, it holds just as stated in
the complex field. However, a symmetric Toeplitz matrix in the complex field does not

237 7.1 The Levinson and Durbin algorithms

often arise in applications. A hermitean Toeplitz matrix is much more common. The
Levinson algorithm also holds in this case, provided that one takes complex conjugates
at the right points in the computation. It is easy to rework the derivation for this
case.

Sometimes, in place of the Levinson algorithm, a better algorithm known as the
Durbin algorithm can be used. This is possible when the Toeplitz matrix is symmetric
and the vector on the right is made up of elements from the Toeplitz matrix in such a
way that the system of equations takes the following form:

a0 a1 a2 · · · an−2 an−1

a1 a0 a1 · · · an−3 an−2

a2 a1 a0 · · · an−4 an−3
...

...
...

an−2 · · · a0 a1

an−1 · · · a1 a0

f0

f1

...
fn−2

fn−1

= −

a1

a2

a3
...

an−1

an

.

The matrix and the vectors have again been blocked to show the repetitive border-
ing structure upon which the algorithm is based. Now the vector in the right col-
umn is made up of elements of the Toeplitz matrix. This special property allows
the equations to be solved with half the work of the Levinson algorithm because
only one polynomial needs to be iterated. The Durbin algorithm is important because
systems of Toeplitz equations of this form occur frequently in problems of spectral
analysis.

At step r , the Durbin algorithm begins with a solution to the truncated problem

a0 a1 a2 · · · ar−1

a1 a0 a1 · · · ar−2
...

...
...

ar−1 ar−2 · · · a0

f
(r)
0

f
(r)
1
...

f
(r)
r−1

 = −

a1

a2
...
ar

 .

The next iteration begins with

a0 a1 a2 · · · ar−1 ar

a1 a0 a1 · · · ar−2 ar−1
...

...
...

...
ar−1 ar−2 · · · a0 a1

ar ar−1 · · · a1 a0

f

(r)
0

f
(r)
1
...

f
(r)
r−1

0

 = −

a1

a2

a3
...
ar

γr

,

238 Fast algorithms for solving Toeplitz systems

which defines γr . The iteration must update f (r) to make γr become equal to ar+1. Let
f (r+1) be given by
f

(r+1)
0

f
(r+1)
1

...
f

(r+1)
r−1

f (r+1)
r

 =

f

(r)
0

f
(r)
1
...

f
(r)
r−1

0

 + kr

f

(r)
r−1

f
(r)
r−2
...

f
(r)
0

0

 + βr

0
0
...
0
1

 .

If we can choose kr and βr so as to regenerate the desired form, we have a good
algorithm. Choose

γr = −
r∑

i=1

f
(r)
r−iai,

γ ′
r = −

r∑
i=1

f
(r)
r−iai,

so that
a0 · · · ar−1 ar

a1 · · · ar−2 ar

...
...

...
ar−1 · · · a0 a1

ar a1 a0

f

(r+1)
0

f
(r+1)
1

...
f

(r+1)
r−1

f (r+1)
r

 = −

a1

a2
...
ar

γr

 − kr

ar

ar−1
...
a1

γ ′
r

 + βr

ar

ar−1
...
a1

a0

= −

a1
...
ar

ar+1

 .

To obtain the final equality, we must choose kr and βr so that

kr − βr = 0

and

−γr − krγ
′
r + βra0 = −ar+1.

Thus, kr = βr and

βr = − (ar+1 − γr)

(a0 − γ ′
r)

.

With these equations, a solution at the rth iteration is propagated into a solution at the
(r + 1)th iteration. Hence the trivial solution at the zeroth iteration can be recursively

239 7.2 The Trench algorithm

0 1 0

1
/

r
f a a

Initialize

0

0

r

r i r i
i

r

r i r i
i

a f

a f

1
?

r nYes No

Halt

1r r

1

0

r r
r

r

a

a

1 1() () ()r r
rf x f x x x x

Enter
Durbin algorithm

Figure 7.2 Durbin algorithm

propagated into a solution at the nth iteration. This completes the derivation of the
Durbin algorithm. It is summarized in the flow diagram of Figure 7.2.

7.2 The Trench algorithm

The Toeplitz system of equations
a0 a1 a2 · · · an−1

a−1 a0 a1 · · · an−2

a−2 a−1 a0 · · · an−3
...

...
...

...
a−n+1 a−n+2 a−n+3 · · · a0

f0

f1

f2
...

fn−1

 =

g0

g1

g2
...

gn−1

can be solved by any of a number of different algorithms, depending on which of
various side conditions are satisfied. In Section 7.1, we treated the case in which the
Toeplitz matrix is symmetric. The Levinson algorithm or the Durbin algorithm then
applies. In this section, we shall study the more general case in which the Toeplitz
matrix is not symmetric. The Trench algorithm solves this more general case. In its
fullest form, the Trench algorithm gives the inverse matrix A−1 as well as the vector f .
We shall only describe the computation of A−1.

In general, a Toeplitz matrix need not be symmetric, but every Toeplitz matrix is
persymmetric. A persymmetric matrix is one that has symmetry about its antidiagonal.

240 Fast algorithms for solving Toeplitz systems

If an n by n matrix A is persymmetric, then aij = an+1−j,n+1−i . Another way to state
this is that A is a persymmetric matrix if and only if J A J = A, where J is the
exchange matrix of the same size as A.

The inverse of a Toeplitz matrix is generally not a Toeplitz matrix, but the inverse
does remain persymmetric.

Theorem 7.2.1 The inverse of a persymmetric matrix A is persymmetric.

Proof Let J be the exchange matrix of the same size as A, and recall that
J2 = I so that J−1 = J . But J A J = A. Hence J A−1 J = A−1 and A−1 is
persymmetric. �

Another property that is retained by the inverse of a Toeplitz matrix is the property
that the matrix is completely specified by its border. Even more, it is completely
specified by its half-border, consisting of either its first row and first column, or its
last row and last column. This section will proceed by establishing this property, then
giving a recursive procedure for computing the inverse matrix from a lower half-border
consisting of the last row and the last column. The Trench algorithm computes A−1 by
computing the half-border of A−1.

Define the column vectors a+ and a−, each of length r − 1, as

a+ = (a1, a2, a3, . . . , ar−1)T,

a− = (a−1, a−2, a−3, . . . , a−(r−1))
T.

Let ã+ and ã− denote these two vectors with their components written in reverse order.
That is, ã+ = J a+ and ã− = J a−, where J is the (r − 1) by (r − 1) exchange matrix.
The matrix A(r) can be partitioned as

A(r) =
[

A(r−1) ã+
ãT

− a0

]
.

Likewise, the inverse matrix B(r) = (A(r))−1 will be partitioned as

B(r) =
[

M (r) b̃
(r)
+

b̃
(r)T
− b

(r)
0

]
.

Our goal is to interpret the blocks of this latter partition.

Theorem 7.2.2 The blocks of the inverse matrix B(r) satisfy

M (r) = B(r−1) + 1

b
(r)
0

b̃
(r)
+ b̃

(r)T
− .

241 7.2 The Trench algorithm

Proof Because A(r) B(r) = I , we have the following equation: A(r−1) Mr + ã+ b̃
(r)T
− A(r−1) b̃

(r)
+ + ã+b

(r)
0

ãT
− M (r) + a0 b̃

(r)T
ãT

− b̃
(r)
+ + a0b

(r)
0

 = I .

Hence

A(r−1) M (r) + ã+ b̃
(r)T
− = I,

A(r−1) b̃
(r)
+ + ã+b

(r)
0 = 0,

ãT
− M (r) + a0 b̃

(r)T
− = 0,

ãT
− b̃

(r)
+ + a0b

(r)
0 = 1.

The matrix M (r) can be eliminated by expressing it in terms of the inverse of A(r−1),
which is denoted B(r−1). Multiply the first equation by B(r−1) on the left to get

M (r) = B(r−1) − B(r−1) ã+ b̃
(r)T
− .

The theorem then follows from the second equation above. �

Up until this point, we have assumed very little about the matrix B(r), only the
existence of B(r−1). Now we will use the property of presymmetry to obtain a recursive
procedure for computing B(r) from its half-border. Later, we will give a procedure for
computing the half-border of B(r) from the half-border of B(r−1).

Theorem 7.2.3 Let B be the inverse of a Toeplitz matrix. Then B is completely specified
from its upper half-border by the ascending recursion

bi+1,j+1 = bij + 1

b0
[b+bT

− − b̃+ b̃
T
−],

i = 1, . . . , n − 1,

j = 1, . . . , n − 1,

and from the lower half-border by the descending recursion

bi−1,j−1 = bij + 1

b0
[b̃+ b̃

T
− − b+bT

−],
i = n, . . . , 2,

j = n, . . . , 2,

where the first and last rows of the matrix are (b0, b−)T and (b̃−, b0)T, respectively,
and the first and last columns are (b0, b+) and (b̃+, b0), respectively.

Proof We have already shown in Theorem 7.2.2 that

B(r) =
B(r−1) + 1

b
(r)
0

b̃
(r)
+ b̃

(r)T
− b̃

(r)
+

b̃
(r)T
− b

(r)
0

 .

242 Fast algorithms for solving Toeplitz systems

Because B(r) is persymmetric, we can also write

B(r) =
b

(r)
0 b(r)T

+

b(r)
− B(r−1) + 1

b
(r)
0

b(r)
+ b(r)T

−

 .

Using these two partitions, we express an element b
(r)
ij of B(r) in two ways. The first

gives

b
(r)
ij = b

(r−1)
ij + 1

b
(r)
0

(b̃
(r)
+ b̃

(r)T
−)ij ,

i = 1, . . . , n − 1,

j = 1, . . . , n − 1.

The second gives

b
(r)
i+1,j+1 = b

(r−1)
ij + 1

b
(r)
0

(b(r)
+ b(r)T

−)ij ,
i = 1, . . . , n − 1,

j = 1, . . . , n − 1,

Eliminating b
(r−1)
ij gives

b
(r)
i+1,j+1 = b

(r)
ij + 1

b
(r)
0

(b(r)
+ b(r)T

− − b̃
(r)
+ b̃

(r)T
−)ij ,

i = 1, . . . , n − 1,

j = 1, . . . , n − 1,

which now involves only terms with superscript r . This is the ascending recursion. The
descending recursion follows in the same way, and the proof is complete. �

There is one extra piece of information contained in the proof that will be used later.
By equating the element in the first column and first row of the two equations, we get
the equation

b
(r)
0 = B

(r−1)
11 + 1

b
(r)
0

(b̃
(r)
+ b̃

(r)T
−)11.

Because B
(r−1)
11 equals b

(r−1)
0 and b̃+ b̃

T
− = b+bT

−, this can be written

b
(r)
0 = b

(r−1)
0 + 1

b
(r)
0

(b(r)
+ b(r)T

−)11,

which relates b
(r)
0 and b

(r−1)
0 .

Now we need a recursive algorithm that will compute the half-border of B(n) from
the half-border of A(n). But we have already written equations relating the border of
B(r) to the border of A(r). We need only to eliminate A(r−1) and M to derive the
algorithm. These can be eliminated by pushing back to the half-border at the previous
iteration.

243 7.2 The Trench algorithm

Theorem 7.2.4 The half-border of B(r) satisfies the following recursions:

(i) b(r)
+ = b

(r)
0

b
(r−1)
0

{[
b(r−1)

+
0

]
− (b̃

(r−1)T
+ a(r−1)

+ + b
(r−1)
0 ar−1)

[
b̃

(r−1)
−

b
(r−1)
0

]}
,

(ii) b(r)
− = b

(r)
0

b
(r−1)
0

{[
b(r−1)

−
0

]
− (b̃

(r−1)T
− a(r−1)

− + b
(r−1)
0 a1−r)

[
b̃

(r−1)
+

b
(r−1)
0

]}
,

(iii) b
(r)
0 = b

(r−1)
0 + 1

b
(r)
0

(b(r)
+ b(r)T

−)11.

Proof The third expression was already derived as a consequence of the proof of
Theorem 7.2.3. By symmetry, it is clear that the second expression will be true if the
first is true. It can be derived in the same way. Hence we need only to prove the first
expression. We begin with the second of the set of four equations derived earlier in the
proof of Theorem 7.2.2:

A(r−1) b̃
(r)
+ + ã(r)

+ b
(r)
0 = 0.

Because A(r−1) is persymmetric, this can also be written

A(r−1)Tb(r)
+ + a(r)

+ b
(r)
0 = 0

and

b(r)
+ = −b

(r)
0 B(r−1)Ta(r)

+ .

Now break this down, using again the same partition for B(r−1) as was used before:

b(r)
+ = −b

(r)
0

B(r−2) + 1

b
(r−1)
0

b̃
(r−1)
+ b̃

(r−1)T
− b̃

(r−1)
+

b̃
(r−1)T
− b

(r−1)
0

T [

a(r−1)
+
ar−1

]
,

where a(r)
+ has been written as a(r−1)

+ with one more component appended. This equation
gives the desired recursion, but it can be cleaned up by reusing the equation

b(r−1)
+ = −b

(r−1)
0 B(r−2)Ta(r−1)

+ .

Then

b(r)
+ = b

(r)
0

b
(r−1)
0

b(r−1)
+ − b

(r)
0

 1

b
(r−1)
0

b̃
(r−1)
− b̃

(r−1)T
+ b̃

(r−1)
−

b̃
(r−1)T
+ b

(r−1)
0

[
a(r−1)

+
ar−1

]
,

which can be rewritten as in the statement of the theorem. �

244 Fast algorithms for solving Toeplitz systems

Enter

Initialize
01

null vector
null vector

r a
c
c

1r r

1

1

0 1

0 1

r

r

c a c
c

c a c
c

c a

c a

1 Tc c

1
?

r n NoYes

1
0

0
0

b
b
b

b c
b c

Halt

Figure 7.3 Trench algorithm

We now have the basis for the Trench algorithm. All we need to do is to redefine
the notation so that all variables with superscript index r are on the left side of the
equation, and those with superscript index r − 1 are on the right side.

The Trench algorithm is summarized in Figure 7.3. The flow is based on Theo-
rem 7.2.4, but the iterates b+, b−, and b0 have been replaced by the normalized vectors
c+, c−, and λ, defined as

c+ = 1

b
(r)
0

b(r)
+ ,

c− = 1

b
(r)
0

b(r)
− ,

λ = 1

b
(r)
0

,

245 7.3 Methods based on the euclidean algorithm

so that the recursion becomes

c(r)
+ =

[
c(r−1)
+
0

]
− c̃(r−1)T

+ a(r−1)
+ + ar−1

λ(r−1)

[
c̃(r−1)
−
1

]
,

c(r)
− =

[
c(r−1)
−
0

]
− c̃(r−1)T

− a(r−1)
− + a1−r

λ(r−1)

[
c̃(r−1)
+
1

]
,

λ(r) = λ(r−1)(1 − c(r)
+ c(r)T

−).

This is the form of the equations used in Figure 7.3.

7.3 Methods based on the euclidean algorithm

Several methods of solving Toeplitz systems of equations make use of the euclidean
algorithm, as will be described in this section. The conventional formulation of the
euclidean algorithm is used in this discussion. However, an accelerated recursive form
of the euclidean algorithm, as described in Section 4.7, is also available.

We begin the discussion with the following Toeplitz system of equations:
an−1 an−2 an−3 · · · a0

an an−1 an−2 · · · a1

an+1 an an−1 · · · a2
...

...
...

...
a2n−2 a2n−3 a2n−4 · · · an−1

f1

f2

f3
...

fn

 =

−an

−an+1

−an−2
...

−a2n−1

 .

This same Toeplitz system of equations will be inverted in Section 7.4 by using the
Berlekamp–Massey algorithm. In this section, it is inverted by using the euclidean
algorithm.

Let

a(x) =
2n−1∑
i=0

aix
i,

f (x) = 1 +
n∑

i=1

fix
i

and consider the polynomial product

g(x) = f (x)a(x).

To be in accord with the matrix product above, we see that

gi = 0, i = n, . . . , 2n − 1.

246 Fast algorithms for solving Toeplitz systems

However, for i larger than 2n, gi may take any value. We shall restate the matrix inverse
problem as the task of finding f (x) and g(x) satisfying the conditions deg f (x) ≤ n,
deg g(x) ≤ n − 1, and

g(x) = f (x)a(x) (mod x2n).

Of course, one way to solve this polynomial problem is to solve the original matrix
equations for f and then to compute g(x). Another method is to use the euclidean
algorithm for polynomials.

Let us look to the proof of the euclidean algorithm to see how the equation can
be solved for f (x) and g(x). From that proof, we see that the euclidean algorithm
computes[

s(r)(x)
t (r)(x)

]
=

[
A

(r)
11 (x) A

(r)
12 (x)

A
(r)
21 (x) A

(r)
22 (x)

][
s(x)
t(x)

]
,

so that

t (r)(x) = A
(r)
22 (x)t(x) (mod s(x)).

This is the form of the polynomial equation being solved if we take t(x) = a(x) and
s(x) = x2n. Such a statement holds for each value of r . If we can find an r for which
deg A

(r)
22 (x) ≤ n and deg t (r)(x) ≤ n − 1, then these polynomials can be given as the

solution to the polynomial equation. If such an r exists, then the polynomials A
(r)
22 (x)

and t (r)(x) must equal the desired f (x) and g(x). To this end, choose that value of r

satisfying

deg t (r−1)(x) ≥ n,

deg t (r)(x) ≤ n − 1.

This defines a unique value r because deg t (0)(x) = 2n, and the degree of t (r)(x) is
strictly decreasing as r is increasing. By the definition of r , we have satisfied the first
requirement

deg t (r)(x) ≤ n − 1.

As r is increasing, the degree of A
(r)
22 (x) is increasing. We need only to show that

deg A
(r)
22 (x) ≤ n.

This we prove by working with the inverse of the matrix A(r)(x). First, recall that

A(r)(x) =
r∏

�=1

[
0 1
1 −Q(�)(x)

]
.

247 7.3 Methods based on the euclidean algorithm

From this equation, it is clear that deg A
(r)
22 (x) > deg A

(r)
12 (x). Also recall that

deg s(r)(x) > deg t (r)(x). From these inequalities and the matrix equation[
s(x)
t(x)

]
= (−1)r

[
A

(r)
22 (x) −A

(r)
12 (x)

−A
(r)
21 (x) A

(r)
11 (x)

][
s(r)(x)
t (r)(x)

]
,

it can be concluded that deg s(x) = deg A
(r)
22 (x) + deg s(r)(x), and because s(r)(x) =

t (r−1)(x), this becomes

deg A
(r)
22 (x) = deg s(x) − deg t (r−1)(x)

≤ 2n − n = n,

where the inequality follows from the definition of r .
We now have developed most of the proof of the following theorem.

Theorem 7.3.1 Given s(0)(x) = x2n and t (0)(x) = a(x), let

A(0)(x) =
[

1 0
0 1

]
.

Solve the following recursive equations until deg t (r)(x) ≤ n − 1:

Q(r)(x) =
⌊

s(r−1)(x)

t (r−1)(x)

⌋
,

A(r)(x) =
[

0 1
1 −Q(r)(x)

]
A(r−1)(x),[

s(r)(x)
t (r)(x)

]
=

[
0 1
1 −Q(r)(x)

][
s(r−1)(x)
t (r−1)(x)

]
,

and let

g(x) =
−1t (r)(x),

f (x) =
−1A
(r)
22 (x),

where
 = A
(r)
22 (0). Provided that
 is nonzero, these satisfy the equation

g(x) = f (x)a(x) (mod x2n)

with deg f (x) ≤ n, deg g(x) ≤ n − 1, and f0 = 1.

Proof The division by
 ensures that f0 = 1. Otherwise, we have seen, prior to the
statement of the theorem, that the final equation and conditions will be satisfied. �

248 Fast algorithms for solving Toeplitz systems

Enter

2 1

0
2

()

()

1 0
()

0 1

1

n
i

i
i

n

t x a x

s x x

x

r

A

deg ()
?

t x n

1r r

No

Exit

()
()

()
s x

Q x
t x

() 0 1 ()
() 1 () ()

0 1
() ()

1 ()

s x s x
t x Q x t x

x x
Q x

A A

22

22

()
()

(0)
x

f x
A
A

Figure 7.4 Inverting Toeplitz systems with the euclidean algorithm

Hence, provided the Toeplitz system of equations is invertible, we have a way to
invert the Toeplitz system of equations, which we will also treat using the Berlekamp–
Massey algorithm in the next section. A flow diagram is shown in Figure 7.4. If the
Toeplitz system is not invertible, then the use of the euclidean algorithm, as described
here, will still produce that A

(r)
22 (x) of least degree satisfying its defining equation, but

 will be equal to zero, and f (x) is now undefined. When
 equals zero, the algorithm
has produced instead a solution to the equation

an−1 an−2 an−3 · · · a0

an an−1 an−2 · · · a1

an+1 an an−1 · · · a2
...

...
...

...
a2n−2 a2n−3 a2n−4 · · · an−1

h1

h2

h3
...

hn

 =

0
0
0
...
0

 .

249 7.4 The Berlekamp–Massey algorithm

7.4 The Berlekamp–Massey algorithm

The Berlekamp–Massey algorithm solves a Toeplitz system of equations of the form1
an−1 an−2 an−3 · · · a0

an an−1 an−2 · · · a1

an+1 an an−1 · · · a2
...

...
...

...
a2n−2 a2n−3 a2n−4 · · · an−1

f1

f2

...
fn

 =

−an

−an+1

...
−a2n−1

 ,

in any field F , for the vector f . In contrast to the formulation for the Levinson
algorithm, the Toeplitz matrix is not required to be symmetric. On the other hand, in
this problem the vector on the right is not arbitrary – it is made up of elements of the
matrix on the left.

The best way to approach the Berlekamp–Massey algorithm is to view the matrix
equation as a description of an autoregressive filter. Suppose the vector f is known.
Then the first row of the above matrix equation defines the matrix element an in terms
of a0, . . . , an−1. The second row then defines an+1 in terms of a1, . . . , an, and so forth.
This sequential process is summarized by the equation

aj = −
n∑

i=1

fiaj−i , j = n, . . . , 2n − 1.

For fixed f , this is the equation of an autoregressive filter producing a sequence of
aj starting with the initial terms of the sequence. The autoregressive filter may be
implemented as a linear feedback shift register with the values of its taps given by the
components of f .

Looked at in this way, the problem of solving the Toeplitz system of equations
becomes a problem of finding the autoregressive filter, shown in Figure 7.5, that will
produce the specified sequence of filter outputs, as denoted by the aj . If the Toeplitz
matrix is invertible, there will be exactly one autoregressive filter that will produce
the sequence of aj . If the matrix is not invertible, then there may be many solutions
or there may be none. In this situation, the Berlekamp–Massey algorithm will always
produce an output that is the shortest autoregressive filter that satisfies the equations. If
the Toeplitz system has more than one solution, then the Berlekamp–Massey algorithm
will find the solution corresponding to the shortest autoregressive filter. If the original
Toeplitz system has no solution, then the Berlekamp–Massey algorithm will develop
an autoregressive filter having nonzero tap weights fi with i larger than n.

1 In this section it is more suggestive to index the components of f from 1 to n and to write the elements of A as
a0 to a2n−1.

250 Fast algorithms for solving Toeplitz systems

1f 2f nf

1ja 2ja j na
3 2 1 0, , , ,a a a a

1
1

1 2 0Initialize with , , ,n na a a

 , ,2 1
n

j j i
i

a f a j n n

Figure 7.5 An autoregressive filter

Any procedure for finding the autoregressive filter is also a procedure for solving
the matrix equation for the vector f . We shall develop such a recursive procedure for
finding the autoregressive filter. The procedure does not assume any special properties
for the sequence a0, a1, . . . , a2n−1.

A linear feedback shift register can be described by giving the length L of the shift
register and a feedback polynomial f (x),

f (x) = fnx
n + fn−1x

n−1 + · · · + f1x + 1.

The reason that the length of the shift register must be stated is that the length of
the shift register may be larger than the degree of f (x) because one or more of the
rightmost stages might not be tapped.

To find the required shift register, we must determine two quantities: the shift-
register length L and the feedback connection polynomial f (x), where deg f (x) ≤ L.
We denote this pair by (L, f (x)). We must find the feedback shift register that will
produce the sequence a0, . . . , a2n−1 when properly initialized, and such that it is the
shortest feedback shift register with this property.

The design procedure is recursive. For each r , starting with r = 1, we will design
a feedback shift register for producing the sequence a0, . . . , ar . The pair (Lr, f

(r)(x))
denotes this minimum-length shift register for producing a0, . . . , ar . This shift register
need not be unique; there may be several such shift registers of length Lr . We only use
one of them. At the start of iteration r , we will have constructed a list of shift registers:

(L1, f
(1)(x)),

(L2, f
(2)(x)),
...

(Lr−1, f
(r−1)(x)),

where the lengths are nondecreasing. The Berlekamp–Massey algorithm com-
putes a new shortest-length shift register (Lr, f

(r)(x)) that generates the sequence
a0, . . . , ar−1, ar . This will be done by again using the most recent shift register without

251 7.4 The Berlekamp–Massey algorithm

change, if possible, and otherwise, modifying its length and tap weights as necessary
to make it work.

To begin iteration r , first compute the next output of the (r − 1)th shift register:

âr = −
Lr−1∑
j=1

f
(r−1)
j ar−j .

Because Lr−1 may be larger than the degree of f (r−1), some terms in the sum may be
equal to zero. The sum could be written as a sum from one to deg f (r−1)(x). However,
the chosen notation is less cumbersome.

Let
r be the difference between the desired output ar and the actual output of the
most recent shift register:

r = ar − âr = ar +
Lr−1∑
j=1

f
(r−1)
j ar−j .

This can be written compactly as

r =
Lr−1∑
j=0

f
(r−1)
j ar−j .

If
r is zero, then set (Lr.f
(r)(x)) = (Lr−1, f

(r−1)(x)), and the rth iteration is complete.
Otherwise, the shift-register taps are modified by updating the connection polynomial
as follows:

f (r)(x) = f (r−1)(x) + Ax�f (m−1)(x),

where A is a field element, � is an integer, and f (m−1)(x) is one of the connection
polynomials appearing earlier on the list. Now, with this new polynomial, let

′
r =

Lr−1∑
j=0

f
(r)
j ar−j

=
Lr−1∑
j=0

f
(r−1)
j ar−j + A

Lr−1∑
j=0

f
(m−1)
j ar−j−�.

We now choose m, �, and A to make
′
r equal to zero. Choose an m smaller than r for

which
m �= 0, choose � = r − m, and choose A = −
−1
m
r . Then

′
r =
r −
r

m

m = 0,

which means that the modified shift register will generate the sequence a1, . . . , ar−1, ar .
We now must ensure that it is the smallest-length such shift register. We have not yet
specified which of those m for which
m �= 0 should be chosen. If we choose m as the

252 Fast algorithms for solving Toeplitz systems

most recent iteration at which Lm > Lm−1, we will get a shortest-length shift register
at every iteration, but this last refinement will take some time to develop.

Theorem 7.4.2 asserts that the given procedure does compute a shortest shift register
that produces the given sequence. Before giving this theorem, we give a bound on the
length of the shift register.

Theorem 7.4.1 Suppose that (Lr−1, f
r−1(x)) is the linear feedback shift register of

shortest length that produces a1, . . . , ar−1; and (Lr, f
(r)(x)) is the linear feedback

shift register of shortest length that produces a1, . . . , ar−1, ar . If f (r)(x) �= f (r−1)(x),
then Lr ≥ max[Lr−1, r − Lr−1].

Proof The inequality to be proved is a combination of two inequalities:

Lr ≥ Lr−1

and

Lr ≥ r − Lr−1.

The first inequality is obvious, because if a linear feedback shift register produces
a sequence, it must also produce any beginning segment of the sequence. The sec-
ond inequality is obvious if Lr−1 ≥ r . Hence assume Lr−1 < r . Suppose the second
inequality is not satisfied, and look for a contradiction. Then Lr ≤ r − 1 − Lr−1. Let
c(x) = f (r−1)(x), b(x) = f (r)(x), L = Lr−1, and L′ = Lr . By assumption we have
r ≥ L + L′ + 1 and L < r . Next, by the assumptions of the theorem,

ar �= −
L∑

i=1

ciar−i ,

aj = −
L∑

i=1

ciaj−i , j = L + 1, . . . , r − 1,

and

aj = −
L′∑

k=1

bkaj−k, j = L′ + 1, . . . , r.

Now establish the contradiction. First,

ar = −
L′∑

k=1

bkar−k =
L′∑

k=1

bk

L∑
i=1

ciar−k−i ,

where the expansion of ar−k as another sum is valid because r − k runs from r − 1
down to r − L′, which is in the range L + 1, . . . , r − 1 because of the assumption

253 7.4 The Berlekamp–Massey algorithm

r ≥ L + L′ + 1. Second,

ar �= −
L∑

i=1

ciar−i =
L∑

i=1

ci

L′∑
k=1

bkar−i−k,

where the expansion of ar−i as another sum is valid because r − i runs from r − 1 down
to r − L, which is in the range L′ + 1, . . . , r − 1, again because of the assumption
r ≥ L + L′ + 1. The summations on the right side can be interchanged to agree with
the right side of the previous equation. Hence we get the contradiction: ar �= ar . The
contradiction proves the theorem. �

If we can design a shift register that satisfies the inequality of Theorem 7.4.1 with
equality, then it must be of shortest length. The proof of Theorem 7.4.2 gives a con-
struction for this shift register.

Theorem 7.4.2 Suppose that (Li, f
(i)(x)), i = 1, . . . , r , is a sequence of minimum-

length, linear-feedback shift registers such that f (i)(x) produces a1, . . . , ai . If f (r)(x) �=
f (r−1)(x), then

Lr = max[Lr−1, r − Lr−1],

and any shift register that produces a1, . . . , ar and has length equal to the right side is
a minimum-length shift register.

Proof By Theorem 7.4.1, Lr cannot be smaller than the right side. We will construct
a shift register that produces the required sequence and whose length equals the right
side, so it must be a minimum-length shift register. The proof is by induction. We give a
construction for a shift register satisfying the conditions of the theorem, assuming that
we have already constructed such shift registers for all k ≤ r − 1. For k = 1, . . . , r − 1,
let (Lk, f

(k)(x)) be the minimum-length shift register that generates a1, . . . , ak . For the
induction argument, assume that

Lk = max[Lk−1, k − Lk−1], k = 1, . . . , n − 1,

whenever f (k)(x) �= f (k−1)(x). This is clearly true for k = 0 if a1 is nonzero because
L0 = 0 and L1 = 1. More generally, if ai is the first nonzero term of the given sequence,
then Li−1 = 0 and Li = i. The induction argument then begins at k = i.

Let m denote the value that k had at the most recent iteration step that required a
length change. Thus m is the integer such that

Lr−1 = Lm > Lm−1.

254 Fast algorithms for solving Toeplitz systems

We now have

aj +
Lr−1∑
i=1

f
(r−1)
i aj−i =

Lr−1∑
i=0

f
(r−1)
i aj−i =

{
0, j = Lr−1, . . . , r − 1,

r, j = r,
.

If
r = 0, then the shift register (Lr−1, f
(r−1)(x)) also generates the rth term of the

sequence, so that (Lr, f
(r)(x)) = (Lr−1, f

(r−1)(x)). If
r �= 0, then a new shift register
must be formed. Recall that a change in shift-register length occurred at k = m. Hence

aj +
Lm−1∑
i=1

f
(m−1)
i aj−i =

{
0, j = Lm−1, . . . , m − 1,

m �= 0, j = m,

and by the induction hypothesis

Lr−1 = Lm = max[Lm−1, m − Lm−1]

= m − Lm−1

because Lm > Lm−1. Now, as before, choose the new polynomial

f (r)(x) = f (r−1)(x) −
r

−1
m xr−mf (m−1)(x)

and let Lr = deg f (r)(x). Because deg f (r−1)(x) ≤ Lr−1 and deg[xr−mf (m−1)(x)] ≤
r − m + Lm−1, this gives

Lr ≤ max[Lr−1, r − m + Lm−1]

≤ max[Lr−1, r − Lr−1].

Hence, by recalling Theorem 7.4.1, if f (r)(x) produces a1, . . . , ar , then Lr =
max[Lr−1, r − Lr−1]. It only remains to prove that the shift register (Lr, f

(r)(x))
produces the required sequence. This is done by direct computation of the difference
between aj and the shift-register feedback, which by design satisfies

aj −
(

−
Lr∑
i=1

f
(r)
i aj−i

)
= aj +

Lr−1∑
i=1

f
(r−1)
i aj−i

−
r

−1
m

[
aj−r+m +

Lm−1∑
i=1

f
(m−1)
i aj−r+m−i

]

=
{

0, j = Lr, Lr + 1, . . . , r − 1,

r −
r

−1
m
m = 0, j = r.

Hence the shift register (Lr, f
(r)(x)) produces a1, . . . , ar . In particular, (Ln, f

(n)(x))
produces a1, . . . , an, and the theorem is proved. �

Theorem 7.4.3 (Berlekamp–Massey algorithm) In any field, let the sequence
a1, . . . , an be given. Under the initial conditions f (0)(x) = 1, t (0)(x) = 1, and L0 = 0,

255 7.5 An accelerated Berlekamp–Massey algorithm

let the following set of recursive equations be used to compute f (n)(x):

r =
n−1∑
j=0

f
(r−1)
j ar−j ,

Lr = δr (r − Lr−1) + (1 − δr)Lr−1,[
f (r)(x)
t (r)(x)

]
=

[
1 −
rx

−1
r δr (1 − δr)x

][
f (r−1(x)
t (r−1)(x)

]
,

for r = 1, . . . , n, where δr = 1 if both
r �= 0 and 2Lr−1 ≤ r − 1 and, otherwise, δr =
0. Then f (2t)(x) is the smallest-degree polynomial with the properties that f

(2t)
0 = 1

and

ar +
n−1∑
j=1

f
(2t)
j ar−j = 0, r = L2t + 1, . . . , 2t.

Proof Follows from the proof of Theorem 7.4.2. �

In the theorem,
r may be zero but only when δr is zero. The term
−1
r δr is then

understood to be zero.
A flow diagram of the Berlekamp–Massey algorithm is shown in Figure 7.6. The

algorithm requires a number of multiplications in the rth iteration that is approximately
equal to twice the degree of f (r)(x). The degree of f (r)(x) is about r/2, and there are 2n

iterations, so there are about 2n2 = �2n
r=0r multiplications and about the same number

of additions. In brief, we say that there are on the order of n2 multiplications in the
Berlekamp–Massey algorithm.

7.5 An accelerated Berlekamp–Massey algorithm

All methods that we have studied so far for inverting a Toeplitz system of equations,
including the Berlekamp–Massey algorithm, require a number of multiplications that
is proportional to n2. In this section, we shall use a doubling strategy to reduce the
computational complexity of the Berlekamp–Massey algorithm for large n.

The number of multiplications used in the rth iteration of the basic algorithm is
approximately equal to twice the degree of f (r)(x). In the early iterations, the degree
of f (r)(x) is small. These iterations are easy but as r increases, the complexity grows.
The accelerated algorithm will take advantage of the simplicity of the early iterations
by doing only a few iterations at a time. After each such batch of iterations, the partial
result is used to modify the problem so as to absorb the partial answers computed in that
batch. The next batch of iterations starts the Berlekamp–Massey algorithm anew for

256 Fast algorithms for solving Toeplitz systems

Enter
Initialize

() () 1
0, 1

f x t x
L r

1r r

1

0

n

r j r j
j

f a

0
?

r

2 1
?

L r

No

No

Yes

Yes

1

1)()(

)()(1

r

r r r

xf xfx

xtxt x

?
r n NoYes

Halt

1
L r L

=0

Figure 7.6 Berlekamp–Massey algorithm

the modified problem and with f (x) reinitialized to one. Together with this technique,
we will use a doubling structure to reduce the computations.

The development below will begin with a more compact organization of the
Berlekamp–Massey algorithm. We replace the polynomials f (r)(x) and t (r)(x) by a
two by two matrix of polynomials:

F(r)(x) =
[
F

(r)
11 (x) F

(r)
12 (x)

F
(r)
21 (x) F

(r)
22 (x)

]
.

The element F
(r)
ij (x) is a polynomial with coefficients denoted by F

(r)
ij,k . The matrix

F(r)(x) will be defined in such a way that f (r)(x) and t (r)(x) can be computed by the
equations[

f (r)(x)
t (r)(x)

]
=

[
F

(r)
11 (x) + F

(r)
12 (x)

F
(r)
21 (x) + F

(r)
22 (x)

]
= F(r)(x)

[
1
1

]
.

257 7.5 An accelerated Berlekamp–Massey algorithm

Recall that the computations of the Berlekamp–Massey algorithm reside primarily
in the two equations

r =
n−1∑
j=0

f
(r−1)
j ar−j ,[

f (r)(x)
t (r)(x)

]
=

[
1 −
rx

−1
r δr (1 − δr)x

][
f (r−1)(x)
t (r−1)(x)

]

=
[

1 −
rx

−1
r δr (1 − δr)x

]
· · ·

[
1 −
1x

−1
1 δ1 (1 − δ1)x

][
1
1

]
.

Consequently,

F(r)(x) =
[

1 −
rx

−1
r δr (1 − δr)x

]
· · ·

[
1 −
1x

−1
1 δ1 (1 − δ1)x

]
.

It serves just as well to update F(r)(x) as it does to update f (r)(x) and t (r)(x), although
updating F(r)(x) directly can involve about twice as many multiplications because it
has four elements rather than two. We accept the greater number of multiplications for
now because, in this form, the computation is amenable to a doubling strategy. The
penalty can be overcome later by a reorganization of the computations.

The recursive form of the Berlekamp–Massey algorithm is built around the equations

r =
n−1∑
j=0

F
(r−1)
11,j ar−j +

n−1∑
j=0

F
(r−1)
12,j ar−j ,

F(r)(x) =
[

1 −
rx

−1
r δr (1 − δr)x

]
F(r−1)(x),

which is equivalent to the earlier form.
To split the algorithm into halves, suppose that n is even, and let

F(n)(x) = F′(n)(x)F′′(n/2)(x),

where

F′(n)(x) =
(n/2)+1∏

r=n

[
1 −
rx

−1
r δr (1 − δr)x

]
,

F′′(n/2)(x) =
1∏

r=n/2

[
1 −
rx

−1
r δr (1 − δr)x

]
.

We will compute the two halves separately, and then multiply the two halves together.
This will entail less work than the original organization. This revision means that we
will also need to reorganize the equations for
r . Think of
r as the rth coefficient of

258 Fast algorithms for solving Toeplitz systems

the first component of the two-vector of polynomials[

(x)

′(x)

]
=

[
F

(r−1)
11 (x) F

(r−1)
12 (x)

F
(r−1)
21 (x) F

(r−1)
22 (x)

][
a(x)
a(x)

]
.

Hence, for r larger than n/2,[

(x)

′(x)

]
= F′(r−1)(x)F′′(n/2)(x)

[
a(x)
a(x)

]
= F′(r−1)(x)a(n/2)(x),

where

a(n/2)(x) = F′′(n/2)(x)

[
a(x)
a(x)

]
.

This completes the splitting of the Berlekamp–Massey algorithm. The basic algorithm
now is written

r =
n−1∑
j=0

F
(r−1)
11,j a1,r−j +

n−1∑
j=0

F
(r−1)
12,j a2,r−j ,

F(r)(x) =
[

1 −
rx

−1
r δr (1 − δr)x

]
F(r−1)(x),

where F(r)(x) may represent either F′(r)(x) or F′′(r)(x), and (a1(x), a2(x)) represents
(a(x), a(x)) in the first half of the computation and is updated to a(n/2)(x) in the
second half of the computation. After both halves are completed, F(n)(x) is obtained
by multiplying its two halves.

The Berlekamp–Massey algorithm split into two halves is shown in Figure 7.7.
Notice that each of the halves is itself a Berlekamp–Massey algorithm. Hence, if n/2 is
even, the two halves can, in turn, be split. If n is a power of two, then the splitting can
continue until pieces that are only one iteration long are reached. These are executed
but are not quite trivial.

Figure 7.8 shows the Berlekamp–Massey algorithm in a fully recursive form. All
of the computational work is in the polynomial products that combine the two halves.
These are convolutions, and they can be computed by any algorithm for linear convo-
lution.

To estimate the complexity of the recursive Berlekamp–Massey algorithm, notice
that the number of multiplications used by iteration m is twice the number of mul-
tiplications used at iteration m − 1 plus 2n log n multiplications for the polynomial
products. The number of multiplications grows more slowly than the recursion,

M(n) = 2M(1
2n) + 2n log n,

259 7.5 An accelerated Berlekamp–Massey algorithm

Initialize

()
()

()
a x

x
a x

a

Exit after
/ 2 iterationsn

() () ()
() ()
x x x
x x

a F a
F F

Exit after
 iterationsn

11 12

() () ()
() ()

x x x
f(x) = F x F x

F F F

Berlekamp–
Massey

algorithm

Update
()xF

Exit

Enter

Figure 7.7 Splitting the Berlekamp–Massey algorithm

No

Call procedure bermas

1
?

n

Push down a copy of
(), ()a x F x

Yes

Enter procedure bermas

() () ()
() ()

a x F x a x
F x F x

Call procedure bermas

() () ()
 2
F x F x F x

n n

Pop up a copy of
(), ()a x F x

Exit

Single iteration of
Berlekamp–Massy

algorithm

Start

11 12() () ()f x F x F x

Initialize

Call procedure bermas

Halt

/ 2n n

Figure 7.8 Recursive Berlekamp–Massey algorithm

260 Fast algorithms for solving Toeplitz systems

where n = 2m. Let f (m + 1) = M(2m) so that

f (m + 1) = 2f (m) + 2m2m.

This recursion is approximately satisfied by f (m) = m2m log m. To show this,

f (m + 1) = (m + 1)2m+1 log(m + 1)

≈ (m + 1)2m+1 log m

= 2f (m) + 2 · 2m log m.

Then, with n = 2m, this gives

M(2n) = 2M(n) + 2n,

which grows at the rate of our recursion. Thus, because n = 2m, we conclude that the
asymptotic complexity of the accelerated Berlekamp–Massey algorithm is on the order
of n log n log(log n).

Problems for Chapter 7

7.1 Use the Levinson algorithm to solve the following equation in GF(7):
1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1

f0

f1

f2

f3

 =

4
2
1
3

 .

7.2 Rederive the Levinson algorithm in the complex field for the case in which the
matrix A is hermitean.

7.3 Suppose that the sequence a that forms the input to the Berlekamp–Massey
algorithm is known to be periodic with period N much larger than 2n.
a Show how to find all of a, given only its first 2n components.
b Suppose that A, the Fourier transform of a, is given instead of a. Show how

the Berlekamp–Massey algorithm can be modified to use A directly without
explicitly computing an inverse Fourier transform.

7.4 Apply the Berlekamp–Massey algorithm to the input sequence

(a0, a1, . . . , a7) = (0, 0, 0, 0, 0, 0, 0, 1)

to find a solution, f , that has length greater than four. Does the solution depend
on the field F ? Does the solution hold for the rational field? This is an example of
how the Berlekamp–Massey algorithm will produce an autoregressive filter even
when the original Toeplitz matrix is singular.

261 Notes

7.5 Use the euclidean algorithm to solve the equation3 2 1
3 3 2
2 3 3

f1

f2

f3

 = −

3
2
1

 .

7.6 Prove that the recursions of the Levinson algorithm can be carried out if and only
if the nested principal submatrices are all nonsingular.

7.7 Give a condition that avoids any degeneration of the Durbin algorithm.

Notes for Chapter 7

The first fast algorithm for inverting Toeplitz systems was given by Levinson (1947).
He was immediately concerned with applications to Wiener filtering problems rather
than with the development of fast algorithms in general. Additional fast algorithms for
solving other Toeplitz systems were given by Durbin (1960), by Trench (1964), and
by Berlekamp (1968). The development of the Trench algorithm was simplified by
Zohar (1974). Massey (1969) simplified Berlekamp’s algorithm, reformulating it as a
method of designing linear feedback shift registers. Welch and Scholtz (1979) presented
another view of this algorithm as a continued fraction. The recursive Berlekamp–
Massey algorithm is from Blahut (1983b). The method of using the euclidean algorithm
to solve a certain Toeplitz system of equations is due to Sugiyama, Kasahara, Hirasawa,
and Namekawa (1975). The use of doubling to accelerate the euclidean algorithm when
solving Toeplitz systems was studied by Brent, Gustavson, and Yun (1980).

It is not surprising that fast algorithms for solving Toeplitz systems have connections
with many other problems. When its steps are written in reverse order, the Levinson
algorithm becomes an algorithm known as the Schur–Cohn criteria for testing stability
of the autoregressive filter represented by the polynomial a(x). This connection was
noticed by Vieira and Kailath (1977).

The length of this chapter would quickly double if we were to also discuss solving
generalizations and specializations of Toeplitz matrices such as block-Toeplitz matrices
or nearly Toeplitz matrices. A sample of this work can be found in the papers of Wig-
gins and Robinson (1965); Dickinson (1979); Dickinson, Morf, and Kailath (1974);
Friedlander, Morf, Kailath, and Ljung (1979); Morf, Dickinson, Kailath, and
Vieira (1977); and Monden and Arimoto (1980).

8 Fast algorithms for trellis search

A finite-state machine that puts out n elements from the field F at each time instant
will generate a sequence of elements from the field F . The set of all possible output
sequences from the finite-state machine can be represented on a kind of graph known
as a trellis or, if the number of states is very large, on a kind of graph known as a
tree. There are many applications in which such an output sequence from a finite-state
machine is observed with errors or in noise, and one must estimate either the output
sequence itself or the history of the finite-state machine that generated that sequence.
This estimation task is a problem in searching a trellis or a tree for the particular path
that best fits a given data sequence. Fast path-finding algorithms are available for such
problems. This part of the subject of signal processing is quite different from other
parts of signal processing. The trellis searching algorithms, which we introduce in
this chapter, are quite different in structure from the other algorithms that we have
studied.

Among the applications of trellis-searching and tree-searching algorithms are: the
decoding of convolutional codes, demodulation of communication signals in the pres-
ence of intersymbol interference, demodulation of partial response waveforms or differ-
ential phase-shift-keyed waveforms, text character recognition, and voice recognition.

8.1 Trellis and tree searching

A finite-state machine consists of a set of states, a set of transitions between the states,
and a set of output symbols from a field F assigned to each transition. A simple
finite-state machine is given by the shift register shown in the example of Figure 8.1.
The state of the machine in this example is specified by the two bits stored within the
shift-register stages. The two bits specify one of four states. The finite-state machine
changes state at each discrete instant, referred to as a clock time, as directed by the
new input symbols. The input consists of two bits at each clock time, so the input can
take one of four values. Thus there are four transitions leaving each state and going
to a new state. For this particular example, it is possible to go directly from any state
to any other state and there are four transitions entering each new state. The output of

262

263 8.1 Trellis and tree searching

Three-bit
output

Two-bit
output

Figure 8.1 One kind of finite-state machine

Figure 8.2 Another finite-state machine

the finite-state machine is a function of both the state and the input. In the circuit of
Figure 8.1, there are three output bits computed from the two input bits and the two
state bits using modulo-two adders (exclusive- or gates). Thus every state transition is
associated with a three-bit pattern as the output.

Another example of a finite-state machine is shown in Figure 8.2. At each clock
time, there is a single input bit, which specifies one of two possible transitions. For this
example, it is not possible to go directly from any state to any other state. Two clock
times will sometimes be needed to move from one state to some other state. The circuit
of Figure 8.2 has two bits as its output.

A state-transition diagram for a finite-state machine is shown in Figure 8.3. The
nodes represent the states. The transitions are labeled with vectors of length two. At
each time instant, the finite-state machine makes a transition between states across one
of the paths of the state-transition diagram and emits the label on the transition path.
The transition diagram in Figure 8.3 is the right one for the circuit of Figure 8.2. Then
the labels are two-bit patterns.

A graph known as a trellis can usefully describe the output sequence of any finite-
state machine. A trellis may be regarded as a state-transition diagram embellished with
a time axis. A typical trellis with two branches leaving each node is shown in the

264 Fast algorithms for trellis search

1 1(,)v v

2 2(,)v v

3 3(,)v v

4 4(,)v v
6 6(,)v v

5 5(,)v v

7 7(,)v v

8 8(,)v v

00

10

01

11

Figure 8.3 State-transition diagram

Figure 8.4 A simple trellis

diagram of Figure 8.4. In general, a trellis could have more branches leaving each
node, say q branches. The nodes in each column of the trellis represent the set of
possible states of the finite-state machine at that time instant. The subsequent column
represents the same possible set of states at a subsequent time instant. The set of
branches between two columns of nodes is called a frame. The branches of a frame
represent all of the transitions that are possible during that time interval. In general, a
trellis is a graph whose nodes are in a rectangular grid, semi-infinite to the right. The
configuration of the branches connecting each column of nodes to the next column of
nodes on its right is the same for each column of nodes. Usually, nodes at the beginning
of the trellis on the left are not shown if they cannot be reached by starting at the top
left node and moving only to the right. The constraint length ν of the trellis is the
number of bits (or symbols) needed to specify the state of the trellis. The trellis of
Figure 8.4 has a constraint length of two. The number of nodes in each column is 2ν

(or qν).
In each frame, the finite-state machine changes state. This is represented in the trellis

by a branch to the next node. In Figure 8.5, each branch of the trellis is labeled. In

265 8.1 Trellis and tree searching

1 1 1 1(,)(,)v v v v
00

10

01

11
8 8(,)v v

2 2(,)v v

3 3(,)v v

4 4(,)v v

Figure 8.5 A labeled trellis

general, each branch of the trellis is labeled with n numbers from the field F for some
fixed n. The set of branches composing a frame will normally have the same labels
from frame to frame. (In some instances, the set of labels may vary from frame to
frame.) There are many paths along which the finite-state machine can move through
the trellis from left to right. Along each such path, it passes along the branches, each
branch labeled with n numbers from the field F , and this sequence of numbers labeling
the branches of the path becomes the output of the finite-state machine.

Let c = {ci, i = 0, . . .} be the sequence of symbols of the field F produced by
the finite-state machine. Each path through the trellis corresponds to a different path
sequence c labeling the branches of that path. Let v = {vi, i = 0, . . . , } be a sequence
of symbols from F . We shall refer to v as the source sequence, and each ei = vi − ci

as an error term. We may then say that the source sequence v is the path sequence c
observed in an additive error sequence e.

The task of searching the trellis is to find that path through the trellis whose sequence
of labels c agrees most closely with the given source sequence v. Usually, there is no
path whose labels agree exactly with v, and one must find the path that agrees most
closely. To measure the closeness of agreement between two sequences, we shall define
a distance measure.

A distance function d(α, β) on the set S is a real-valued function on pairs of elements
of S that satisfies the following properties: d(α, β) ≥ 0, d(α, α) = 0, and d(α, β) =
d(β, α). If the function also satisfies d(α, β) ≤ d(α, γ) + d(γ, β) for all γ in S, then
d(α, β) is called a metric, which is a stronger term than distance. The euclidean distance
is a distance on a vector space of n-tuples over the real field. The euclidean distance is
given by

d(v, w) =
n−1∑
i=0

(vi − wi)
2.

The Hamming distance is an alternative distance on the space of n-tuples over any set.
The Hamming distance between v and w is defined as the number of places i at which
vi �= wi .

When using the euclidean distance or the Hamming distance as the sequence
distance, the Viterbi algorithm can be regarded as a nonparametric algorithm. The

266 Fast algorithms for trellis search

Figure 8.6 A tree with two branches per node

algorithm then does not use a probabilistic model of the data, nor does its response to
any given input sequence depend on the probabilistic model that actually generated that
sequence. The algorithm examines all possible paths and chooses the path sequence
that is closest to the source sequence in the chosen sequence distance.

Consider the first � frames of a trellis. Each path, � frames in length, through the
trellis specifies a vector of length �n over the field F , where n is the number of symbols
labeling each branch. If there are q paths leaving each node, then there are q� such
vectors of length �n corresponding to the q� distinct paths through the first � frames of
the trellis. The problem of searching a trellis is the problem of finding which of these
vectors, �n symbols long, is the closest in the chosen sequence distance to a source
sequence v that also is �n symbols long.

The method of trellis search that is easiest to understand simply computes the distance
from the given source sequence v to each of the q� sequences produced by the trellis,
and then finds the smallest distance in this list of distances. We can imagine simply
laying the given source sequence v along every possible path through the trellis and
comparing it to that path sequence. This procedure has complexity that is exponential
in �, so it is not practical if � is large. Usually, � is so large as to appear infinite;
a practical algorithm cannot look at the entire source sequence at the same time. A
practical algorithm starts at the beginning of the trellis and works its way along the
sequence, making irrevocable decisions as it goes.

In some cases, the number of states of the finite-state machine is large. The number
of nodes in each frame of the trellis is large as well, sometimes so large that we do
not think about the finiteness of the number of nodes. Then the initial part of the trellis
continues to grow, and we ignore the fact that paths do recombine eventually when the
finite-state machine revisits a state. This is reasonable because we can look at only tiny
pieces of the trellis at one time. Then the appropriate picture to think of is the tree as
shown in Figure 8.6. The number of nodes in a tree grows without limit. Sequential
algorithms, discussed in later sections, will efficiently search a tree.

267 8.2 The Viterbi algorithm

8.2 The Viterbi algorithm

If the optimal path through a graph from point A to point C passes through point B,
then the segment of the path from point B to point C coincides with the optimal path
from point B to point C. This is an evident and well-accepted optimality principle for
finding a path in a graph. A trellis is a kind of graph, so this principle applies to finding
the best path through a trellis. An iterative procedure for applying this principle to find
the best path through a trellis is known as the Viterbi algorithm. The key to studying
the Viterbi algorithm is to recognize that at each node the Viterbi algorithm does not
look forward, asking to which node the preferred path should go to next. Rather, it
looks backward, asking at each node how the path might have gotten to that node if it
actually did get there. If, for every node in the �th frame, the path to that node takes
the same branch in the first frame, the Viterbi algorithm concludes that the common
branch was, indeed, the branch taken in the first frame.

The Viterbi algorithm for searching a trellis with q branches per node and constraint
length ν iteratively updates a set of qν path candidates. The complexity of the algorithm
is proportional to qν . Thus, the algorithm is practical only for small ν. For a constraint
length of ten and two branches per node, the Viterbi algorithm iterates a set of 1024
candidate paths. This is practical, but a constraint length of twenty needs to iterate
more than one million candidate paths, so it is not practical.

The Viterbi algorithm operates iteratively frame-by-frame tracing through the trel-
lis. At frame time �, the algorithm does not yet know which node the closest path
reached, nor does it try to find this node yet. Instead, the algorithm determines the
best path from the starting node to each node in the �th frame, and also deter-
mines the distance between each such best path sequence and the source sequence.
This distance is called the discrepancy of that path. If all of the qν best paths pass
through the same node in the first frame, the algorithm has found the first frame of
the minimum-distance path, even though it has not yet decided anything about the �th
frame.

Then the algorithm determines each of the candidate paths to each of the new nodes
in frame � + 1. But, to get to any one of the nodes in frame � + 1, the path must pass
through one of the nodes in frame �. One can get the candidate paths to any new node
by extending to this new node each of the old paths that can be so extended. The
minimum-distance path is found by adding the incremental discrepancy of each path
extension to the discrepancy of the best path to the node in frame �. There are qk such
candidate paths to each of the qν new nodes, and the candidate path with the smallest
discrepancy is then chosen as the minimum-distance path to the new node. This process
is repeated for each of the nodes in frame � + 1. At the end of the computations for this
frame, the algorithm has found a minimum-distance path to each of the nodes in frame
� + 1. Again, if all of these paths pass through the same node in the second frame, the

268 Fast algorithms for trellis search

Decoding Window

Figure 8.7 Conceptualizing the Viterbi algorithm

Viterbi algorithm has now successfully found the best branch in the second frame of
the trellis.

This process continues through successive frames. If there is a tie for the minimum-
distance path to a given node, the algorithm can either break the tie by using any
arbitrary rule, or simply provide both possible data sequences as its output.

To implement the Viterbi algorithm, one must choose a decoding window width b,
usually several times as large as the constraint length ν, and validated by simulation.
At frame time �, the algorithm examines all surviving paths. If they agree in the first
frame, this is the first frame of the estimated path. The first frame can be passed out
to the user. Next, the algorithm drops the first frame and takes in a new frame of data
for the next iteration. If, again, all surviving paths pass through the same node of the
oldest surviving frame, then this frame is now known. The process continues in this
way, stepping through the frames indefinitely.

If b is chosen large enough, then a well-defined decision will almost always be made
at each iteration. Occasionally, there will be a decision still pending in the frame about
to be lost, either because there is a tie for the minimum-distance path or because the
decoding window width b is too small to yet make a decision, but this is rare. In a
well-designed system, this happens negligibly often.

As the algorithm progresses through many frames, the accumulating discrepancies
continue to increase. To avoid overflow problems, they must be reduced occasionally. A
simple procedure is to periodically subtract a number, such as the smallest discrepancy,
from all of them. This does not affect the choice of the maximum discrepancy.

It may be helpful to think of the Viterbi algorithm as a display in a window through
which a portion of the trellis may be viewed, as shown in Figure 8.7. One can see only
a finite-length section of the trellis in the window, and on this trellis section are marked
the surviving paths, each labeled with a discrepancy. As time increases, the trellis slides
to the left within the decoding window, new nodes appear on the right and some old
paths are extended to them. Other old paths vanish, and an old column of nodes on the
left is shifted out of sight. By the time a column of nodes is lost on the left side, only
one of its nodes will have a path through it, except for rare exceptions.

269 8.2 The Viterbi algorithm

00 00 00 00 00 00

11 11 11 11 11 11
11 11 11 11

10 10 00 10 00 10 00 10 00

01 01 01 01 01

01 01 01 01
10101010

3210

Iteration 3

0 4321

2
2
2
2

Iteration 4

3
3
2
2

Iteration 5

2

Iteration 6

3
2
4
4

Iteration 7

3
Iteration 8

151413121110987654321

3
5
6
6

Iteration 15

3
5
6
6

Iteration 14

3
5
6
6

Iteration 13

3
3
4
4

Iteration 9

3
4
4
4

Iteration 10

3
4
5
5

Iteration 11

3
5
6
6

Iteration 12

01 11 10 01 01 00 00 00 00

0

14131211109876543210

4
3
3

3
3

3

54321

131211109876543210

1211109876543210

11109876543210

109876543210

9876543210

6543210

7654321

87654321

Figure 8.8 Sample of a Viterbi algorithm

An example is shown in Figure 8.8. To keep the example simple, the labels on the
trellis are binary, as is the data sequence, and the sequence distance is the Hamming
distance. We choose a window width b equal to fifteen. Suppose that the dataword is

v = 10100000100000000000000000 . . .

We shall find the path through the trellis that most closely agrees with v.
The sequence of states is shown in Figure 8.8. At the third iteration, the algorithm

has already identified the shortest path to each node of the third frame. At iteration �,
the algorithm finds the shortest path to each node of frame � by extending the paths
already formed to each node of frame � − 1 and keeping the path to each node that
has the smallest Hamming distance from the data sequence. In the example, ties are

270 Fast algorithms for trellis search

retained until they are eliminated by a better path or until they reach the end of the
buffer memory. In the example, the first bit of the sequence closest to the given data
sequence is not found until iteration 15. At iteration 15, the initial sequence has been
found to be 1101101001

The algorithm, shown symbolically in Figure 8.8, might look very different in
its actual implementation. For example, the active paths through the trellis could be
represented by a table of four 15-bit numbers. At each iteration, each of the 15-bit
numbers is shifted left, dropping the leftmost bit and appending a zero or a one at the
right. Then, of the resulting list of eight sequences, four sequences are dropped from
the table so that the list again consists of one path to each node.

8.3 Sequential algorithms

The Viterbi algorithm can search a small trellis for the best path, but it is an impractical
way to search a large trellis. For a trellis with a constraint length of ten, the Viterbi
algorithm must store 1024 candidate paths. For a trellis with a constraint length of
twenty, the Viterbi algorithm must store more than a million candidate paths, which is
clearly unreasonable. For a longer constraint length, say a constraint length of forty, one
devises a strategy that searches only the probable paths through the trellis, and ignores
the improbable paths. Strategies for searching only those paths through a trellis that
appear to be likely are known collectively as sequential algorithms. Every sequential
algorithm is a backtracking algorithm to visit unexplored paths when the current path
no longer appears to be likely. The complexity of a sequential algorithm depends only
weakly, or not at all, on the constraint length of the underlying sequences. Thus because
a trellis with 240 states is so wide compared to the length of the trellis that is explored,
sequential algorithms could just as well be searching a tree as searching a trellis. It is
unlikely that two paths that remerge will both be explored.

A sequential algorithm works its way forward in the trellis by exploring only a
relatively small number of paths through the trellis and advancing only on the promising
paths. Occasionally, a sequential algorithm will decide to backtrack in the trellis and to
then explore paths that were previously ignored. It may even backtrack a considerable
distance in the trellis, but it can only backtrack as far as symbols of the source sequence
have been retained. Old symbols are overwritten when the buffer is full, and at the time
of the overwriting the algorithm must have already decided on the corresponding
branch. If the computations of the algorithm have still not decided on a branch for
this frame, then there is a buffer overflow and the algorithm has failed. This failure
probability can always be made smaller, but not eliminated, by making the buffer larger.

Consider a trellis with a large constraint length, perhaps a constraint length of forty.
This trellis must be searched out through several hundred frames to make a firm decision
on the first frame. The number of nodes in each frame is immense. There are 240 such

271 8.3 Sequential algorithms

nodes in each frame – approximately one thousand billion. The sequential algorithm
must find the path through this trellis whose sequence of labels most closely matches
the given sequence; at least it should do this with very high probability, although we
shall allow it to occasionally fail to find the correct path because of buffer overflow.
This kind of failure is not because the data is inconclusive, but because the processing
of the data is incomplete. It is an error mode not found in the Viterbi algorithm.

A sequential algorithm looks at the first frame, chooses the tree branch closest in
distance to the data in the first frame, and proceeds to a node at the end of that branch. It
then repeats this procedure, chooses a branch leaving the selected node, and proceeds
to a node at the end of that branch. At the end of each iteration, it has reached a single
node. In the next iteration, based on the next dataframe, it chooses a branch leaving
that node, and again proceeds to a single node at the end of the next frame. In this
way, it traces a path through the tree. This procedure will work fine if the given data
sequence agrees exactly with the labels on some path through the tree. However, if
there are disagreements, the sequential algorithm will occasionally choose the wrong
branch. As the algorithm proceeds past a wrong choice, it will suddenly perceive that
it is finding large discrepancies in every frame and will eventually presume it is on
the wrong path. A sequential algorithm will back up through the last few frames to
explore alternative paths, perhaps backing up through a few more frames, and even
more frames until it finds a likely path on which to move forward. It then proceeds
along this alternative path. The rules controlling the search are developed below.

The performance depends on the decoding window width b. When the algorithm
has found a path that penetrates b frames into the tree, it makes an irrevocable decision
regarding the oldest frame, outputs the estimated data symbols of this frame to the user,
and shifts a new dataframe into its window.

There are two classes of sequential algorithm in use: the Fano algorithm, which we
study in Section 8.4 and the stack algorithm, which we study in Section 8.5. These
algorithms are quite different in structure. The stack algorithm has less computation
than the Fano algorithm. The stack algorithm keeps a list of the paths it has already
searched. This is in contrast to the Fano algorithm, which may search its way out to a
node, then back up some distance only to repeat in detail the search out to the same
node, and recomputing the same quantities as before because they were not saved.
The stack algorithm keeps better records so that it need not repeat unnecessary work.
On the other hand, the stack algorithm needs considerably more memory and does a
considerable amount of list management during each iteration.

A sequential algorithm does not search all paths, so it cannot know for certain that
there is not a better path somewhere in the trellis. It must decide that it is on the wrong
path only from paths that it has already examined and based on prior information.
This means that a sequential algorithm must be given a prior statistical model. If the
prior model predicts an average discrepancy that is too large, the algorithm will be
insensitive and will not backtrack soon enough. If the prior model predicts an average

272 Fast algorithms for trellis search

discrepancy that is too small, the algorithm will be too sensitive and will backtrack
excessively often.

The path discrepancy measures the distance between a segment of the source
sequence and an initial segment of each path sequence of the same length. There
are many different measures of distance that are in use with sequential algorithms.
Whenever the source sequence consists of a path sequence disturbed by additive noise
that is described by a known probability distribution, then it is appropriate to use this
probability distribution to define a distance. The resulting distance measure is known
as the Fano distance, which we now derive.

The appropriate definition of the discrepancy of a path is the log-likelihood function
of that path, a function that is defined as follows. The first N + 1 frames of symbols of
the source sequence are written as

v(N) = (v1
0, . . . , v

n
0 , v1

1, . . . , v
n
1 , . . . , v1

N, . . . , vn
N)

with the subscripts indexing frames and the superscripts indexing symbols within a
frame. The first m + 1 frames of symbols labeling any path sequence can be written as

c(m) = (c1
0, . . . , c

n
0, c

1
1, . . . , c

n
1, . . . , c

1
m, . . . , cn

m).

The probability that v(N) is the source sequence when c(m) is the path sequence is
denoted Pr[c(m)|v(N)]. The sequential algorithms should find the path segment that
maximizes Pr[c(m)|v(N)]. It chooses the initial path segment of length m + 1 frames
without looking further out in the tree.

By the Bayes formula,

Pr(c(m)|v(N)) = Pr(v(N)|c(m))Pr(c(m))

p(v(N))

because the paths are to be used with equal probability. The term Pr(c(m)) is a constant.
It can be deleted without affecting which path achieves the maximum.

The term Pr(v(N)|c(m)) can be broken into two factors:

Pr(v(N)|c(m)) =
 m∏

i=0

n∏
j=1

p(vj

i |cj

i)

 N∏
i=m+1

n∏
j=1

p(vj

i)

 .

The first factor is a product distribution involving the conditional probabilities over
the first m + 1 frames of the true path. The second factor is a product distribution
of unconditional probabilities over the frames where the path is not yet specified.
The factorization takes this form as a consequence of the definition of a sequential
algorithm.

Now maximize

Pr(v(N)|c(m))

Pr(v(N))
=

[∏m
i=0

∏n
j=1 p(vj

i |cj

i)∏m
i=0

∏n
j=1 p(vj

i)

]

273 8.3 Sequential algorithms

over path sequences. The Fano distance is defined as the log function

dF(v(m), c(m)) = log

[
Pr(v(N)|c(m))

Pr(v(N))

]

=
m∑

i=0

 n∑
j=1

log
p(vj

i |cj

i)

p(vj

i)

 ,

where v
j

i is the j th symbol of the source sequence in the ith frame, and c
j

i is the j th
branch symbol in the ith frame of the path sequence c. The outer sum is a sum over the
m observed frames. The inner sum is the contribution to the Fano distance from the ith
frame:

dF(vi, ci) =
n∑

j=1

log
p(vj

i |cj

i)

p(vj

i)
.

The sum on n runs over the n branch labels of the branch taken in frame i. This term
can be either positive or negative. In the ith frame, only the term dF(vi, ci) needs to
be computed for each branch considered. The Fano path distance through the first i

frames of a given path is obtained by adding the Fano distance increment on the ith
branch to the cumulative Fano distance of the path leading to that branch.

The number of computations that a sequential algorithm makes to advance one frame
deeper into the source sequence is a random variable because of the wide variability
in the amount of backtracking. This is the characteristic behavior of a sequential
algorithm. It is the major factor affecting the complexity required to achieve a given
level of performance. When there is little noise, the algorithm may proceed along the
correct path using only the computations of that frame to advance one node deeper
into the tree. However, when the noise is severe, the algorithm may proceed along an
incorrect path and may become delayed by exploring a large number of wrong paths
before finding the correct path. The variability in the number of computations means
that a large memory is required to buffer the incoming data. Any buffer of finite size,
no matter how large, when used with a sequential algorithm has a nonzero probability
of overflowing. This behavior must be considered in performance calculations. Buffer
overflow is a consideration in any backtracking algorithm that performs at least one
computation at each node that it visits, and that examines branches sequentially so
that at any node the algorithm does not use data on branches deeper in the tree. These
conditions lead to the characteristic behavior of sequential algorithms.

In contrast to the Viterbi algorithm, which can be used as a nonparametric algorithm,
the sequential algorithms require an adequate model, usually a probabilistic model,
describing the source sequence. Therefore, the sequential algorithms can be regarded
as parametric algorithms.

274 Fast algorithms for trellis search

8.4 The Fano algorithm

The Fano algorithm is a sequential algorithm that uses more computation but less
storage than the stack algorithm. This is because it often needs to recompute what it
has recently discarded, and perhaps it may even recompute the same thing and discard
it many times. The Fano algorithm backtracks when the observed distance between
the path it is following and the source sequence is too much larger than expected. This
distance is called the discrepancy. The Fano algorithm requires that there is enough
statistical regularity in the per-frame discrepancy, and requires a good estimate of the
average per-frame discrepancy d with respect to the correct sequence. As long as the
Fano algorithm is following the right path, it expects to see a discrepancy of about d�

through the first � frames. The Fano algorithm will allow a discrepancy a little larger
than this, but if it is too much larger, it concludes that it is following the wrong path
and so it backtracks to look for another path.

Choose a parameter d
′
larger than d and define1

t(�) = d
′
� − d(�),

where d(�) is the measured discrepancy between the source sequence and the current
candidate path sequence through the tree. For the correct path, by the law of large
numbers, d(�) is approximately d�, and t(�) is positive and increasing. As long as t(�)
is increasing, the Fano algorithm continues threading its way through the tree. If ever
t(�) decreases by an unacceptable amount, the algorithm concludes that at some node
it might have chosen the wrong branch. It backtracks through the tree and tests other
paths. It may find a better path and follow it, or it may return again to the same node,
but now with more confidence and continue past it, perhaps permanently, or perhaps
it will backtrack again. To decide when t(�) shows an unacceptable decrease, the
Fano algorithm uses a running threshold T , which is always a multiple of a threshold
quantization increment,
. As long as the algorithm is moving forward, it keeps the
threshold as large as possible, but satisfying the constraints that it is not larger than t(�)
and it is a multiple of
. The quantization of the running threshold T to a multiple of

 allows t(�) to decrease a little without falling below the running threshold.

The Fano algorithm requires that, at each node, the q branches leaving that node
be ordered according to some rule. The ordering rule assigns an index j for j =
0, . . . , q − 1 to each branch. This index need not be stored for each branch. It is only
necessary that the rule be known so that when the algorithm backs up to a node along
the branch with known index j , it can reorder the branches by the rule, find branch j ,
and thence find branch j + 1. An appropriate rule is the minimum-distance rule. The
branches are ordered according to their distance from the corresponding frame of the

1 We have chosen the sign convention so that a positive sign occurs when the algorithm is performing properly.

275 8.4 The Fano algorithm

Initialize with single path of length zero

Exit: Path is on top of stack

YesNo

Extend the top path to nodes.
Update metric of each new path

q

Insert new paths into listq

Is top path
at end of tree?

Enter

Figure 8.9 Shift-register implementation of Fano algorithm

dataword, and ties are broken by any convenient subrule. However, the algorithm will
work if the branches are assigned any fixed order.

To ease the understanding of the structure of the algorithm, it is best to leave the
ordering rule unspecified; we only suppose that, at each node, the branch that is closest
in distance to the source branch is ordered first. The algorithm will search the branches
out of each node according to the chosen order.

A shift-register implementation of the Fano algorithm is outlined in Figure 8.9. The
implementation consists of a replica of a finite-state machine for the trellis at hand.
The finite-state machine is augmented with auxiliary storage registers. The algorithm
attempts to insert symbols into the replica of the finite state machine in order to generate
a source sequence that is sufficiently close to the data sequence. At each iteration, it has
immediate access to the content of the latest frame entered into the replica finite-state
machine. It can increment the symbol in this frame, or it can back up the content to an
earlier frame, or it can shift in a new frame. It decides what to do based on a comparison
of t(�) with the running threshold T .

The Fano algorithm is shown as a flow diagram in simplified form in Figure 8.10.
When the data sequence is close to a possible source sequence, the algorithm will circle
around the rightmost loop of Figure 8.11 and, in each loop, shift all the registers of
Figure 8.10 one frame to the right. As long as t(�) remains above the threshold, the
algorithm continues to shift right and continues to raise the threshold to keep it tight. If
t(�) drops below the threshold, the Fano algorithm will test alternative branches in that
frame trying to find one above the threshold. If it cannot, it backs up. Once it begins to
back up, the logic will force it to continue to back up until it either finds an alternative
path that stays above the current threshold or until it finds the node at which the current
threshold was set. Then it moves forward again with a lowered threshold, but now the
threshold is not raised again until the Fano algorithm reaches new nodes previously
unexplored. Each time it passes through the same node while moving forward, it has a
smaller threshold. It will never advance to the same node twice with the same threshold.

276 Fast algorithms for trellis search

t
T

1
?

M

1
?

t T

T T

1
0

 1
0 0
0

t M
t
T

Initialization

If possible, increment
latest frame, set

0M
otherwise, back up, set

1 1M

1
?

t T

No

1 1
Start new frame

at first value

M

?
t T

0
?

1
?
b 1

If possible, reduce
both and by

multiple of
T t

Yes No

YesNo

Buffer overflow
go to restart NoNo

Figure 8.10 Flow diagram for the Fano algorithm

Consequently, it can pass through the same node only a finite number of times. This
behavior assures us that the algorithm cannot be trapped in a loop; it must continue to
work forward through the data sequence.

Now we must prove two earlier assertions: that if the Fano algorithm cannot find
an alternative path, it will move back to the node where the current threshold was set
and lower it, and it will not again raise the threshold until reaching a node previously
unexplored. The first assertion is obvious because if the Fano algorithm cannot find
a new branch on which to move forward, it must eventually back up to the specified
node. But, if at any node, the value of t(� − 1) at the previous frame is smaller than the
current threshold T , then the threshold must have been increased at the �th frame. This
is just the test contained in Figure 8.11 to find the node at which the current threshold
was set, and at this node the threshold is now reduced.

To see the second assertion, notice that after the threshold is lowered by
, the Fano
algorithm will search the subsequent branches in exactly the same order as before until
it finds a place where the threshold test previously failed and is now passed. Until
reaching this point, the logic will not allow the threshold T to be changed. This is
because once the threshold is lowered by
, the quantity t(�) will never be smaller

277 8.4 The Fano algorithm

t
T

Perhaps
Not

Notes
 Frames are addressed by

 the frame pointer
 Iterations are all indexed
 Branches out of current

 node are indexed by

1
?

M

1
?

t T

T T

0If possible (when 1)
increment latest frame, set

kj q

Yes See if last
frame was above
threshold

Previous mode indicator

Did previous iteration shift backward?

 1 if forward
 0 otherwise
1 if backward

M
1
0

 1
0 0
0

t M
t
T

Initialization

No This frame is
where current threshold
was set lower threshold
and move forward

No See if
above threshold

Yes
Continue to try
 new paths

No Try a
different
path

?
t T

Yes See if this node is
in an unexplored part of
tree then move right

1
 0

j j
M

Otherwise, back up, set
1 1M

Recompute j

1
?

t T

Yes Raise threshold
to largest multiple of

 smaller than t

Shift right one frame
1

1M
Start new frame at
first value 0j

Figure 8.11 An annotated Fano algorithm

than T +
 at any node where it previously exceeded the original threshold. When
it penetrates into a new part of the tree, it will eventually reach the condition that
t(� − 1) < T +
, while t(�) ≥ T . This is the point at which the threshold is raised.
This then is the test to determine if a new node is being visited. There is no need to
keep an explicit record of the nodes previously visited. This test appears in Figure 8.11.

The Fano algorithm depends on the two parameters p′ and
, which can be chosen
by means of computer simulation. In practice, because t(�) and T are increasing, it
will be necessary to reduce them occasionally so that the numbers do not get too large.
Subtraction of any multiple of
 from both will not affect subsequent computations.

In practical implementations, there is also the decoding window width b. Figure 8.11
gives a more complete flow diagram for the Fano algorithm showing the important role
of b. Whenever a frame reaches the end of the buffer, as shown by the frame pointer, it
is passed out of the window, and the frame pointer is decremented so that it is always a
reference to the oldest available frame. The algorithm may occasionally try to back up
so far that it tries to look at a frame that has been passed out. This buffer overflow occurs
when the frame pointer becomes negative. Buffer overflow is the major limitation on
the performance of the Fano algorithm. For many applications, the probability of buffer
overflow decreases very slowly with buffer size, so that no matter how large one makes
b in practice, the problem does not completely go away.

278 Fast algorithms for trellis search

Two ways to handle buffer overflow are available. The most certain way is to
periodically force the finite-state machine through a known sequence of transitions of
length equal to the constraint length. Upon buffer overflow, the algorithm declares a
failure and waits for the start of the next known sequence, where it starts again. All of
the intervening data between buffer overflow and the next start-up is lost. Alternatively,
if the constraint length is not too large, one can just force the pointer forward. The
algorithm will again find the correct path if it can find a correct node. This may be
possible if there is a long enough segment of the dataword that agrees exactly with the
corresponding segment of the source output sequence.

8.5 The stack algorithm

The stack2 algorithm is a sequential algorithm that uses more storage but less compu-
tation than the Fano algorithm. The stack algorithm is easy to explain. The algorithm
maintains a list of paths of various lengths that have already been examined. The entries
in the list are paths in the trellis. The paths are listed in order of increasing discrepancy,
which is defined as the distance of the path from the data sequence. At the top of the list
is the path with the smallest discrepancy. Each entry in the list is a path that is recorded
in two parts: one part is a variable-length sequence of state transitions defining the
path; the other part is the path discrepancy. Initially, the list contains only the trivial
path of length zero. During each step of the iterative algorithm, the path at the top of
the list is removed from the list, then extended to each of its q successor nodes and the
discrepancy is updated for each new path by adding the discrepancy of the appropriate
branch of the new frame. Each of the q new paths is inserted back into the list at a
position determined by its updated discrepancy. In this way, old entries in the list may
be pushed down as new entries are inserted in the appropriate place and other entries
are pushed out at the bottom of the list.

The stack algorithm is shown in Figure 8.12. It has very little computation. The
disadvantage of the stack algorithm is the large buffer memory, as well as the large task
of memory management. To insert a new path into the list requires that the discrepancies
of the existing entries in the list be examined in a systematic manner. Of course, the
entries in memory need not be actually moved within the memory, they can be virtually
moved by means of indirect addressing.

For a simple example of the stack algorithm, we refer to the labeled trellis shown in
Figure 8.13, searching for the path that is closest in sequence distance to the sequence
v = 01 10 01 10 11 The branch distance that has been chosen for this example is
the function d(0, 0) = d(1, 1) = −1 and d(0, 1) = d(1, 0) = 5. This might occur as a

2 This term is standard in this context, but is at variance with the usual definition of a stack as a list that can be
accessed only at the top.

279 8.5 The stack algorithm

Initialize with single path of length zero

Exit: Path is on top of stack

YesNo

Extend the top path to nodes.
Update metric of each new path

q

Insert new paths into listq

Is top path
at end of tree?

Enter

Figure 8.12 Simplified stack algorithm

00 00 00 00 00 00

11 11 11 11 11 11

10 10 10 10
10

01 01 01 01 01

10 10 10 10

Figure 8.13 Labeled trellis for the example

Step 0 1 2 3 4 5 6 7
List −, 0 0, 4 1, 4 10, 2 100, 6 100, 6 1010, 4 10100, 2

1, 4 00, 8 00, 8 101, 6 00, 8 00, 8 00, 8
01, 8 01, 8 00, 8 01, 8 01, 8 01, 8

11, 14 01, 8 1000, 10 1000, 10 1000, 9
11, 14 11, 10 11, 10 11, 10

Figure 8.14 Iterations of stack algorithm

Fano distance for some binary channel, but the Fano distance has been rounded and
scaled.

To illustrate the phenomenon of buffer overflow, we have chosen a list of length
five for the example. A real problem would use a much longer list. As new items are
inserted into the list, some items are pushed down, and the items dropping out the
bottom of the list are discarded.

The iterations of the stack algorithm are summarized in Figure 8.14. At each step, the
entries contained in the list consist of pairs. The first element of the pair identifies the
sequence of branches forming the path through the trellis. This consists of a sequence
of bits specifying the upper or lower path out of each node. A zero specifies the upper

280 Fast algorithms for trellis search

00 00

11
11 11

10

01

00

11

10

00

Figure 8.15 Summary of stack algorithm iterations

path, a one specifies the lower path. Some way of indicating the length of the path
is also needed. In Figure 8.14, the path length is an explicit part of the notation. The
second element of the pair records the path discrepancy. At step 0, the list is initialized
with a path of length zero, and a sequence distance equal to zero, as is shown in the
first entry of Figure 8.14. After five iterations, the stack algorithm has reached the
position shown in Figure 8.15. As the iterations continue past this point, some path of
Figure 8.15 will be lengthened. Perhaps the longest path in Figure 8.15 is the path that
is lengthened. Occasionally the algorithm will return to another path and lengthen that
path for one or more iterations, then possibly returning to the previous path. Possibly
the longest path will split into several paths, each growing a little until one of them
becomes dominant. Eventually the longest path becomes so long that the tree must
be pruned at the root. Normally, when this happens all paths in the list will have the
same first branch because all other paths have been pushed out the bottom of the list
(or soon will be). This means that pruning at the root simply consists of providing the
corresponding information as the current output of the algorithm.

Notice that the list entries in Figure 8.14 are sequences of varying lengths. This is
why the choice of the branch distance must correspond to a probabilistic model for the
generation of v, such as Fano distance. The use of the Hamming distance would give
no extra credit for long runs of correct symbols. With Hamming distance, two paths
of vastly different lengths would be of equal discrepancy if the total number of errors
were the same.

The stack algorithm attempts to find the path that is closest to the data sequence in
the specified branch distance. It attempts this regardless of whether that specific choice
of branch distance is appropriate. However, its performance with regard to this goal
depends on whether that branch distance is appropriate to this goal. If not, the correct
path may fail to find its way to the top of the list. For this reason, the stack algorithm
can be regarded as a parametric algorithm.

8.6 The Bahl algorithm

We now turn to another task of searching a trellis for a rather different purpose than
the purpose that has occupied this chapter until now. The most common instance of

281 8.6 The Bahl algorithm

this new task is the computation of posterior probabilities of branch sets when given
prior probabilities. We shall use this case as a preferred example. We will describe
an algorithm for this computational task known as the Bahl algorithm. The Bahl (or
BCJR) algorithm is a fast algorithm for calculating all of the distances on branch sets
of a trellis.

As does the Viterbi algorithm, the Bahl algorithm searches a trellis, but with a
different purpose. The Viterbi algorithm is given the branch labels and infers the best
path through the trellis matching those branch labels. The Bahl algorithm is given the
path labels and infers the best branch index in each frame based on the path labels.
Whimsically, one may regard the Viterbi algorithm as a way of inferring preferred paths
when given branch specifications, and correspondingly regard the Bahl algorithm as a
way of inferring preferred branch indices when given path specifications.

The goal of the Viterbi algorithm is to find the best path through the trellis when given
independent branch distances on successive frames of the path that add to produce a
path distance. The goal of the Bahl algorithm is to find the best branch index in each
frame when given a certain distance structure on all the paths of the trellis to and from
that frame. We will define this task precisely. It may be surprising that the structures
of the Viterbi algorithm and the Bahl algorithm have a lot of similarity. However, upon
further consideration, this might be expected because the structure of the trellis should
be a primary contributor to the structure of any algorithm on that trellis.

The Viterbi algorithm is normally described for an unterminated trellis, one with a
beginning but no end. In contrast, the Bahl algorithm must be described for a terminated
trellis, one with both a beginning and an end. The Bahl algorithm makes two passes
through the trellis, one pass in the forward direction starting at the beginning and one
pass in the backward direction starting at the end.

The Bahl algorithm and the Viterbi algorithm both move through the frames of
a trellis by an iterative process, so it is not surprising that there are similarities in
the logical structure. Both have a similar pattern of walking the trellis. However, they
perform very different computations. The fundamental computational unit of the Viterbi
algorithm is an “add–compare–select” step. The fundamental computational unit of the
Bahl algorithm is a “multiply–add” step, (or a sum-of-products step). The pattern of
the data flow is similar in the two algorithms, but the executed arithmetic operations
are different.

The Bahl algorithm treats a trellis that has the same number of branches, say qk

branches, leaving each node. At each node, the branches are indexed from 0 to qk − 1.
All branches of the same frame with the same index belong to the same branch set.
These branches all correspond to the same input to the finite-state machine that the
trellis is describing. The goal of the algorithm is to marginalize a global variable on all
paths of the trellis to a local variable on the branches with common indices within a
frame.

282 Fast algorithms for trellis search

0 / 1.1 0 / 1.1 0 / 1.1 0 / 0.1
1 / 0.91 / 0.91 / 0.9

0 / 0.9 0 / 0.9 0 / 0.9 0 / 0.1
1 / 1.11 / 1.11 / 1.1

/0 0a c /1 1a c /2 2a c /3 3a c /4 4a c /5 5a c

0 / 0 0 / 1

Figure 8.16 Trellis for explaining the Bahl algorithm

A trellis for an example of the Bahl algorithm is shown in Figure 8.16. This example
corresponds to a binary communication waveform in which each bit is represented
by a ±1 according to its binary value, and each bit has intersymbol interference
consisting of one-tenth of the previous value. The waveform has a blocklength of
four. The waveform is preceded and followed by zeros in order to begin and end the
trellis.

Let each path through the finite trellis corresponds to a vector c denoting the sequence
of labels on the branches of that path. Each path has such a vector of labels c. The
symbols of c are determined by the sequence of branches forming the path. Thus, we
can regard the symbols of c to be labels, taking values in a specified algebraic field,
on the branches of the trellis. This is illustrated in Figure 8.16. The path through the
trellis is defined by the sequence of indices specifying the branch at each node. In the
binary trellis of Figure 8.16, this branch index is a zero or a one. The sequence of
indices is denoted a = (a0, a1, . . . , an−1). The individual branch index a� alone does
not determine the individual branch label c�, nor does c� alone determine a�. It is only
in the context of the entire trellis path that such an inference can be drawn. Thus we
can write c(a), but not c�(a�).

With the trellis structure and the path sequences a fixed, the input to the algorithm
is a vector v, of length equal to the length of the path label sequences c. The task
of the algorithm is to marginalize a function d(c(a), v) of a and v to the individual
symbols of a. In the usual application, the function d(a, v) is a conditional proba-
bility distribution, which we write as p(a|v) = p(a1, a2, . . . , an|v). The definition of
the underlying probability model, however, does not directly give p(a|v). Rather, the
model gives a probability distribution conditional on c, giving it as a product distribu-
tion p(v|c) = ∏

�=1 p(v�|c�). Then the Bayes formula gives the posterior probability
distribution

p(a|v) = p(c(a)|v) = p(v|c(a))p(a)∑
c p(v|c(a)p(a))

.

283 8.6 The Bahl algorithm

Pr a v

Figure 8.17 Partial computations for the Bahl algorithm

The marginalization of p(a|v) to the single letter a� is

p(a�|v) =
∑
a0

∑
a1

· · ·
∑
a�−1

∑
a�+1

· · ·
∑
an−1

p(a|v)

=
∑
a0

∑
a1

· · ·
∑
a�−1

∑
a�+1

· · ·
∑
an−1

p(v|c(a)).

In the special case that a� can take only the values zero and one, then the task is to
compute p(a� = 0|v) by summing p(a|v) for all paths for which a� = 0, and to compute
p(a� = 1|v) by summing p(a|v) over all paths for which a� = 1. The marginals p(a� =
0|v) and p(a� = 1|v) must be computed for � = 0, . . . , n − 1. For each �, p(a� = 0|v)
and p(a� = 1|v) sum to one, so it is only necessary to compute a common constant
multiple of these two terms. It is convenient to ignore common constants during the
computation, and to rescale the result after the computation so that the two probabilities
sum to one. Accordingly, the denominator in Bayes formula is not relevant. When one
intends to later compute the ratio

� = p(a� = 0|v)

p(a� = 1|v)
,

the step of rescaling may be unnecessary.
The Bahl algorithm starts a computation at each end of the truncated trellis and stores

all partial computations as illustrated in Figure 8.17. The nature of the Bahl algorithm
is suggested by the structure of the partial computations to be stored as is illustrated in
that figure. One partial computation starts at the beginning of the trellis and works its
way forward until it reaches the end of the trellis, storing as it goes the results of all
partial computations. The other partial computation starts at the end of the trellis and
works its way backwards until it reaches the beginning, again storing its results as it
goes.

The branches in the third frame of the trellis in Figure 8.16 are highlighted in order
to discuss the computation of the posterior probability of the third bit. To marginalize
p(a|v) to a3, one must sum the probabilities of all paths of the trellis that have a3 = 0;
these are the paths that end on the top highlighted node at the end of the frame but may

284 Fast algorithms for trellis search

begin at either highlighted node at the beginning of the frame. One must also sum the
probabilities of all paths that have a3 = 1; these are the paths that end on the bottom
highlighted node.

To compute p(a3 = 0|v), referring to Figure 8.16, first sum the path probabilities
over all paths that start at the beginning of the trellis and reach the top node at the end
of the frame of a3, then sum the path probabilities over all paths from that same top
node of the trellis that reach the end of the trellis. Multiply these together. Do the same
for the paths that go through the bottom highlighted node at the end of the frame of a3.
Because p(v|c(a)) is a product distribution, if one also specifies that p(a) is a product
distribution, then the path probabilities, proportional to p(v|c(a)) can be computed by
multiplying terms one-by-one, either starting from the beginning or the end. This leads
to the multiply–add procedure that one-by-one fills the columns labeled α� and β� in
Figure 8.17.

Problems for Chapter 8

8.1 Give a simple expression for the Fano metric for the case in which the differ-
ence between the data sequence and the received sequence is gaussian noise,
independent, and identically distributed from sample to sample.

8.2 Repeat the example of Figure 8.8, now with the input sequence

v = 10001000001000000000

8.3 The Viterbi algorithm can be programmed as an “in-place” algorithm, with path
discrepancies at the ith iteration stored in the same memory locations as path
discrepancies at the (i − 1)th iteration. Set up the addressing sequence and com-
putational sequence that will do this.

8.4 The 2ν surviving paths in the Viterbi algorithm (with q = 2) may be represented
by 2ν b-bit binary words. Typically, b may be on the order of forty bits. Devise
a memory management scheme for the Viterbi algorithm (using such techniques
as bit slices and pointers) that eliminates the necessity to read all 2ν b-bit words
every iteration.

8.5 Develop a flow diagram for the stack algorithm at a level of detail suitable to
begin an implementation. Include sufficient definitions of the list structure and
the list management.

Notes for Chapter 8

Algorithms for searching a trellis first arose in connection with error-control codes,
where the decoding of certain codes, known as convolutional codes, can be viewed as a

285 Notes

problem in searching a trellis (or a tree). Much of the literature of the topic of searching
a trellis is permeated with the language of error control. However, the trellis-searching
algorithms are now seen to have wider interest, and this chapter attempts to present the
algorithms disassociated from any application.

Although, in retrospect, the Viterbi algorithm is the best place to begin the
study of trellis-searching algorithms, the sequential algorithms were actually devel-
oped earlier. Sequential decoding was introduced by Wozencraft (1957) and fur-
ther described by Wozencraft and Reiffen (1961). Additional developments are due
to Fano (1963), Zigangirov (1966), and Jelinek (1969). Further developments by
Chevillat and Costello (1978) and by Haccoun and Ferguson (1975), and tutorials
by Jelinek (1968) and Forney (1974), as well as pedagogy by Johannesson and Zigan-
girov (1999), also advanced the subject. Our formulation of the Fano algorithm relies
heavily on a version given by Gallager (1968). Viterbi (1967) originally published his
trellis-searching algorithm more as a pedagogical device than as a serious algorithm.
Its practical applications came later. Rader (1981) discussed procedures for program-
ming the Viterbi algorithm in order to use memory efficiently. Sequential algorithms
are tainted by their data-dependent computational complexity. Lower bounds on the
distribution of computation were found by Jacobs and Berlekamp (1967), and a com-
plementary upper bound was found by Savage (1966).

The Bahl algorithm is also known as the BCJR algorithm or the forward–backward
algorithm. It was described by Bahl, Cocke, Jelinek, and Raviv (1974) and variations
of it, including the Baum–Welch algorithm, have been developed independently by
many others.

9 Numbers and fields

Number theory has already been seen in earlier chapters of this book. It was used in
the design of fast Fourier transform algorithms. We did make use of some ideas that
only now will be proved. This chapter, which is a mathematical interlude, will develop
the basic facts of number theory – some that were used earlier in the book and some
that we may need later.

We also return to the study of fields to develop the topic of an extension field more
fully. The structure of algebraic fields will be important to the construction of number
theory transforms in Chapter 10 and also to the construction of some multidimensional
convolution algorithms in Chapter 11 and for some multidimensional Fourier transform
algorithms in Chapter 12.

9.1 Elementary number theory

Within the integer quotient ring Zq , some of the elements may be coprime to q, and,
unless q is a prime, others will divide q. It is important to us to know how many
elements there are of each type.

Definition 9.1.1 (Euler) The totient function, denoted φ(q), where q is an integer
larger than one, is the number of nonzero elements in Zq that are coprime to q. For q

equal to one, φ(q) = 1.

When q is a prime p, then all the nonzero elements of Zp are coprime to p, and
so φ(p) = p − 1 whenever p is a prime. When q is a power of a prime, pm, then
the only elements of Zq not coprime to pm are the pm−1 multiples of p. Therefore
φ(pm) = pm − pm−1 = pm−1(p − 1). All other values of the totient function can be
obtained by using the following theorem.

Theorem 9.1.2 If GCD(q ′, q ′′) = 1, then

φ(q ′q ′′) = φ(q ′)φ(q ′′).

286

287 9.1 Elementary number theory

Proof Let i index the elements of Zq ′q ′′ . Then i = 0, . . . , q ′q ′′ − 1. Imagine the
elements of Zq ′q ′′ mapped into a two-dimensional array using new indices, given by

i ′ = i (mod q ′),

i ′′ = i (mod q ′′).

Then i ′ and i ′′ are elements of Zq ′ and Zq ′′ , respectively. Because GCD(q ′, q ′′) = 1,
the mapping from i to pairs (i ′, i ′′) is one to one with the correspondence between i

and (i ′, i ′′) given by

i = q ′Q′ + i ′,

i = q ′′Q′′ + i ′′

for some Q′ and Q′′. Every i that is a factor of q ′q ′′ is a factor of either q ′ or q ′′, and
so must be a factor of either i ′ or i ′′, and conversely. Thus, all i that are factors of q ′q ′′,
and only such factors, can be deleted from the array by crossing out all columns for
which i ′ is a factor of q ′ and all rows for which i ′′ is a factor of q ′′. The remaining array
has φ(q ′) columns and φ(q ′′) rows. That is,

φ(q ′q ′′) = φ(q ′)φ(q ′′),

and the theorem is proved. �

Corollary 9.1.3 If q = p
c1
1 p

c2
2 · · · pcr

r is the prime factorization of q, then

φ(q) = p
c1−1
1 p

c2−1
2 · · · pcr−1

r (p1 − 1)(p2 − 1) · · · (pr − 1).

Proof Theorem 9.1.2 and the remark prior to the theorem state that

φ(q) = φ(pc1
1)φ(pc2

2) · · · φ(pcr

r)

= p
c1−1
1 (p1 − 1)pc2−1

2 (p2 − 1) · · · pcr−1
r (pr − 1),

as was to be proved. �

There is another important relationship satisfied by the totient function that will
prove useful. Suppose that d is a divisor of q, and suppose that f (q) is any function of
q. By the expression

∑
d|q f (d), we mean the sum of all terms f (d) such that d is a

divisor of q. Because (q/d)d = q, it is clear that q/d is a factor of q if, and only if, d

is a factor of q. Therefore∑
d|q

f (d) =
∑
d|q

f
(q

d

)
,

because the two sums have the same set of summands. The next theorem is perhaps
more unexpected.

288 Numbers and fields

Theorem 9.1.4 The totient function satisfies∑
d|q

φ(d) = q.

Proof For each d that divides q, including d = 1 and d = q, consider the following
set of elements of Zq :

Sd = {i | GCD(i, q) = d}.
Each element of Zq will belong to the set Sd for exactly one value of d. Hence if
we sum the number of elements in the sets Sd , we get q. But i ∈ Sd if, and only
if, GCD(i, q/d) = 1, so φ(q/d) is equal to the number of elements in Sd . Thus∑

d|q φ
(

q

d

) = q. Because
∑

d|q φ(d) = ∑
d|q φ

(
q

d

)
, the proof is complete. �

The elements of Zq always form a group under the operation of addition. We shall
see that under the operation of multiplication, the nonzero elements of Zq form a group
only if q is a prime. However, we can always find a subset of Zq that is a group under
the operation of multiplication.

Let Z∗
q be the set of positive integers that are less than q and coprime to q. Let a be an

element of Z∗
q . No power of a can be equal to zero, modulo p, because GCD(a, p) = 1.

It follows easily that the set {a, a2, a3, . . . , am−1, 1} is a cyclic group generated by a.
The order of a is the number m of elements in the cyclic group of a. In particular,
aam−1 = 1 so am−1 is an inverse for a. Because a is an arbitrary element of Z∗

q , every
element of Z∗

q has an inverse under integer multiplication modulo q. Thus Z∗
q forms a

group with φ(q) elements.
The following theorem gives information about the order of an element a in Z∗

q .

Theorem 9.1.5 (Euler’s theorem) If a ∈ Z∗
q , then

aφ(q) = 1 (mod q).

Hence the order of any a in Z∗
q divides φ(q).

Proof Because Zq is a group with φ(q) elements, the theorem follows from
Corollary 2.1.6. �

Corollary 9.1.6 (Fermat’s theorem) If p is a prime, then for every a,

ap−1 = 1 (mod p)

or

ap = a (mod p).

289 9.1 Elementary number theory

Proof This is an immediate consequence of Euler’s theorem, because if p is a prime,
then φ(p) = p − 1. �

Fermat’s theorem is also an immediate consequence of the following theorem.

Theorem 9.1.7 If p is a prime, then under multiplication modulo p, the nonzero
elements of the ring Zp form a cyclic group generated by a primitive element π .

Proof The theorem follows immediately as a restatement of Theorem 9.6.2, which is
not stated and proved until the end of the chapter. �

Euler’s theorem states that if a is coprime to q, then the order of a divides φ(q), but
the order of a need not equal φ(q). The next theorem gives more specific information
for the case in which q is a power of a prime. It is a rather difficult theorem of
number theory, whose proof will occupy the remainder of the section. The proof of
Theorem 9.1.8 uses Theorem 9.1.7, the proof of which is pending. However, there is
no circular reasoning; Theorem 9.1.7 will be proved without using Theorem 9.1.8.

Before giving the theorem, we will consider two examples. Let q = 9. Then Z∗
9 =

{1, 2, 4, 5, 7, 8}. It is simple to verify that the element 2 has order six and so this
element can be used to generate Z∗

9 as a cyclic group.
Let q = 16. Then Z∗

16 = {1, 3, 5, 7, 9, 11, 13, 15}. By trying all elements, we can
verify that the largest order of any element is four. (The element 3 is such an element
of order four.) Hence Z∗

16 is not cyclic.
In the following theorem, because q is a prime power pm, we have

φ(pm) = pm − pm−1

= pm−1(p − 1).

Theorem 9.1.8 Let p be a prime; then:
(i) if p is odd, then Z∗

pm is cyclic and so is isomorphic to Zpm−1(p−1);
(ii) if p is 2 and pm is not smaller than 8, then Z∗

pm is not cyclic and is isomorphic to
Z2 × Zm−2

2 ;
(iii) if pm = 4, then Z∗

pm is isomorphic to Z2.

Proof Part (iii) is trivial because there is only one group with two elements. The
remainder of the proof is broken into five steps. Part (i) of the theorem is proved in
Steps 1 and 2. Step 1 shows that, for p odd, there is an element of order pm−1, and
Step 2 shows that, for p odd, there is an element of order p − 1. Because pm and p − 1
are coprime, the product of these two elements has order pm−1(p − 1), which proves
part (i) of the theorem.

290 Numbers and fields

Part (ii) is proved in Steps 3 and 4. Step 3 shows that for p equal to two, the order
of every element divides 2m−2. Step 4 shows there is an element of order 2m−2.

In preparation for these steps, we begin with a useful relationship in Step 0.

Step 0 For all integers a and b and any prime power pm,

(a + bp)p
m−1 ≡ apm−1

(mod pm).

The proof of Step 0 is by induction. The statement is true by inspection when m = 1.
Suppose that for some m,

(a + bp)p
m−1 ≡ apm−1

(mod pm).

This can be written

(a + bp)p
m−1 = apm−1 + kpm

for some integer k. By using the general rule

(x + y)p = xp + pxp−1y +
p∑

i=2

(p

i

)
xp−iyi,

raise the expression

(a + bp)p
m−1 = apm−1 + kpm

to the pth power as follows:

((a + bp)p
m−1

))p = (apm−1 + kpm)p

or

(a + bp)p
m = apm + pkpma(p−1)pm−1 +

p∑
i=2

(p

i

)
kipima(p−i)pm−1

.

The second term on the right side is divisible by pm+1, as are all terms in the final sum.
Hence

(a + bp)p
m ≡ apm

(mod pm+1),

so the statement of Step 0 is also true with m replaced by m + 1. The statement of
Step 0 is clearly true for m = 1, so by induction this statement follows for all m.

Step 1 For p an odd prime, the order of 1 + p modulo pm is pm−1. To prove this,
choose a = b = 1 in the equation of Step 0. Then

(1 + p)p
m−1 ≡ 1 (mod pm),

so (1 + p) has order dividing pm−1. We will show that the order of (1 + p) equals pm−1

when p is an odd prime by showing that the order does not divide pm−2. Specifically,

291 9.1 Elementary number theory

to complete the proof of Step 1, we shall prove that

(1 + p)p
m−2 ≡ 1 + pm−1 (mod pm)

for m greater than one, so the order of (1 + p) is not pm−2 or a factor of pm−2. The
statement is true by inspection when m equals two. Suppose that the congruence is true
for the integer m − 1. Then the congruence with m replaced by m − 1 is equivalent to

(1 + p)p
m−3 = 1 + pm−2 + kpm−1

for some integer k. Hence, raising this to the power p gives

(1 + p)p
m−2 = 1 + p(pm−2 + kpm−1)

+
p−1∑
i=2

(p

i

)
(pm−2 + kpm−1)i + (pm−2 + kpm−1)p.

For p an odd prime,
(

p

2

)
,
(

p

3

)
, . . . ,

(
p

p−1

)
are each divisible by p. Every term in the

sum is divisible by the term p2(m−2)+1, and so is divisible by pm if m ≥ 2. The last
term on the right side is divisible by pp(m−1), and so is divisible by pm if p ≥ 3 and
m ≥ 2. (The proof would fail here if p = 2.) Therefore by induction, (1 + p)p

m−2 =
1 + pm−1 (mod pm), so the order, modulo pm, of 1 + p does not divide pm−2.

This completes the proof that 1 + p has order pm−1 in Zpm .

Step 2 For p an odd prime, there is an element of Z∗
pm of order p − 1. To prove

this, note that because Z∗
pm has pm−1(p − 1) elements, the order of every element

divides pm−1(p − 1). To find an element of Z∗
pm of order p − 1, choose an integer

π that is a primitive element of the ring Zp. Then π has order p − 1 modulo p. We
will show that α = πpm−1

is the desired element of order p − 1 modulo pm. Because
αp−1 = π (pm−1)(p−1) = 1, the order of α must divide p − 1; we only need to show that
the order is not smaller than p − 1.

Because π is primitive in Zp, we know that the p − 1 powers πi for i = 0, . . . , p − 2
can be written as elements of the integer ring Z as

πi = ai + bip,

where the ai are distinct nonzero integers less than p. Hence, by Step 0,

(πi)p
m−1 = (ai + bip)p

m−1 = a
pm−1

i (mod pm).

But, by definition, α = πpm−1
, so

αi = a
pm−1

i (mod pm),

where the ai are distinct integers less than p. Hence, if we can show that

apm−1 �= bpm−1
(mod pm)

292 Numbers and fields

for any two distinct integers a and b, both less than p, then we can conclude that the
order of α must be larger than p − 2. But ap = a for any element of Zp, and hence
apm−1 = a (mod p). Therefore, if

apm−1 = bpm−1
(mod pm),

then certainly

apm−1 = bpm−1
(mod p),

and so

a = b (mod p)

contrary to the statement that a and b are distinct integers. Hence a has order p − 1,
and part (i) of the theorem is proved.

Step 3 The order of every element of Z∗
2m divides 2m−2. This is proved by first proving

that

(a + 4b)2m−2 ≡ a2m−2
(mod 2m)

for any integers a and b. Because only odd integers are in Z∗
2m , the statement to be

proved then follows by choosing a = ±1 and various values of b.
The congruence follows by inspection for m = 2. Suppose it is true for some positive

integer m. Then

(a + 4b)2m−2 = a2m−2 + k2m

for some integer k. Then

(a + 4b)2m−1 = (a2m−2 + k2m)2

= a2m−1 + ka2m−2
2m+1 + k222m.

Hence

(a + 4b)2m−1 ≡ a2m−1
(mod 2m+1).

Step 4 It remains only to find an element of order 2m−2 when m is at least three. We
will show that 32m−3 �≡ 1 (mod 2m), and so the element 3 must have order 2m−2. This
claim is immediately evident when m = 3. For m ≥ 4, the proof consists of proving
that

(1 + 2)2m−3 ≡ 1 + 2m−1 (mod 2m).

This is true when m = 4. Suppose it is true for some m not smaller than four. Then

(1 + 2)2m−3 = 1 + 2m−1 + k2m

293 9.2 Fields based on the integer ring

for some k. Then

(1 + 2)2m−2 = (1 + 2m−1 + k2m)2

= 1 + 2m + 22(m−1) + k2m+1 + k22m + k222m.

Hence, because m is greater than three,

(1 + 2)2m−2 ≡ 1 + 2m (mod 2m+1).

Therefore, for all m greater than three,

(1 + 2)2m−3 ≡ 1 + 2m−1 (mod 2m).

Therefore the order of the element 3 (mod 2m) does not divide 2m−3. Hence the order
of the element 3 is 2m−2. The proof is now complete. �

Corollary 9.1.9 The element 3 has order 2m−2 modulo 2m, and the element 2m − 1
has order 2 modulo 2m.

Proof Step 4 of the proof of Theorem 9.1.8 provides the proof of the first state-
ment. The second statement is immediate because (2m − 1)2 = 22m − 2 · 2m + 1 =
1(mod 2m). �

9.2 Fields based on the integer ring

There is an important construction by which a new ring, called a quotient ring, can
be constructed from a given ring. The quotient ring is defined in a technical way that
involves the construction of cosets. The construction can be used for an arbitrary ring.
In the ring of integers, the construction of a quotient ring is easy. It is the ring of integers
modulo q, denoted by Z/〈q〉 or Zq , that we saw earlier.

Let q be a positive integer. The quotient ring Z/〈q〉 is the set {0, . . . , q − 1} with
addition and multiplication defined by

a + b = Rq[a + b],

a · b = Rq[ab].

Elements called 0, . . . , q − 1 are in both Z and Z/〈q〉. The elements of Z/〈q〉 have
the same names as the first q elements of Z. It is a matter of personal taste whether
one thinks of them as the same mathematical objects or as some other objects with the
same names.

Two elements a and b of Z that map into the same element of Z/〈q〉 are congruent
modulo q, and a = b + mq for some integer m.

294 Numbers and fields

Theorem 9.2.1 The quotient ring Z/〈q〉 is a ring.

Proof The proof consists of a straightforward verification of the properties of a
ring. �

Theorem 9.2.2 In Z/〈q〉, a nonzero element s has an inverse under multiplication if
and only if s and q are coprime.

Proof Let s be a nonzero element of the ring such that s and q are coprime. Then
0 < s ≤ q − 1. By Corollary 2.6.5, there exist integers a and b such that

1 = aq + bs.

Therefore, modulo q, we have

1 = Rq[1] = Rq[aq + bs] = Rq{Rq[aq] + Rq[bs]}
= Rq[bs] = Rq{Rq[b]Rq[s]}
= Rq{Rq[b] · s}.

Hence Rq[b] is a multiplicative inverse for s under modulo q multiplication, so s−1 =
Rq[b].

Now let s be an element of the ring such that s and q are not coprime. First, we
consider the case in which s is a factor of q. Then q = s · r . Suppose that s has an
inverse s−1. Then

r = Rq[r] = Rq[s−1 · s · r] = Rq[s−1 · q] = 0.

But r �= 0 modulo q, so we have a contradiction. Hence s does not have an inverse if
it is a factor of q.

Next, consider the case in which s and q are not coprime, but s does not divide q.
Let d = GCD[s, q]. Then s = ds ′ for some s ′ that is coprime to q, and d is a factor
of q. If s has an inverse s−1, then d has an inverse given by d−1 = s−1s ′, contrary to
the previous paragraph. Hence s does not have an inverse. The proof of the theorem is
complete. �

In general, the nonzero elements of the set Z/〈q〉 do not form a group under
multiplication because inverses do not exist for all elements. However, we can find
subsets in Z/〈q〉 that are groups. In the ring Z/〈q〉, we can choose any element and
form the subset

{β, β2, β3, . . . , βr = 1}
where the construction stops when the identity element one is obtained. We have
already seen that the identity element must occur, and that this construction forms a

295 9.2 Fields based on the integer ring

cyclic group. It is a subgroup of Z/〈q〉. The integer r is called the order of the element
β in Z/〈q〉.

We can see in the examples of Section 2.3 that the arithmetic of GF (2) and GF (3) can
be described as addition and multiplication modulo two or modulo three, respectively,
but the arithmetic of GF (4) cannot be so described. That is, in symbols, GF (2) =
Z/〈2〉, GF 〈3〉, = Z/〈3〉, GF 〈4〉 �= Z/〈4〉. The general fact is given by the following
theorem.

Theorem 9.2.3 The quotient ring Z/〈q〉 is a field if and only if q is a prime.

Proof Suppose that q is a prime. Then every element of Z/〈q〉 is coprime to q. Hence,
by Theorem 9.2.2, every element has a multiplicative inverse, so Z/〈q〉 is a field.

Now suppose that q is not a prime. Then q = r · s and, by Theorem 9.2.2, r and s

do not have inverses under multiplication, so Z/〈q〉 is not a field. �

Whenever the quotient ring Z/〈q〉 is a field, it is also called by the name GF (q),
which emphasizes that it is a field. Finite fields constructed as quotient rings of integers
are not the only finite fields that exist, but all finite fields with a prime number of
elements can be so constructed as quotient rings. The finite field GF (p), with p a
prime, is also called a prime field.

If the field GF (p) does not contain a square root of −1, then GF (p) can be extended
to GF (p2) in the same way that the real field is extended to the complex field. For
example, 6 = −1 in GF (7), and it is easy to check that there is no element in GF (7)
whose square is six. Hence we define

GF (49) = {a + jb; a, b ∈ GF (7)}

with addition and multiplication, defined in the same way as for the complex field:

(a + jb) + (c + jd) = (a + c) + j(b + d)

(a + jb) · (c + jd) = (ac − bd) + j(ab + cd),

where operations within the parentheses on the right side are those of GF (7). With
these definitions, GF (49) is a field. The integers of GF (49) are the elements of GF (7),
so GF (49) has characteristic seven.

Theorem 9.2.4 Every field contains a unique smallest subfield that is either isomorphic
to the field of rationals or has a prime number of elements. Hence the characteristic of
every Galois field is either a prime or is zero.

296 Numbers and fields

Proof The field contains the elements zero and one. To define the subfield, consider
the subset G = {0, 1, 1 + 1, 1 + 1 + 1, . . .} denoting these {0, 1, 2, 3, . . .}. This subset
must contain either a finite number, p, of elements, or an infinite number of elements.
We will show that if it is finite, p is a prime and G = GF (p). If G is finite, addition is
modulo p because G is a cyclic group under addition. Because of the distributive law,
multiplication must also be modulo p because

α · β = (1 + · · · + 1) · β

= β + · · · + β,

where there are α copies of β in the sum and the addition is modulo p. Hence
multiplication also is modulo p. Each element β has an inverse under multiplication,
because the sequence

β, 2β, 3β, . . .

is a cyclic subgroup of G. However, αβ �= 0 for all α, β in the original field, so αβ �= 0
modulo p for all integers of the field, and so p must be a prime. Thus the subset G is
just the prime field given in Theorem 9.2.3.

In the other case, G is infinite. It is isomorphic to the ring of integers. The smallest
subfield of F containing G is isomorphic to the smallest field containing the ring of
integers, which is the rational field. �

In the Galois field GF (q), we have found the subfield GF (p) with p a prime. In
particular, if q were a prime to start with, then we see that it can be interpreted as the
field of integers modulo q. Hence, for a given prime, there is really only one field with
that number of elements, although of course, it may be represented by many different
notations.

9.3 Fields based on polynomial rings

A field can be obtained from a ring of polynomials over a smaller field by using a
construction similar to that used to obtain a finite field from the integer ring. The fields
that are constructed in this way are either finite or infinite fields, according to whether the
polynomial rings are defined over finite or infinite fields. These extension fields prove
useful in signal processing in several ways. In Chapter 10, they are used to construct
number theory transforms. In Chapter 11, they are used to compute multidimensional
convolutions.

Suppose that we have F [x], the ring of polynomials over the field F . Just as we
constructed quotient rings in the ring Z, so we can construct quotient rings in F [x].
Choosing any polynomial p(x) from F [x], we can define the quotient ring by using

297 9.3 Fields based on polynomial rings

p(x) as a modulus for polynomial arithmetic. We shall restrict the discussion to monic
polynomials because this restriction eliminates needless ambiguity in the construction.

Definition 9.3.1 For any monic polynomial p(x) with nonzero degree over the field F ,
the ring of polynomials modulo p(x) is the set of all polynomials with degree smaller
than that of p(x), together with polynomial addition and polynomial multiplication
modulo p(x). This ring is conventionally denoted by F [x]/〈p(x)〉.

Any element r(x) of F [x] can be mapped into F [x]/〈p(x)〉 by mapping r(x) to
Rp(x)[r(x)]. Two elements, a(x) and b(x), of F [x] that are congruent modulo p(x) map
into the same element of F [x]/〈p(x)〉.

Theorem 9.3.2 The ring of polynomials modulo p(x) is a ring.

Proof A straightforward verification of the properties of a ring provides the proof.
�

As an example, in the ring of polynomials over GF (2), choose p(x) = x3 + 1. Then
the ring of polynomials modulo p(x) is GF (2)[x]/〈x3 + 1〉. This is the set

{0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1},
and in this ring, multiplication is as follows:

(x2 + 1) · (x2) = Rx3+1[(x2 + 1) · x2]

= Rx3+1[x(x3 + 1) + x2 + x] = x2 + x,

where we have used the equality x4 = x(x3 + 1) + x.
As another example, in the ring of polynomials over the rational field Q, choose

p(x) = x2 + 1. Then the ring of polynomials modulo p(x) is Q[x]/〈x2 + 1〉. It contains
all polynomials of the form a + xb, where a and b are rationals. Multiplication is as
follows:

(a + xb)(c + xd) = (ac − bd) + x(ad + bc).

This is the same structure as complex multiplication. The ring of polynomials over
Q modulo x2 + 1 is actually a field. This is a consequence of the following general
theorem.

Theorem 9.3.3 The ring of polynomials over a field F modulo a monic polynomial
p(x) is a field if and only if p(x) is a prime polynomial.1

1 Recall that a prime polynomial is both monic and irreducible. It is enough that p(x) be irreducible to get a field,
but we insist on the convention of using a polynomial that is monic as well so that later results are less arbitrary.

298 Numbers and fields

Proof To prove that the ring is a field if p(x) is a prime polynomial, we must show
that every element has a multiplicative inverse. Let s(x) be an element of the ring. Then

deg s(x) < deg p(x).

Because p(x) is a prime polynomial, GCD[s(x), p(x)] = 1. By Corollary 2.7.8,

1 = a(x)p(x) + b(x)s(x)

for some polynomials a(x) and b(x). Hence

1 = Rp(x)[1] = Rp(x)[a(x)p(x) + b(x)s(x)]

= Rp(x)[Rp(x)[b(x)] · Rp(x)[s(x)]]

= Rp(x)[Rp(x)[b(x)] · s(x)].

Therefore Rp(x)[b(x)] is a multiplicative inverse for s(x) in this ring. Because b(x) is an
arbitrary nonzero element of the ring, every nonzero element of the ring has an inverse.
Therefore F [x]/〈p(x)〉 is a field.

Now suppose that p(x) is not a prime polynomial. Then p(x) = r(x)s(x) for some
r(x) and s(x). If the ring is a field, then r(x) has an inverse r−1(x). Hence

s(x) = Rp(x)[s(x)] = Rp(x)[r
−1(x) · r(x) · s(x)]

= Rp(x)[r
−1(x)p(x)] = 0.

But s(x) �= 0, so we have a contradiction. Therefore, if p(x) is not a polynomial, the
ring F [x]/〈p(x)〉 is not a field. �

The theorem gives one way to construct the complex field C as an extension of the
real field R. Because x2 + 1 is a prime polynomial over R, we can form an extension
field as the set {a + bx}, where a and b are elements of R. Addition and multiplication
are defined modulo x2 + 1. Then

(a + bx) + (c + dx) = (a + c) + (b + d)x,

(a + bx)(c + dx) = (ac − bd) + (ad + bc)x.

These formulas are more familiar when j is used in place of x, and they are written

(a + jb) + (c + jd) = (a + c) + j(b + d),

(a + jb)(c + jd) = (ac − bd) + j(ad + bc).

The same construction can be used to extend any field in which x2 + 1 is a prime
polynomial. The finite field GF (7) is such a field, so it can be extended to GF (49) in
the same way that the real field is extended to the complex field. This is the formal
background for the construction that was already given prior to the theorem.

On the other hand, x2 + 1 is not a prime polynomial over GF (5), and it cannot
be used to extend GF (5). To extend GF (5) to GF (25), we must use a different

299 9.4 Minimal polynomials and conjugates

polynomial, such as x2 + x + 1, which is a prime polynomial over GF (5). With this
modulus polynomial, the multiplication rule is

(a + xb)(c + xd) = (ac − bd) + x(ad + bc − bd).

In the extension field GF (25), multiplication behaves differently than it does in the
complex field. This kind of multiplication rule applies whenever x2 + x + 1 is used
to extend GF (p) to GF (p2), and this can be done whenever x2 + x + 1 is a prime
polynomial in GF (p). In particular, GF (2) can be extended to GF (4) by using this
polynomial.

9.4 Minimal polynomials and conjugates

An element of one field may be the zero of a polynomial over a smaller field. If an
element is a zero of a polynomial over a subfield, then associated with that element is a
particular polynomial of importance. This relationship leads to the following definition.

Definition 9.4.1 Let F be a field, and let β be an element of an extension field of F .
The minimal polynomial of β over the field F , if there is one, is the nonzero monic
polynomial of lowest degree having coefficients in the field F and β as a zero.

Not all elements of an extension of F have a minimal polynomial over F – elements
of the real field that do not have a minimal polynomial over the rationals are called
transcendental numbers – but if an element has a minimal polynomial, the minimal
polynomial is unique. This is because if f (1)(x) and f (2)(x) are both monic of the same
degree and with β as a zero, then f (x) = f (1)(x) − f (2)(x) also has β as a zero and
has a smaller degree. Consequently, f (x) = 0, and f (1)(x) equals f (2)(x).

Theorem 9.4.2 Every minimal polynomial is a prime polynomial and is unique. Fur-
ther, if β has a minimal polynomial f (x) and another polynomial g(x) has β as a zero,
then f (x) divides g(x).

Proof We have already seen that the minimal polynomial is unique. By definition,
the minimal polynomial f (x) is monic. Suppose f (x) factors as

f (x) = a(x)b(x).

Then f (β) = a(β)b(β) = 0, so either a(x) or b(x) has β as a zero and a degree smaller
than f (x). Hence a minimal polynomial is a prime polynomial.

To prove the last part of the theorem, write

g(x) = f (x)h(x) + s(x),

300 Numbers and fields

where s(x) has a smaller degree than f (x) and hence cannot have β as a zero. But

0 = g(β) = f (β)h(β) + s(β) = s(β).

Hence s(x) must be zero, and the theorem is proved. �

An element β of the field F itself has a minimal polynomial over F of degree one,
given by

f (x) = x − β.

If β is not in F , the minimal polynomial must have a degree of two or greater. Hence
the minimal polynomial of β will also have other field elements as zeros. Then f (x)
must also be the minimal polynomial for these other field elements.

Definition 9.4.3 Elements of an extension of the field F that share the same minimal
polynomial over F are called conjugates (with respect to F).

Generally, a single element can have more than one conjugate – in fact, as many
conjugates as the degree of its minimal polynomial if the element itself is regarded as its
own conjugate. We emphasize that the conjugacy relationship between two elements
depends on the base field. Two elements of the complex field might be conjugates
with respect to the rationals, but yet not be conjugates with respect to the reals. For
example, the complex number j 4

√
2 has x4 − 2 as its minimal polynomial over Q, and

x2 + √
2 as its minimal polynomial over R. The set of Q-ary conjugates containing

j 4
√

2 is { 4
√

2, − 4
√

2, j 4
√

2, −j 4
√

2}. The set of R-ary conjugates is {j√2, −j
√

2}.

9.5 Cyclotomic polynomials

Over any field F , the polynomial xn − 1 can be written in terms of its prime factors:

xn − 1 = p1(x)p2(x) · · · pK (x).

When F is the field of rationals, the prime factors are easy to identify. They are the
polynomials named in the following definition.

Definition 9.5.1 For each n, the polynomial

�n(x) =
∏

GCD(i,n)=1

(x − ωi
n),

where ωn is an nth root of unity in the complex field, is called a cyclotomic polynomial.

301 9.5 Cyclotomic polynomials

Cyclotomic polynomials have simple coefficients. In fact, all the cyclotomic poly-
nomials with n smaller than 105 have coefficients equal only to zero or to ±1. We shall
see later that all coefficients of a cyclotomic polynomial are integers, a fact that is not
evident in the definition.

The polynomial xn − 1 always can be factored in the complex field as

xn − 1 =
n−1∏
i=0

(x − ωi
n),

where ωn is an nth root of unity. Hence each of the cyclotomic polynomials can be
expressed as a product of some of these first-degree factors, and so the cyclotomic
polynomial �n(x) must divide xn − 1. The definition of a cyclotomic polynomial
chooses the minimum number of factors such that the polynomial product has only
rational coefficients.

For small n, the cyclotomic polynomials arc easy to find by factoring xn − 1. Clearly,

�1(x) = x − 1.

To see the general pattern, we shall examine a few more of these polynomials. Let
n = 2. Then

x2 − 1 = (x − 1)(x + 1) = �1(x)�2(x).

Let n = 3. Then

x3 − 1 = (x − 1)(x2 + x + 1) = �1(x)�3(x).

Let n = 4. Then

x4 − 1 = (x − 1)(x + 1)(x2 + 1) = �1(x)�2(x)�4(x).

Notice that, at each step, only one new polynomial occurs. Let n = 5. Then

x5 − 1 = (x − 1)(x4 + x3 + x2 + x + 1) = �1(x)�5(x).

Let n = 6. Then

x6 − 1 = (x − 1)(x + 1)(x2 + x + 1)(x2 − x + 1)

= �1(x)�2(x)�3(x)�6(x).

Let n = 7. Then

x7 − 1 = (x − 1)(x6 + x5 + x4 + x3 + x2 + x + 1)

= �1(x)�7(x).

Let n = 8. Then

x8 − 1 = (x − 1)(x + 1)(x2 + 1)(x4 + 1)

= �1(x)�2(x)�4(x)�8(x).

302 Numbers and fields

Let n = 9. Then

x9 − 1 = (x − 1)(x2 + x + 1)(x6 + x3 + 1)

= �1(x)�3(x)�9(x).

Some properties of the cyclotomic polynomials are described by the following
theorems.

Theorem 9.5.2 For each n,

deg �n(x) = φ(n),

where φ(n) is the totient function.

Proof The totient function φ(n) is defined as the number of integers that do not divide
n, and this is the number of linear factors in the definition of �n(x). �

Theorem 9.5.3 For each n,

xn − 1 =
∏
k|n

�k(x).

Proof This is a straightforward manipulation:

xn − 1 =
n∏

i=1

(x − ωi
n)

=
∏
k|n

∏
GCD(i,n)=n/k

(x − ωi
n)

=
∏
k|n

�k(x). �

Theorem 9.5.4 The coefficients of a cyclotomic polynomial are integers.

Proof The proof is by induction. The polynomial

�1(x) = x − 1

has integer coefficients, and, by Theorem 9.5.3,

�n(x) = xn − 1∏
k|n
k<n

�k(x)
.

Division of a monic polynomial with integer coefficients by a factor that is a monic
polynomial with integer coefficients produces a quotient polynomial that is a monic
polynomial with integer coefficients. This is because each iteration of the long-division

303 9.5 Cyclotomic polynomials

process multiplies the divisor polynomial by an integer times a power of x and subtracts
it from the dividend polynomial, thereby producing a new divided polynomial with
integer coefficients. Consequently, the theorem is true for any n if it is true for all
positive integers less than n. By induction, it is true for all n. �

Theorem 9.5.5 The cyclotomic polynomials are prime polynomials over the field of
rationals, and so they are the minimal polynomials of the roots of unity.

Proof The cyclotomic polynomials, clearly, are monic. We need only to show that
they are irreducible over the rationals. Let f (x) be the minimal polynomial of ωn

over the rationals. Let h be any integer coprime to n, and let g(x) be the minimal
polynomial over the rationals of ωh

n . Suppose that for every such h, g(x) = f (x). This
then implies that f (x) is a multiple of �n(x), and because �n(x) is monic, has only
rational coefficients, and has ωn as a zero, we conclude that f (x) = �n(x). Hence we
must prove that for every h coprime to n, the minimal polynomial g(x) of ωh

n is equal
to f (x).

Step 1 First, we prove the statement for h equal to a prime p that does not divide n.
Let g(x) be the minimal polynomial of ω

p
n , and suppose that g(x) is not equal to f (x).

Then, because both f (x) and g(x) divide xn − 1, are irreducible, and have integer
coefficients,

xn − 1 = f (x)g(x)t(x)

for some t(x) with integer coefficients. Because g(xp) has a zero at ωn, it is a multiple
of f (x). Then

g(xp) = f (x)k(x),

where k(x) is another polynomial with integer coefficients. Now replace both equations
by their residue modulo p:

xn − 1 = f (x)g(x)t(x) (mod p),

g(xp) = f (x)k(x) (mod p).

By Theorem 2.2.4, the second equation becomes

(g(x))p = f (x)k(x) (mod p).

Now this equation can be regarded as a polynomial equation in the Galois field GF (p)
and factored in that field. Every prime factor p(x) of f (x) in GF (p) must also be a
prime factor of (g(x))p, and so too of g(x). Therefore (p(x))2 divides xn − 1. Hence
the formal derivative nxn−1 of xn − 1 is divisible by p(x) in GF (p). But n is not equal

304 Numbers and fields

to zero modulo p by assumption, and x cannot be a factor of f (x) (mod p) because
f (x) divides xn − 1. The contradiction shows that g(x) is not different from f (x).

Step 2 Now we prove the statement for arbitrary h coprime to n. Let h be expressed
in terms of its prime factors, each of which is coprime to n. Then

h = p1p2 . . . ps.

By Step 1, if ωn is a zero of f (x), then so too is ω
p1
n . Then again by Step 1, if ω

p1
n is

a zero of f (x), then so too is ω
p1p2
n . Continuing in this way, we conclude that ωh

n is a
zero of f (x). �

9.6 Primitive elements

A primitive element of a Galois field was defined in Section 2.3 as an element α such
that every field element except zero can be expressed as a power of α. For example, in
the field GF (7), we have

31 = 3,

32 = 2,

33 = 6,

34 = 4,

35 = 5,

36 = 1,

so that 3 is a primitive element of GF (7). Primitive elements are useful for constructing
finite fields, because if a primitive element exists, we can construct a multiplication
table by multiplying powers of the primitive element. The primitive element then serves
the role of a logarithm base in the Galois field. In this section we shall prove that every
finite field contains a primitive element.

A finite field forms an abelian group in two ways. The set of field elements forms an
abelian group under the operation of addition, and the set of field elements excluding
the zero element forms an abelian group under the operation of multiplication. We
shall work with the group under the operation of multiplication, a group with q − 1
elements. By Theorem 2.1.5, the order of this group is divisible by the order of any of
its elements. Thus the order of every element divides q − 1.

Theorem 9.6.1 Let β1, β2, . . . , βq−1 denote the nonzero field elements of GF (q). Then

xq−1 − 1 = (x − β1)(x − β2) · · · (x − βq−1).

305 9.6 Primitive elements

Proof The set of nonzero elements of the field GF (q) is a finite group under the
operation of multiplication. Let β be any nonzero element of GF (q), and let h be
its order under the operation of multiplication. Then, by Theorem 2.1.5 (Lagrange’s
theorem), h divides q − 1. Hence

βq−1 = (βh)(q−1)/h = 1(q−1)/h = 1,

so β is a zero of xq−1 − 1. �

Theorem 9.6.2 The group of nonzero elements of GF (q) under multiplication is a
cyclic group.

Proof The theorem is trivial if q − 1 is a prime because then every element except
zero and one has order q − 1, and so every element is primitive. We need to prove the
theorem only for composite q − 1. Consider the prime factorization of q − 1:

q − 1 =
s∏

i=1

p
νi

i .

Because GF (q) is a field, of the q − 1 nonzero elements of GF (q), there must be
at least one that is not a zero of x(q−1)/pi − 1, because this polynomial has at most
(q − 1)/pi zeros. Hence, for each i, a nonzero element ai of GF (q) can be found for

which a
(q−1)/pi

i �= 1. Let bi = a
(q−1)/p

νi
i

i , and let b = ∏s
i=1 bi . We will prove that b has

order q − 1, and so the group is cyclic.

Step 1 The element bi has order p
νi

i . Proof: Clearly, b
p

νi
i

i = 1, so the order of bi divides

p
νi

i ; the order of bi is of the form p
ni

i . If ni is less than νi , then b
p

νi−1
i

i = 1. But b
p

νi−1
i

i �= 1.
Therefore bi has order p

νi

i .

Step 2 The element b has order q − 1. Proof: Suppose bn = 1. We first show that this
implies n = 0 (modp

νi

i) for i = 1, . . . , s. For each i, we can write

bn
∏

j �=i p
νj

j = 1.

Replacing b by
∏s

i=1 bi and using that b
p

vj

j

j = 1, we conclude that

b
n
∏

j �=i p
νj

j

i = 1.

Therefore n
∏

j �=i p
νj

j = 0 modulo p
νi

i . Because the pi are distinct primes, it fol-
lows that n = 0 (mod p

νi

i) for each i. Hence n = 0 (mod q − 1). The proof is now
complete. �

Theorem 9.6.3 Every Galois field has a primitive element.

306 Numbers and fields

Proof As a cyclic group, the nonzero elements of GF (q) include an element of order
q − 1. This element is a primitive element. �

9.7 Algebraic integers

The conventional way of representing the arithmetic in a Fourier transform is to allow in
principle for arbitrary complex numbers in the output vector but, in practice, to reduce
the set to a finite number of complex numbers by truncating the binary wordlength;
this in a somewhat arbitrary way. The conventional representation manifests itself in
wordlength considerations and in considerations of roundoff error. Even when the orig-
inal time-domain data sequence is a sequence of integers, an exact representation of
the transform requires an infinite number of bits. This section provides an alternative
representation of the range space of the Fourier transform. It is expressed as a poly-
nomial extension of the field of rationals, or as a polynomial extension of the field of
complex rationals.

The ring of integers Z can be extended to the ring of gaussian integers, denoted
Z[j], by introducing the symbol j as an indeterminate. The ring of gaussian inte-
gers is defined as the set Z[j] = {a + bj}, where a and b are integers, together with
the obvious definitions of addition and multiplication using j2 = −1. It is easy to
verify that the set of gaussian integers is a ring. The ring of gaussian integers is
the simplest instance of the kind of ring known as a ring of algebraic integers, or,
more simply, an algebraic integer ring. Algebraic integer rings are discussed in this
section.

In a similar way, the field of rationals Q can be extended to the field of gaussian
rationals, denoted Q(j), by introducing the symbol j as an indeterminant. The field of
gaussian rationals is defined as the set Q(j) = {a + jb}, where a and b are rationals,
together with the obvious definitions of addition and multiplication using j2 = −1.
The set of gaussian rationals is the simplest instance of the kind of field known as a
field of algebraic numbers, an algebraic number field, or, more simply, a number field.
Algebraic number fields are also discussed in this section.

The general construction of a ring of algebraic integers, or of a field of algebraic
numbers, is as follows. Choose any irreducible polynomial p(x) of degree m. The
cyclotomic polynomial of degree m would be a suitable choice, and our preference. Let
Z/〈p(x)〉 be the set of polynomials of degree m − 1 or less with integer coefficients.
A zero of a polynomial p(x) with integer coefficients is called an algebraic number.
A zero of a monic polynomial p(x) with integer coefficients is called an algebraic
integer. Thus the set of algebraic integers is contained in the set of algebraic num-
bers, the distinction being whether p(x) is monic or not. Of course, another way of
formulating this is to say that p(x) must be monic in both situations – but has integer
coefficients in one situation and rational coefficients in the other, the polynomial over

307 9.7 Algebraic integers

Z being converted to a monic polynomial over Q by dividing out the leading integer
coefficient.

Each of these two cases, algebraic numbers and algebraic integers, can be viewed
in either of two ways. The algebraic integers and the algebraic numbers each can be
regarded either as a set of points within the complex plane, or simply as a polynomial
extension of Z or of Q, the difference being whether the zero of p(x) is regarded as
the complex number ω or the indeterminant x. These are equivalent mathematically,
but the computational interpretations and applications are quite different.

Let p(x) be a polynomial over the rationals, possibly monic, and with integer
coefficients. A cyclotomic polynomial would be a good choice for p(x). Then the
zeros of p(x) are complex numbers. Let the complex number ω be such a zero. Then
the field of algebraic numbers is the smallest extension of Q that contains ω. The
elements of Q(ω) are those complex numbers that can be expressed as polynomials
in the complex number ω. Because p(ω) = 0, those polynomials may be regarded
as elements of the ring Q[x]/〈p(x)〉 The algebraic numbers are the elements of this
quotient ring evaluated at x = ω.

As a set of points, it is the same as Z2, but embedded in the complex plane. The
set of gaussian integers, which can be expressed as Z[e−j2π/4], is not dense in the
complex plane. Surprisingly, the set of algebraic integers Z[e−j2π/8] is dense in the
complex plane. This means that any complex number can be approximated arbitrarily
well by a point of Z[e−j2π/8]. In this representation, an arbitrary complex number c is
an approximation by a complex number c̃ of the form

c̃ = c7ω
7 + c6ω

6 + · · · + c1ω + c0,

where ω = e−j2π/8 and the cj are integers. The approximation can be as exact as desired,
though this may require that the integers cj be large. Even more surprisingly, for most
practical criteria of numerical accuracy, the cj can be restricted to be small integers.
In particular, the restriction cj ∈ {−2, −1, 0, 1, 2} or cj ∈ {−3, −2, −1, 0, 1, 2, 3} can
provide satisfactory approximations to complex numbers in many practical situations.
Accordingly, one may execute a Fourier transform of any blocklength by representing
all complex numbers including e−j2π/n by polynomials in ω, performing the corre-
sponding polynomial arithmetic in ω, then substituting e−j2π/8 for ω. For other com-
putational applications, the elements of the number field can also be regarded simply
as polynomials in the indeterminant x. Thus

Q[x]/〈p(x)〉 = {f (x)| deg f (x) < n}

with addition and multiplication as polynomials modulo p(ω). In this way, a vector
of rationals can be represented as an element of Qm, and a matrix of elements of Q
can be represented as a vector of elements of Qm. This representation is the subject of
Section 11.5.

308 Numbers and fields

Problems for Chapter 9

9.1 a Is the polynomial p(x) = x4 + 2x3 + x2 − 2 reducible over the field of ratio-
nals? If so, factor it.

b Is the polynomial p(x) = x4 + 2x3 + x2 − 2 reducible over the field of reals?
If so, factor it.

c Is the polynomial p(x) = x4 + 2x3 + x2 − 2 reducible over the complex
field? If so, factor it.

9.2 Over the field of rationals, let

p1(x) = x3 + 1,

p2(x) = x4 + x3 + x + 1.

a Find GCD(p1(x), p2(x)).
b Find LCM(p1(x), p2(x)).
c Find A(x) and B(x) that satisfy

GCD(p1(x), p2(x)) = A(x)p1(x) + B(x)p2(x).

9.3 Let

m1(x) = x2 + x + 1,

m2(x) = x2 + 1,

m3(x) = x2 − 1.

Given

c1(x) = c(x) (mod m1(x)),

c2(x) = c(x) (mod m2(x)),

c3(x) = c(x) (mod m3(x)),

where c(x) has degree at most five, find all polynomials necessary to compute
c(x) from the residues.

9.4 How many cyclotomic polynomials divide x15 − 1? Find them.
9.5 Let p(x) = ∑59

i=0 xi . Use the relationship

x60 − 1 = (x − 1)p(x)

to find Rp(x)[x120 + x70 + x20].
9.6 For the formal derivative of polynomials in any field, prove that

[r(x)s(x)]′ = r ′(x)s(x) + r(x)s ′(x),

and that, if a(x)2 divides r(x), then a(x) divides r ′(x).

309 Notes

9.7 Over Z/〈15〉, the ring of integers modulo fifteen, show that the polynomial
p(x) = x2 − 1 has more than two zeros. Such a polynomial over a field can
have only two zeros. Where does the proof of this statement fail for a ring?

9.8 The polynomial p(x) = x4 + x3 + x2 + x + 1 is a prime polynomial over
GF (2). Therefore the ring of polynomials modulo p(x) is GF (16).
a Show that the field element represented by x in this construction is not a

primitive element.
b Show that the field element represented by x + 1 is primitive.
c Find the minimal polynomial of the field element x + 1.

9.9 Over GF (16):
a How many distinct second-degree monic polynomials of the form

x2 + ax + b, b �= 0

are there?
b How many distinct polynomials of the form

(x − β)(x − γ), γ, β �= 0

are there?
c Does this prove that irreducible second-degree polynomials exist? How many

second-degree prime polynomials over GF (16) are there?
9.10 a Extend the real field R by using the prime polynomial x4 + 1. Explain why

this extension field is equivalent to the complex field C , which could also be
obtained by using the prime polynomial x2 + 1.

b Extend the rational field Q by using the prime polynomial x4 + 1. Explain
why this extension field is not equivalent to the extension field obtained by
extending Q, using the prime polynomial x2 + 1.

9.11 Construct GF (7) by constructing an addition table and multiplication table.
9.12 Find 3200 (mod 7).
9.13 Prove that the quotient ring Zq is a ring.
9.14 Find elements of order (p − 1)pm−1 in each of the fields GF (9), GF (25),

GF (27), and GF (49).
9.15 Prove that the polynomial x6 + x3 + 1 is irreducible over the rationals.

Notes for Chapter 9

This chapter treats topics that are standard in mathematical literature. Good texts
on number theory include those of Ore (1948) and Hardy and Wright (1960). The
properties of Galois fields and of elementary number theory are developed in any book
on abstract algebra, as, for example, the book by Birkhoff and MacLane (1941) or that

310 Numbers and fields

of Van der Waerden (1949). For the most part, these standard treatments are formal,
primarily concerned with abstract properties and little concerned with examples or
applications. Berlekamp (1968) concentrates more on the computational aspects of
Galois fields. Further discussion of polynomial rings and cyclotomic polynomials can
be found in the book by McClellan and Rader (1979) or the book by Blahut (2003).
The observation that the cyclotomic polynomials have integer coefficients is originally
due to Gauss.

10 Computation in finite fields and rings

Signal-processing computations may arise naturally in a finite field, so it is appropriate
to construct fast algorithms in the finite field GF (q). Computations in a finite field
might also arise as a surrogate for a computation that originally arises in the real field
or the complex field. In this situation, a computational task in one field is embedded
into a different field, where that computational task is executed and the answer is
passed back to the original field. There are several reasons why one might do this. It
may be that the computation is easier to perform in the new field, so one saves work
or can use a simpler implementation. It may be that devices that do arithmetic in one
field may be readily available and can be used to do computations for a second field,
if those computations are suitably reformulated. In other situations, one may want to
devise a standard computational module that performs bulk computations and to use
that module for a diversity of signal-processing tasks. In seeking standardization, one
may want to fit one kind of computational task into a different kind of structure.

Another reason for using a surrogate field is to improve computational precision.
Computations in a finite field are exact; there is no roundoff error. If a problem involving
real or complex numbers can be embedded into a finite field to perform a calculation,
it may be possible to reduce the computational noise in the answer. Most applications
of signal processing can be satisfied by fixed-point calculations. If a finite field is big
enough to hold sixteen-bit integers, for example, then many computations within it will
be correct as integer computations, as long as the results of the integer computation are
sixteen-bit integers.

10.1 Convolution in surrogate fields

A convolution in a real field often can be thought of, instead, as a convolution in a
suitable Galois field. In practical problems, a real number is represented to a limited
number of decimal or binary places; usually, fixed-point numbers are sufficient in
signal-processing applications. A binary representation with a limited number of bits
is given, perhaps twelve or sixteen bits. For computational purposes, we can suppose
that the binary point is to the right – all numbers are integers. It is a simple matter to
move the binary point in the output data to accommodate any other case. Consequently,

311

312 Computation in finite fields and rings

the linear convolution in the real field,

s(x) = g(x)d(x),

is replaced by a linear convolution in the integer ring. One needs only to regard
the data as integers, rather than as real numbers. The equation describing the linear
convolution has the same appearance, but the operations are interpreted as ordinary
integer arithmetic. The equation in the integer ring then can be embedded into a suitable
field such as the prime field, GF (p) provided that the prime p is large enough. If the
integers in the convolution are all positive, then the prime field GF (p) must be chosen
with p large enough so that the convolution output coefficients si are not larger than
p − 1. Then

s(x) = g(x)d(x) (mod p)

also holds. In this situation, the modulo p condition is superfluous.
If si can take on negative values, then the prime field GF (p) must be chosen with

p large enough so that si is in the range −(p − 1)/2 < si ≤ (p − 1)/2. Then negative
integers will be represented as positive integers. The negative integers are folded onto
the positive range from (p + 1)/2 to p − 1.

The convolution in the Galois field can be computed by using any appropriate
method in that field. Some direct methods are discussed in the next section. One can
also use a Fourier transform in the Galois field together with the convolution theorem.
Figure 10.1 compares such a calculation in the Galois field with the same calculation
in the complex field. Observe that the equations on the two sides of Figure 10.1 are
exactly alike, although, of course, the underlying arithmetic is different.

Whenever the cyclic convolution in the Galois field has the same answer as the
cyclic convolution in the integer ring, the use of the Galois field Fourier transform will
give the right answer. Because the Galois field arithmetic is modulo p, there may be
modulo p overflow during the intermediate steps. It does not matter if overflow occurs
at intermediate steps; only overflow in the output matters, and overflow in the output
cannot happen if p is chosen sufficiently large.

As an example, we take the case of a five-point cyclic convolution in the real field:

s(x) = g(x)d(x) (mod x5 − 1).

We choose the prime p equal to 31 and work in GF (31). This is suitable as long as we
know that the coefficients of s(x) are not larger than thirty. Of course, for a practical
problem, GF (31) is much too small, but it will do for an example.

Because 5 divides p − 1, there is a Fourier transform with blocklength five. The
element two is a suitable kernel because its order is five. Let

d0 = 2, d1 = 6, d2 = 4, d3 = 4, d4 = 0,

g0 = 3, g1 = 0, g2 = 2, g3 = 1, g4 = 2.

313 10.1 Convolution in surrogate fields

Compare integer convolution
() () ()s x g x d x

Procedure 1: embed integers into C

Arithmetic in C

ik
k i

i

ik
k i

i

D d

G g

k k kS G D

1 ik
i k

i
s S

n

()s x

Procedure 2: embed integers into GF(p)

Arithmetic in GF(p)

ik
k i

i

ik
k i

i

D d

G g

k k kS G D

1 ik
i k

i
s S

n

()s x

Figure 10.1 Comparison of two convolution procedures

The five-point Fourier transform of d is

Dk =
4∑

i=0

2ikdi, k = 0, . . . , 4

with a similar relation for the transform of g. In matrix notation, this Fourier transform
becomes

D0

D1

D2

D3

D4

 =

1 1 1 1 1
1 2 4 8 16
1 4 16 2 8
1 8 2 16 4
1 16 8 4 2

2
6
4
4
0

 .

Thus the transform vectors are given by

D0 = 16, D1 = 0, D2 = 5, D3 = 29, D4 = 22,

G0 = 8, G1 = 20, G2 = 22, G3 = 0, G4 = 27.

314 Computation in finite fields and rings

Multiplying Gk by Dk gives Sk:

S0 = 4, S1 = 0, S2 = 17, S3 = 0, S4 = 5.

In GF (31), 5−1 = 25 because 5 · 25 = 1. Therefore the inverse Fourier transform in
GF (31) is

s0

s1

s2

s3

s4

 = 25

1 1 1 1 1
1 16 8 4 2
1 8 2 16 4
1 4 16 2 8
1 2 4 8 16

4
0

17
0
5

 =

30
30
24
26
18

 ,

which gives the final result. The direct computation with integer arithmetic would
produce the same result. If we had chosen larger input components, some of the
output components of the convolution would have been greater than thirty. In that
case, computing the convolution in GF (31) would overflow the maximum output and
produce the wrong answer. It would give the correct value reduced modulo 31. A larger
field should be used; fields with at least 216 elements are especially useful.

If the wordlength is too large for the chosen field size, we can use the Chinese remain-
der theorem to work with residues of the numbers, thereby breaking the wordlength
into a number of shorter wordlengths. This way of using the Chinese remainder the-
orem is different from the way we have used it previously for shuffling arrays. Now
it is used to break the numbers themselves apart. It does not disturb the indexing, so
the data is used in its natural order. Of course, the new convolutions may themselves
be computed by using the Chinese remainder theorem again, but this time in the way
discussed earlier on the new polynomials or on their indices.

Given a set of r coprime integers m1, m2, . . . , mr , let s
(�)
i denote the residue

si (mod m�). Then the convolution can be broken down as

s
(�)
i =

N−1∑
k=0

g
(�)
i−kg

(�)
k (mod m�),

i = 0, . . . , L + N − 1,

� = 1, . . . , r,

where g
(�)
i = gi (mod m�), and d

(�)
i = di (mod m�). By using the Chinese remainder

theorem, si can be recovered from its residues s
(�)
i . Hence we have replaced one

convolution involving large integers by a set of r convolutions, each involving small
integers. The reduced convolutions can be computed just as written, or they can be
computed by using fast algorithms in a prime field.

10.2 Fermat number transforms

The Galois fields in which the algorithms for the computation of a Fourier transform
are, perhaps, simplest are those of the form GF (2m + 1), which is a field whenever

315 10.2 Fermat number transforms

p = 2m + 1 is a prime. It is known that 2m + 1 is not a prime if m is not a binary
power. However, the converse is not true, because 232 + 1 is known to be composite.
But primes are found for m = 2, 4, 8, or 16 for which 2m + 1 = 5, 17, 257, or 65,537;
a set of integers known as Fermat primes.

Whenever q is a Fermat prime, q − 1 or any factor of q − 1 is a power of two, so
every element of GF (2m + 1) has order equal to a power of two. The Fourier transform

Vk =
n−1∑
i=0

ωikvi, k = 0, . . . , n − 1

exists in GF (q) when q is the Fermat prime 2m + 1 for each n that is a divisor of 2m, and
ω is an element of order n. Thus the field GF (216 + 1) has Fourier transforms of sizes
216, 215, 214, . . . , 22, 2. By using the Cooley–Tukey algorithm, a Fourier transform over
GF (2m + 1) can be broken down into a sequence of radix-two Fourier transforms,
which can be implemented rather neatly, using only (n/2) log2 n multiplications in
GF (216 + 1) and (n/2) log2 n additions in GF (216 + 1).

Some Fourier transforms over GF (216 + 1) are especially simple. These are the
Fourier transforms over GF (216 + 1) with blocklength 32 or less. This is because the
element 2 has order 32. To see this, notice that 216 + 1 = 0 in GF (216 + 1). Hence
216 = −1, and so 232 = 1. The Fourier transform of blocklength 32 is

Vk =
31∑
i=0

2ikvi, k = 0, . . . , 31,

and the multiply operation is actually a shift in a binary arithmetic system because
it is a multiplication by a power of two. Because this Fourier transform has no true
multiplications, it is easy to compute, but a blocklength of 32 is too short for many
applications. To form a larger Fourier transform, a radix-32 Cooley–Tukey FFT is
attractive because the inner core is multiply-free.

In general, for any Fermat prime 2m + 1, because 2m = −1 modulo 2m + 1, the
element 2 has order 2m in GF (2m + 1), and so it can be used as the kernel of a Fourier
transform of blocklength 2m. To get a larger blocklength, one can use, instead,

√
2 as

the kernel to get a Fourier transform of blocklength 4m. In these fields we can easily
verify that

√
2 = 2m/4(2m/2 − 1) by calculating the square if we recall that 2m = −1.

Thus every even power of
√

2 is a power of two, and every odd power of
√

2 is equal to
a power of two times

√
2, and so it can be written in the form 2a ± 2b modulo 2m + 1.

Multiplication by the constant 2a ± 2b (mod 2n + 1) is nearly multiply-free.
For example, the Fourier transform of blocklength 64 in GF (216 + 1) has the form

Vk =
63∑
i=0

(212 − 24)ikvi, k = 0, . . . , 63.

316 Computation in finite fields and rings

1024

semit 23semit 23
C.T.
FFT

32-point
Cooley–Tukey FFT

“Multiply free”

32-point
Cooley–Tukey FFT

“Multiply free”

Figure 10.2 Structure of a 1024-point FFT in GF (216 + 1).

When this is computed as a radix-two Cooley–Tukey FFT, all multiplications are by a
constant of the form 2a or 2a ± 2b, which can be implemented as a pair of shifts and a
subtraction or addition.

In general, Fourier transforms in GF (2m + 1) with blocklength larger than 2m must
have some nontrivial multiplications. One can reduce the number of such multiplica-
tions by using the Cooley–Tukey FFT to form a multidimensional transform with each
dimension, involving at most a 2m-point Fourier transform.

For example, consider the 1024-point Fourier transform in GF (216 + 1):

Vk =
1023∑
i=0

ωikvi, k = 0, . . . , 1023,

where now ω is an element of order 1024, which will be chosen as π64, where π is a
primitive element of the field. The element three is a primitive element of GF (216 + 1),
but perhaps not the best one to choose. To get the desired form, we want an ω so that
ω32 = 2; hence we choose π so that π64·32 = 2. The Cooley–Tukey FFT puts the
transform in the form

vn′′k′+k′′ =
31∑

i ′=0

2i ′k′
[
ωi ′k′′

31∑
i ′′=0

2i ′′k′′
vi ′+n′i ′′

]
.

The inner sum is a 32-point Fourier transform for each value of i ′, and the outer sum
is a 32-point Fourier transform for each value of k′′. The 32-point Fourier transform
can itself be broken down by a radix-two Cooley–Tukey FFT that is computed with
only shifts and adds. The multiplication by ωi ′k′′

is a nontrivial multiplication, but
there are only 1024 such multiplications and they are integer multiplications. In fact,
when i ′ or k′′ equals zero, that multiplication is trivial, so there are only 931 nontrivial
multiplications. The structure of this FFT is shown in Figure 10.2. In general, a Fourier
transform in GF (216 + 1) can be computed in about n(�log32 n� − 1) multiplications
in GF (216 + 1), 1

2n log2 n additions in GF (216 + 1), and 1
2n log2 n shifts.

317 10.3 Mersenne number transforms

The arithmetic in GF (216 + 1) consists of conventional integer addition and integer
multiplication followed by reduction modulo 216 + 1. But because 216 = −1, this
amounts to setting 216+� equal to −2�. To implement this reduction, high-order bits are
downshifted by sixteen bits and subtracted.

10.3 Mersenne number transforms

The Galois fields in which the operation of multiplication is the most straightforward
are those of the form GF (2m − 1), which may be a field if m is a prime but cannot be
a field if m is composite, because 2ab − 1 is divisible by 2a − 1. Primes of the form
2m − 1 are called Mersenne primes. The smallest values of m for which 2m − 1 is a
prime are 3, 5, 7, 13, 17, 19, and 31; and the corresponding Mersenne primes are 7, 31,
127, 8191, 131,071, 524,287, and 2,147,483,647.

Arithmetic in the Mersenne field GF (2m − 1) is quite convenient if the integers are
represented as m-bit binary numbers. Because 2m − 1 = 0 in this field, the overflow
2m is equal to one. Hence the arithmetic is conventional integer arithmetic, and the
overflow bits are added into the low-order bits of the number. This is one’s-complement
arithmetic.

The field GF (2m − 1) exists whenever 2m − 1 is a prime. In every Galois field
GF (q), there is a Fourier transform of blocklength n for every n that divides q − 1.
Hence in the prime field GF (2m − 1), there is a Fourier transform of blocklength n for
every n that divides 2m − 2. These transforms are sometimes called Mersenne number
transforms.

The Mersenne number transforms cannot be computed by a radix-two Cooley–Tukey
FFT because (2m − 1) − 1 is not a power of two. This is considerably different from
the Fermat number transforms, for which the radix-two Cooley–Tukey FFT is quite
suitable. The Mersenne number transform can be computed by any suitable mixed-radix
FFT.

For example, GF (213 − 1) can be used to contain all thirteen-bit one’s-complement
integers. An integer convolution of two vectors of twelve-bit numbers can be performed
as a convolution in GF (213 − 1), as long as there is no overflow in the convolution
output. The linear convolution

s(x) = g(x)d(x),

where the coefficients of g(x) and d(x) are nonnegative twelve-bit binary integers (or
thirteen-bit one’s-complement integers), can also be represented by

s(x) = g(x)d(x) (mod 213 − 1),

provided that the coefficients of s(x) are known to be smaller than 213 − 1. This
convolution can be computed by using a Fourier transform in GF (213 − 1).

318 Computation in finite fields and rings

The Fourier transform blocklengths n that can be used in GF (213 − 1) are those
n dividing 213 − 2. Because 213 − 2 = 2 · 5 · 7 · 9 · 13, the possible choices for n are
readily apparent as the product of any subset of these factors. One possibility is to
choose the element −2 for the Fourier transform kernel ω. Because

213 − 1 = 0 (mod 213 − 1),

we see that (−2)13 = −1, so −2 must have order 26. Then we have the Fourier transform

Vk =
25∑
i=0

(−2)ikvi, k = 0, . . . , 25.

All multiplications can be executed as multiplications by powers of two, so this Fourier
transform can be computed with no true multiplications, only shifts. On the other hand,
the factors of 26 are not particularly convenient for constructing a mixed-radix FFT.
For this blocklength, one will not do much better than computing the Fourier transform
as it is written using 252 shifts and 26 · 25 additions.

To get other blocklengths, one must allow general multiplications. In a prime field,
just as in the complex field, a Winograd large FFT algorithm, to be discussed in Chap-
ter 12, could be built out of Winograd small FFT algorithms. A Fourier transform
algorithm with a blocklength of 70, for example, can be built out of small FFT algo-
rithms of blocklengths two, five, and seven. These algorithms will be quite similar to
the Winograd FFT algorithms in the complex field – except that the constant factors
and the structure of the multiplications will be different because ω is in a different field.

Let us construct the five-point Winograd FFT in GF (213 − 1). One can verify by
exhaustive calculation that three is primitive in GF (213 − 1); hence, 32·7·9·13 (which
equals 4794 in this field) has order five. Further, 1904 also has order five because it is
equal to 47943. We then have the five-point Fourier transform in GF (213 − 1):

Vk =
4∑

i=0

1904ikvi, k = 0, . . . , 4.

We first use the Rader prime algorithm to turn this into a convolution. This construction
is the same as for a complex Fourier transform because the Rader algorithm works only
on the indices. Then the problem is converted into the cyclic convolution

s(x) = g(x)d(x) (mod x4 − 1),

where the Rader polynomial is

g(x) = (ω3 − 1)x3 + (ω4 − 1)x2 + (ω2 − 1)x + (ω − 1)

= 3001x3 − 1511x2 + 4793x + 1903

319 10.3 Mersenne number transforms

and

d(x) = v2x
3 + v4x

2 + v3x + v1,

s(x) = (V3 − V0)x3 + (V4 − V0)x2 + (V2 − V0)x + (V1 − V0).

Next, we need a fast algorithm for the four-point cyclic convolution. Because

x4 − 1 = (x − 1)(x + 1)(x2 + 1)

is a prime factorization in GF (213 − 1), an algorithm for this cyclic convolution must
have the same form as it did in the real field or the complex field. We use the algorithm
shown in Figure 3.14, but executing the arithmetic operations in the field GF (213 − 1).
Hence

G0

G1

G2

G3

G4

 = 1

4

1 1 1 1
1 −1 1 −1
1 −2 −2 2
2 2 −2 −2
2 0 −2 0

1903
4793

−1511
3001

 =

6142
2245
811

2603
1707

 ,

and the five-point Winograd small FFT can then be expressed as
V0

V1

V2

V3

V4

 =

1 0 0 0 0 0
1 1 1 0 −1 1
1 1 −1 −1 0 1
1 1 −1 1 0 −1
1 1 1 0 1 −1

1
6142

2245
811

2603
1707

×

1 1 1 1 1
0 1 1 1 1
0 1 −1 −1 1
0 1 0 0 −1
0 0 −1 1 0
0 1 −1 1 −1

v0

v1

v2

v3

v4

in the field GF (213 − 1).

For a second example, GF (217 − 1) can be used to contain all seventeen-bit one’s-
complement integers. A convolution of sixteen-bit numbers can be performed as a
convolution in GF (217 − 1) as long as there is no overflow in the output of the con-
volution. The convolution can be computed using an FFT algorithm in GF (217 − 1)
together with the convolution theorem.

A Fourier transform in GF (217 − 1) can only have a blocklength that is a divisor of
217 − 2. But

217 − 2 = 2 · 3 · 5 · 17 · 257.

320 Computation in finite fields and rings

One can choose n = 510 and build a 510-point FFT out of a two-point, a three-point,
a five-point, and a 17-point FFT. Of these, the two-point, the three-point, and the
five-point FFT will be simple modules built as Winograd small FFT algorithms. These
Winograd small FFT algorithms are in GF (217 − 1), but they will look the same as the
Winograd small FFT algorithms over the complex field.

The 17-point Fourier transform is also a simple module but can be built by another
technique as follows. In GF (217 − 1), the element two must have order 17 because
217 = 1. Hence, the 17-point Fourier transform is

Vk =
16∑
i=0

2ikvi, k = 0, . . . , 16.

It can be computed using only cyclic shifts and additions. There are no multiplications.
If one wants to compute a convolution longer than 510 points, the factor 257 must be

used also. The 257-point Fourier transform can be converted to a 256-point cyclic
convolution using the Rader prime algorithm, and that cyclic convolution can be
computed with a 256-point radix-two Cooley–Tukey FFT and the convolution theorem.

10.4 Arithmetic in a modular integer ring

When arithmetic is specified to be in the ring ZN , the modulo N reduction is implicit.
The modulo N reduction need not be restated, but it often is explicitly stated for clarity
and emphasis. When both Z and ZN operations are under discussion at the same time,
as in this section, it is best to always restate the modulo N reduction.

Because of the modular reduction, addition in the modular integer ring ZN is some-
what more difficult than is addition in the integer ring Z. To compute x + y modulo
N , one may compute the integers x + y and x + y − N and keep the smaller of the
two, provided it is nonnegative. Even if N is a large integer, this is a straightforward
procedure. The task of computing a subtraction in ZN can be formulated in a similar
way.

The task of modular multiplication is more difficult. This task is to compute z =
xy (mod N), where 0 ≤ x < N, 0 ≤ y < N , and 0 ≤ z < N . Multiplication in ZN is
more difficult than multiplication in Z because of the reduction modulo N , which
is an operation defined as a remainder under integer division. Thus the complexity of
modular multiplication appears to depend on the complexity of integer division. Instead,
we shall see that much of this complexity can be tamed by a method known as the
Montgomery multiplication algorithm. The Montgomery algorithm can be used for any
integer N . Because of its intrinsic computational overhead, the Montgomery algorithm
is primarily attractive for long sequences of multiplications, possibly interspersed with
additions or exponentiations.

321 10.4 Arithmetic in a modular integer ring

In the ring ZN , whenever R has an inverse R−1, we have the obvious identities

xy = R2(R−1x)(R−1y) (mod N)

and

xy = R−2(Rx)(Ry) (mod N).

These apparently trivial formulas are actually not trivial computationally when used in
the right way.

Select any R coprime to N of the form bk, where b is the arithmetic base, and such
that R is larger than N . For example, if numbers are represented in binary notation,
then b = 2 and R = 2k , with R larger than and coprime with N , would be the suitable
choice. If numbers are represented in decimal notation, then b = 10 and R = 10k ,
with R larger than and coprime with N , would be the suitable choice. The trick of
Montgomery multiplication is to exchange integer multiplication modulo N for integer
multiplication modulo R at the expense of a few side calculations.

We shall need the two integers R−1 (mod N) and N−1 (mod R). As a reminder that
these integers do indeed exist, recall that, for any two coprime integers a and b, there
exist two integers A and B such that

aA + bB = 1.

Moreover, because

a(A + �b) + b(B − �a) = 1

must also be true for any integer �, it is clear that A and B can be chosen so that
0 < A < b or 0 < B < a. The values of A (mod b) and B (mod a) are called a−1 and
b−1 because aa−1 = 1 (mod b) and bb−1 = 1 (mod a). Thus, for our case, because R

and N are coprime, R−1 and N−1 both exist.
Define the modified multiplicands by X = Rx (mod N) and Y = Ry (mod N).

Because x and y can always be recovered by x = R−1X (mod N) and by y =
R−1Y (mod N), the conversions from x to X and from y to Y must be permutations
of {0, 1, . . . , N − 1}. The quantities X and Y are called the Montgomery reductions
or the Montgomery permutations of x and y. Finally, let Z = Rxy (mod N). We shall
see that it is easy to recover xy from Z because xy = R−1Z (mod N), which, by the
choice of R, will prove easy to compute.

Because R is a power of the arithmetic base b, it is easy to compute Rx (mod N)
and Ry (mod N) by an iterative procedure. To compute X and Y from x and y when
they are expressed in base-two integer representations and R = 2k , one executes the
iteration

x(i) =
{

2x(i−1) − N if nonnegative,
2x(i−1) otherwise,

322 Computation in finite fields and rings

Compute (mod)xy N

 (mod)X xR N

 (mod)Y yR N

1XYZ R

1z R Z

Exit

1Compute (mod)xR N

1 (mod)m xN R

() /t x mN R

1 if
if

t N t N
x R

t t N

Exit

Figure 10.3 Montgomery multiplication

for i = 1, . . . , k, with x(0) = x. Then x(k) = X. A similar iteration computes Y from
y. This is shown in Figure 10.3. Thus, to compute 2a for any a, left shift a by one bit
and subtract N . Then keep the smaller of 2a and 2a − N provided it is nonnegative.
For any other logarithm base, the computation is similar, with the doubling in the final
step replaced by a multiplication by the logarithm base.

Theorem 10.4.1 (Montgomery multiplication) If z = xy (mod N) then

Z = R−1XY (mod N).

Proof This is nothing more than the trivial statement

Rxy = R−1(Rx)(Ry) (mod N),

that was mentioned earlier. �

The Montgomery multiplication is to be executed by first multiplying X and Y as
integers. The modulo N reduction is deferred until the multiplication by R−1 where it
becomes easy using the method to be given in Theorem 10.4.2.

It only remains to provide a simple way to multiply by R−1 (mod N). This is needed
both to compute Z from XY and to compute z from Z.

323 10.4 Arithmetic in a modular integer ring

Let the integer N−1 satisfy N−1N = 1 (mod R) and define

m = xN−1 (mod R) (0 ≤ m < R)

and define

t = (x + mN)/R.

Because R is a power of the base of the number system, the apparent division by R is
actually trivial, as we show next.

The following theorem assures us that t is an integer. Because R is the kth power
of b, this implies that x + mN must have this power of b as a factor. Thus, in base
b representation, x + mN must have k low-order zeros. Division consists merely of
removing these k zeros, as by right shifting the base b representation.

Theorem 10.4.2 (Montgomery reduction) Suppose that GCD(R, N) = 1, that R−1

is an integer that satisfies R−1R = 1 (mod N), and that N−1 is an integer that satisfies
NN−1 =1 (mod R). Then

xR−1 (mod N) =
{

t + N if t ≥ N,

t if t < N,

where t = (x + mN)/R and m = xN−1 (mod R).

Proof The integers R−1 and N−1 exist as is previously asserted. The proof then
consists of the following three steps.

Step 1 mN = xN−1N (mod R) = x (mod R), so R divides x + mN , which means
that t is an integer.

Step 2 tR = x − mN = x (mod N), so t = xR−1 (mod N)

Step 3 0 ≤ x − mN < RN + RN = 2RN , so (x − mN)/R < 2N . �

In some applications, a sequence of many multiplications and additions may be
required. Montgomery multiplication can be integrated with these computations in
order to obtain greater efficiency. Thus the expressions xy + uv and xyz can be con-
verted to XY + UV and XYZ, then executed as integer arithmetic. The final reduction
of the Montgomery algorithm can be deferred until the end and performed only once
or perhaps when numbers become too large. Similarly, a sequence of repeated squares
x2, x4, x8, x16, . . . can be executed as R−1X2, R−2X4, R−3X8, . . . with additional mul-
tiplications by R−1 to obtain x2, x4, x8, . . . deferred until later. This is especially impor-
tant for the task of exponentiation, which can be done efficiently by the squaring and
multiply procedure.

324 Computation in finite fields and rings

10.5 Convolution algorithms in finite fields

Instead of using a Fourier transform and the convolution theorem to compute a convo-
lution, one can also use direct methods to compute a convolution in a Galois field. All
of the methods of Chapter 3 apply and can be used to design convolution algorithms
directly. Indeed, many of the algorithms that were designed for the real field can be
simply modified to provide algorithms for convolution in a Galois field.

To convert a convolution algorithm derived in the real field into a convolution
algorithm suitable for a Galois field of characteristic p, start with the convolution
algorithm

s = C[(Ag) · (Bd)],

where A, B, and C are matrices of rational numbers. Multiply through by the smallest
integer L that will clear all of the denominators so that the equation can be written

Ls = C ′[(A′ g) · (B′d)],

where now L is an integer, and A′, B′, and C ′ are matrices of integers. This equation
can be viewed as an algorithm for integer convolution. Hence it can be converted to an
equation modulo p as follows

Ls = C ′[(A′ g) · (B′d)] (mod p).

As long as L is not equal to zero modulo p, this becomes an algorithm for convolution
in GF (p) simply by dividing through by L modulo p. Additionally, because it is an
algorithm in GF (p), it is also an algorithm in any extension of GF (p).

If L is equal to zero modulo p, then that algorithm for real convolution cannot be
moved into the Galois field GF (p). In that case, one must derive convolution algorithms
directly in GF (p). Even when L does not equal zero modulo p, one may prefer to
derive convolution algorithms directly in the Galois field, because such algorithms may
be better than those taken from a different field. All of the techniques of Chapter 5
for constructing convolution algorithms are valid in any field, requiring only that the
factorization

m(x) = m(0)(x) · · · m(K)(x)

be a factorization in the field of the convolution.
In most of this chapter, we are interested in fields whose characteristic p is large.

In these fields, because L will usually be much smaller than p, all of the convolution
algorithms can be moved into GF (p) and will look just as they did in the rational field.
In the remainder of this section, we shall look at the contrary case – the case in which
the field characteristic is small and, even more specifically, equal to two.

325 10.5 Convolution algorithms in finite fields

Let us find an algorithm for three-point cyclic convolution in fields of characteristic
two. In a field of characteristic zero, there is a cyclic convolution algorithm, given bys0

s1

s2

=

1 1 0 −1
1 −1 −1 2
1 0 1 −1

1
3 (g0 + g1 + g2)

(g0 − g2)
(g1 − g2)

1
3 (g0 + g1 − 2g2)

1 1 1
1 0 −1
0 1 −1
1 1 −2

d0

d1

d2

.

None of the denominators is a multiple of two. Hence this algorithm can be moved into
a field of characteristic two. Integer arithmetic is modulo 2 in a field of characteristic
two, so all integers of the field are either zero or one. The new algorithm in fields of
characteristic two iss0

s1

s2

=

1 1 0 1
1 1 1 0
1 0 1 1

(g0 + g1 + g2)
(g0 + g2)

(g1 + g2)
(g0 + g1)

1 1 1
1 0 1
0 1 1
1 1 0

d0

d1

d2

.

On the other hand, the two-point cyclic convolution algorithm[
s0

s1

]
=

[
1 1
1 −1

][
1
2 (g0 + g1)

1
2 (g0 − g1)

][
1 1
1 −1

][
d0

d1

]
has denominators that are even integers. The algorithm cannot be moved into a field of
characteristic two because the denominators would become zero. The best two-point
cyclic convolution algorithm for a field of characteristic two is[
s0

s1

]
=

[
1 1 0
1 0 1

]g0 + g1

g0

g1

1 0

1 1
1 1

[
d0

d1

]
,

which has three multiplications. The reason that three multiplications are needed rather
than two is that the polynomial x2 − 1 cannot be factored into two coprime polynomials
over GF (2). This is because −1 = 1 in fields of characteristic two. Hence

x2 + 1 = (x + 1)2,

and the algorithm must be constructed using (x + 1)2 as a modulus polynomial, which
has degree two.

Such a situation, in which the number of multiplications in a finite field is larger than
the number of multiplications in the rational field, occurs for other cyclic convolution
blocklengths. This occurs because several prime factors of xn − 1 are equal in some
fields. In compensation, some cyclic convolution algorithms in a field of finite charac-
teristic have fewer multiplications than like convolutions in the rational field. This is
because the cyclotomic polynomials can be factored in a finite field, even though they
cannot be factored in the rational field.

326 Computation in finite fields and rings

For example, over the rationals,

x7 − 1 = (x − 1)(x6 + x5 + x4 + x3 + x2 + x + 1)

is a prime factorization, but over a field of characteristic two, it factors further as

x7 − 1 = (x − 1)(x3 + x + 1)(x3 + x2 + 1).

Hence according to the general bounds of Section 5.8, the optimum algorithm (with
respect to the number of multiplications) for seven-point cyclic convolution over the
rationals must use 12 multiplications, while the optimum algorithm over fields of
characteristic two must use 11 multiplications. From a practical point of view, a good
algorithm with 16 multiplications is known for the first case, while a good algorithm
with 13 multiplications is known for the second. This latter algorithm, which can be
derived by using the methods of Chapter 3, is given by

s0

s1

s2

s3

s4

s5

s6

=

1 1 1 1 1 1 1
0 1 0 0 1 1 1
1 0 0 1 1 1 0
1 1 0 1 0 0 1
1 1 1 0 1 0 0
0 0 1 1 1 0 1
0 1 1 1 0 1 0
0 1 1 1 0 0 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 1 0 0 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 1 0

1 1 1 1 1 1 1
0 1 1 1 0 0 1
1 0 1 1 1 0 0
1 1 0 0 1 0 1
1 0 0 1 0 0 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1
0 1 1 1 0 1 0
1 1 0 1 0 0 1
1 0 1 0 0 1 1
1 0 0 1 1 1 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1

g0

g1

g2

g3

g4

g5

g6

×

1 1 1 1 1 1 1
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 1 1 0 0 1 0
1 1 0 0 1 0 1
1 0 0 1 0 1 1
0 1 1 1 0 1 0
1 0 0 1 1 1 0
0 0 1 1 1 0 1
1 1 1 0 1 0 0
1 1 0 1 0 0 1
1 0 1 0 0 1 1

d0

d1

d2

d3

d4

d5

d6

.

327 10.5 Convolution algorithms in finite fields

One may also find such an improvement in fields of larger characteristic. For exam-
ple, in GF (11) we have the prime factorization

x7 − 1 = (x − 1)(x3 + 5x2 + 4x − 1)(x3 − 4x2 − 5x − 1).

Consequently, in fields of characteristic 11, there is a seven-point cyclic convolution
algorithm that uses 11 multiplications. Such an algorithm is

s0

s1

s2

s3

s4

s5

s6

=

1 4 −1 0 −4 1 −5 3 0 2 1
1 −1 2 4 2 4 −1 4 −5 −1 −5
1 −5 4 −5 0 −1 4 2 4 −2 −1
1 1 3 0 −5 −5 1 −1 0 5 4
1 0 1 1 4 1 0 1 1 4 1
1 0 1 −1 2 0 0 1 −1 2 0
1 1 1 1 1 0 1 1 1 1 0

×

1 1 1 1 1 1 1
1 0 0 1 −5 −1 4
1 1 1 3 4 2 −1
1 −1 1 0 −5 4 0
1 2 4 −5 0 2 −4
0 0 1 −5 −1 4 1
1 0 0 1 4 −1 −5
1 1 1 −1 2 4 3
1 −1 1 0 4 −5 0
1 2 4 5 −2 −1 2
0 0 1 4 −1 −5 1

g0

g1

g2

g3

g4

g5

g6

×

−3 −3 −3 −3 −3 −3 −3
5 0 3 1 5 −4 1

−4 −4 4 3 −2 2 1
3 −3 2 5 −3 −3 −1
0 0 1 −5 −1 4 1
0 −5 2 −1 3 2 −1

−5 0 −3 5 5 −2 0
−4 −4 −1 5 0 2 2
−3 3 −2 4 −2 −1 1

0 0 −1 −4 1 5 −1
0 5 −1 −1 −4 0 1

d0

d1

d2

d3

d4

d5

d6

.

Although there are only 11 general multiplications, we are forced to accept many multi-
plications by the small constant integers ±2, ±3, ±4, and ±5. Each such multiplication
can be replaced by several additions, but then there will be many more additions in

328 Computation in finite fields and rings

total. The extent to which this algorithm is an improvement is a matter of judgment. It
depends on the relative cost of addition and multiplication. In a large enough extension
field, given by GF (11m), multiplications cost substantially more than additions, so
such an algorithm may then be useful. In the prime field GF (11), there is probably no
advantage.

10.6 Fourier transform algorithms in finite fields

A Fourier transform in a finite field has many of the same properties as does a Fourier
transform in the complex field. However, a Fourier transform of blocklength n exists in
GF (q) only if n divides q − 1. This means that the blocklength of a Fourier transform
over a finite field is limited by the choice of the field, whereas the blocklength of
a Fourier transform over the complex field is arbitrary. Among the fast algorithms
for Fourier transforms in a Galois field are the mixed-radix Cooley–Tukey algorithm,
the Good–Thomas algorithm, and the Winograd algorithms. These algorithms are
appropriate for any field, including the Galois fields.

In this section, we shall discuss semifast algorithms that are specific for Fourier
transforms in Galois fields. By a semifast algorithm, we mean an algorithm that sig-
nificantly reduces the number of multiplications in the field compared with the natural
form of the computation, but does not reduce the number of additions. The algorithms
that we shall describe for the finite-field Fourier transforms are based on the notion of
conjugates in the Galois field, and so resemble the Goertzel algorithm, which is based
on the notion of conjugates in the complex field. The algorithms described here can
compute a single component of the Fourier transform with about log n multiplications
in the field of the Fourier transform.

Recall that the minimal polynomial, denoted mβ(x), of an element β of an extension
field is the monic polynomial of smallest degree over the ground field that has β as
a zero. The minimal polynomial of β, mβ(x) = ∑d

i=0 mix
i , must have (x − β) as a

factor in the extension field, and satisfies mβ(β) = ∑d
i=0 miβ

i = 0. Then, recalling
that (a + b)q = aq + bq in GF (q) because q (mod p) = 0,

[mβ(β)]q =
[

d∑
i=0

miβ
i

]q

=
d∑

i=0

m
q

i β
iq

=
d∑

i=0

miβ
iq = m(βq),

where m
q

i = mi for all i because mi is in GF (q). This means that βq is also a zero of
the minimal polynomial of β. In turn, because βq is a zero of mβ(x), (βq)q = βq2

is a
zero as well. Thus, the conjugates of β are β, βq, βq2

, . . . , where the sequence stops at

329 10.6 Fourier transform algorithms in finite fields

that βqr−1
such that βqr = β. For example, the minimal polynomial over GF (2) of the

element β of GF (8) is mβ(x) = (x − β)(x − β2)(x − β4), which stops here because
β8 = β.

The j th Fourier component Vj = ∑n−1
i=0 ωijvi can be regarded as the polynomial

v(x) = ∑n−1
i=0 vix

i evaluated at ωj . Let mj (x) be the minimal polynomial of ωj , an
element of GF (qm). It has a degree, denoted mj , that is less than or equal to m. For
each mj (x), we can write

v(x) = mj (x)Q(x) + r(x)

for some quotient polynomial Q(x) and remainder polynomial r(x). Then

v(ωj) = mj (ωj)Q(ωj) + r(ωj)

= r(ωj)

because mj (ωj) = 0. Hence to compute Vj , we can divide v(x) by mj (x) to obtain the
remainder r(x), and then evaluate the remainder at ωj . Because mj (x) is a polynomial
over GF (q) with degree at most m, the division by mj (x) requires at most (n − m)m
multiplications of elements of GF (qm) by elements of GF (q), and (n − m)m additions
in GF (qm). The remainder polynomial r(x) has a degree equal to at most m − 1.
Therefore computation of r(ωj) involves at most m − 1 multiplications in GF (qm)
and the same number of additions. This means that the component Vj can be computed
from v(x) with at most m − 1 multiplications in GF (qm), (n − m)m multiplications
of elements of GF (qm) by elements of GF (q), and (n − m + 1)m − 1 additions in
GF (qm).

Because the Fourier transform has n components, this process must be repeated
n = qm − 1 times, for a total of at most m(qm − 1) multiplications in GF (qm). Two
conjugates have the same minimal polynomial, and therefore r(x) is the same for
conjugates. Consequently, the remainder polynomial r(x) need be computed only once
for each conjugacy class. The number of additions is at most (n − 1)n + n(m − 1) =
n2 + nm − 2m. In particular, if q = 2, there are at most n log2(n + 1) multiplications
in GF (2m). This procedure is valid even if 2m − 1 is a prime, in contrast to the Cooley–
Tukey FFT and the Good–Thomas FFT. The number of additions, however, is still of
order n2.

If the input vector v is over the small field GF (q), then even though the transform
is a vector over GF (qm), it requires no multiplications in GF (qm). This is because,
in this case, v(x) is a polynomial over GF (q), and the computation of Vj uses only
multiplications of elements from GF (q) by elements from GF (qm). If q = 2, this
becomes an addition of elements of GF (qm) as selected by the nonzero coefficients of
r(x). This Fourier transform can be computed with no multiplications in GF (2m), and
with at most n log n additions in GF (2) and at most log n additions in GF (2m).

330 Computation in finite fields and rings

This semifast Fourier transform will be illustrated by forming a seven-point Fourier
transform in GF (8) using ω = α, where α is a primitive element of GF (8). The
minimal polynomials of GF (8) over GF (2) are

m0(x) = (x − α0),

m1(x) = (x − α1)(x − x2)(x − α4),

m3(x) = (x − α3)(x − α6)(x − α5).

The first step of the Goertzel algorithm is to obtain each of the remainders rj (x) by
a long division of v(x) by each minimal polynomial mj (x), as given by

v(x) = (x + 1)m0(x) + r00,

v(x) = (x3 + x + 1)m1(x) + r21x
2 + r11x + r01,

v(x) = (x3 + x2 + 1)m3(x) + r22x
2 + r12x + r02,

where

r00 = v0,

r01 = v0 + v3 + v5 + v6,

r11 = v1 + v3 + v4 + v5,

r21 = v2 + v4 + v5 + v6,

r02 = v0 + v3 + v4 + v5,

r12 = v1 + v4 + v5 + v6,

r22 = v2 + v3 + v4 + v6.

The second step of the Goertzel algorithm is to evaluate the remainder polynomial
r(x) at each element of the finite field. Thus, writing Vj = r(αj) gives the components
of the Fourier transform partitioned into conjugacy classes, as given byV1

V2

V4

 =

1 α1 α2

1 α2 α4

1 α4 α2

r01

r11

r21

andV3

V6

V5

 =

1 α3 α6

1 α6 α5

1 α5 α3

r02

r12

r22

 .

331 10.7 Complex convolution in surrogate fields

The Fourier transform as a whole is then written

V0

V1

V2

V4

V3

V6

V5

=

α0

α0 α1 α2

α0 α2 α4

α0 α4 α1

α0 α3 α6

α0 α6 α5

α0 α5 α6

1 1 1 1 1 1 1
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 1 1 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1

v0

v1

v2

v3

v4

v5

v6

,

where the unstated elements are all zeros. Because there are no postadditions, this algo-
rithm can easily reduce the number of multiplications if only a few of the components
of V are to be computed. For example, one can write

V1

V2

V4

 =

α0 α1 α2

α0 α2 α4

α0 α4 α1

1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1

v0

v1

v2

v3

v4

v5

v6

to compute only the three components in the same conjugacy class.

10.7 Complex convolution in surrogate fields

We saw in the previous two sections how to embed a convolution of real numbers
into a Galois field, where the convolution may be more convenient to compute. We
now do the same thing for a convolution involving complex numbers. There are two
distinct situations, which are handled quite differently, depending on whether or not√−1 exists in GF (p). For example, if p is a Mersenne prime, then

√−1 does not
exist in GF (p). If p is a Fermat prime, then

√−1 does exist in GF (p). We will refer
to only Mersenne primes and Fermat primes, but any field whose characteristic is odd
can be handled by either of the two techniques.

We begin with a field GF (p) for which p = 2m − 1 is a Mersenne prime, in which
case, the exponent m must be an odd prime. In this field,

√−1 does not exist. We will
extend GF (2m − 1) to GF ((2m − 1)2) in the same way that the real field R is extended
to the complex field C. The Galois field Fourier transform over GF ((2m − 1)2) can be
used to compute convolutions in the complex field.

In the real field, the polynomial x2 + 1 has no zeros. Hence we extend the real field
by inventing an element called j and forming the set C = {a + bj}, where a and b are

332 Computation in finite fields and rings

real numbers. Addition and multiplication are defined by

(a + bj) + (c + dj) = (a + c) + (b + d)j

(a + bj)(c + dj) = (ac − bd) + (ad + bc)j.

One can verify that this procedure forms an extension of the real field. This extension
is the complex field.

Similarly, in the Galois field GF (2m − 1), where 2m − 1 is a Mersenne prime, the
polynomial x2 + 1 has no zeros. Hence we extend GF (2m − 1) by inventing an element
called j and forming the set GF ((2m − 1)2) = {a + bj}, where a and b are elements of
GF (2m − 1). Addition and multiplication are again defined by

(a + bj) + (c + dj) = (a + c) + (b + d)j

(a + bj)(c + dj) = (ac − bd) + (ad + bc)j,

where the operations on the right side are operations in the base field GF (2m − 1).
One can verify that this definition forms a field containing (2m − 1)2 elements.

We summarize the above claims in the form of two theorems.

Theorem 10.7.1 In GF (2m − 1), where 2m − 1 is a Mersenne prime, the element −1
does not have a square root. Hence x2 + 1 has no zeros.

Proof The proof is deferred until the end of the section. �

Theorem 10.7.2 Under the above definitions of addition and multiplication,
GF ((2m − 1)2) forms a field.

Proof This follows immediately from the statement that x2 + 1 is a prime
polynomial. �

Next, we examine the Fourier transform in GF ((2m − 1)2). The blocklength is
(2m − 1)2 − 1 or a divisor thereof. But we have the obvious factorization

(2m − 1)2 − 1 = 2m+1(2m−1 − 1).

Hence, in GF ((2m − 1)2), we can choose 2m+1 as the blocklength of the Fourier
transform and compute it with a radix-two Cooley–Tukey FFT. One could also include
some factors of 2m−1 − 1 to get other blocklengths.

For example, choose m = 17. Then

(217 − 1)2 − 1 = 218 · 3 · 5 · 17 · 257.

333 10.7 Complex convolution in surrogate fields

Table 10.1 Elements of order n in some complex Mersenne fields

Blocklength
n GF ((213 − 1)2) GF ((217 − 1)2)

256 (27 − 24 − 22) + j(211 + 27 − 23 + 20) (28 + 25) + j(216 + 212 + 211 − 29 + 27 − 24 + 22)
512 (211 − 27 − 25 + 23) + j(28 + 25) (212 + 28) + j(217 − 211 + 28 + 25 + 22)

1024 (29 − 25 + 20) + j(29 − 2) (211 + 28 − 22) + j(215 + 212 + 27 − 20)
2048 (29 + 27 + 24 + 2) + j(210 + 25) (27 + 23) + j(212 + 211 − 29 + 27 + 25 − 20)
4096 (211 + 27 + 24 + 22) + j(29 + 2) (210 − 22 + 20) + j(214 − 26)

GF ((219 − 1)2) GF ((231 − 1)2)

256 (215 + 212 − 27 + 20) (227 + 225 + 221 + 219 + 216 − 213 − 210 + 24 − 21)
+ j(215 + 213 + 211 + 27 + 24 + 23 − 20) + j(227 + 223 − 219 − 217 + 212 + 210 + 28 + 23)

512 (217 + 215 + 212 + 29 − 24 + 20) (230 − 228 + 225 + 219 + 218 − 216 + 213 + 210 + 27)
+ j(215 − 210 − 23) + j(230 − 228 + 222 + 220 − 214 + 28 + 22)

1024 (212 + 210 − 21) (231 − 228 + 225 − 218 − 213 + 210 + 25)
+ j(219 − 217 + 214 + 213 − 27 − 22) + j(230 − 225 − 219 + 216 − 213 − 27 + 24 − 22)

2048 (219 − 217 + 212) (228 + 224 + 218 − 216 + 214 − 26 + 24 + 20)
+ j(216 + 211 − 28 + 22 + 20) + j(227 − 224 + 217 − 214 + 211 + 210 − 20)

4096 (213 + 28 − 25 + 22) (225 + 222 + 221 − 216 + 213 + 25)
+ j(212 + 29 + 26 + 23) + j(230 + 225 − 222 + 214 + 211 + 26 + 22)

Any power of two up to 218 can be chosen to be the blocklength of a Fourier transform,
and even larger Fourier transforms can be formed by using some of the other factors
of p2 − 1.

Let n be a factor of 218, and let

Vk =
n−1∑
i=0

ωikvi, k = 0, . . . , n − 1,

where ω is an element of GF ((217 − 1)2) of order n. (A table of suitable ω, found
by computer search, is given in Table 10.1.) Because n is a factor of two, the Fourier
transform can be computed by a radix-two Cooley–Tukey FFT.

In GF ((217 − 1)2), there are many more choices for the blocklength of a Fourier
transform than in GF (217 − 1), especially of blocklengths that are a power of two.
Therefore one may choose to compute a cyclic convolution in GF (217 − 1), which may
have originated as a cyclic convolution of integers, by embedding it in GF ((217 − 1)2).
This is the same technique as computing a real convolution by embedding the real
field into the complex field so that suitable Fourier transforms are available. Indeed,
a Fourier transform in GF ((217 − 1)2) can be used to simultaneously compute the
Fourier transforms of two vectors v′ and v′′ in GF (217 − 1) by applying it to the sum
v′ + v′′ and decomposing the result into V and V ′ in the standard way.

334 Computation in finite fields and rings

In the case that p is a Fermat number, p = 2m + 1, it is not possible to form an
extension field GF (p2) with a multiplication rule that behaves like complex multipli-
cation because

√−1 is an element of GF (p). Specifically, we have p = 2m + 1 with
m a power of two, and

√−1 = 2m/4(2m/2 − 1), which can be verified by computing
the square of both sides. This shows explicitly that

√−1 is an element of GF (2m + 1).
Therefore it cannot be used to extend the prime field GF (p) if p is a Fermat prime or
is any other p for which x2 + 1 has a zero in GF (p).

The convolution of two sequences g(x) = gR(x) + jgI(x) and d(x) = dR(x) + jdI(x)
of complex numbers, as represented by gaussian integers, can be represented by the
polynomial product

s(x) = g(x)d(x).

In a prime field GF (p) that already has a
√−1, one can first compute the four

convolutions

gR(x)dR(x), gI(x)dR(x), gR(x)dI(x), and gI(x)dI(x).

Then write

sR(x) = gR(x)dR(x) − gI(x)dI(x)

sI(x) = gR(x)dI(x) + gI(x)dR(x).

These satisfy

s(x) = sR(x) + jsI(x)

= g(x)d(x)

provided the real and imaginary parts of s(x) do not exceed the range of GF (p). This
procedure requires four polynomial multiplications.

A better way to use the Fermat field, because it has half the number of polynomial
multiplications, is to regard the polynomials to be in the ring GF (p)[x], where p is a
Fermat prime, and to define

a(x) = 1
2 (gR(x) − 2m/2gI(x))(dR(x) − 2m/2dI(x)),

b(x) = 1
2 (gR(x) + 2m/2gI(x))(dR(x) + 2m/2dI(x)).

These equations specify two convolutions to be computed. The output polynomial s(x)
is given by

sR(x) = (a(x) + b(x)),

sI(x) = 2m/2(a(x) − b(x)),

with all computations in the ring GF (p)[x]/〈xn − 1〉. In this way, a complex convo-
lution over the gaussian integers can be computed with two convolutions in a Fermat
field.

335 10.7 Complex convolution in surrogate fields

To finish the section, we must give a proof of Theorem 10.7.1, which has been left
pending. This proof uses the idea of a quadratic residue of Z. In the integer ring Z,
those elements that have a square root, modulo p, are called quadratic residues modulo
p (because they are the squares of their square roots modulo p). When regarded as
elements of the prime field GF (p), it is more natural just to call these elements the
squares of GF (p). Exactly half of the nonzero elements in GF (p), p an odd prime,
have square roots. To see this, first note that every even power of a primitive element α

has a square root. On the other hand, every element that is a square root can be written
as αi for some i, and so its square is α((2i)), because the multiplicative group of the field
is cyclic with p − 1 elements (where the use of double parentheses denotes modulo
p − 1 in the exponent). But p − 1 is even, so ((2i)) is even as well. Hence only even
powers of α can have square roots.

Theorem 10.7.3 In GF (p), p odd, r is a square if, and only if, r (p−1)/2 = 1.

Proof Suppose that r (p−1)/2 �= 1, and recall that ap−1 = 1 for every element a of
GF (p). Then

√
r cannot exist, because if it did, (

√
r)p−1 must equal one, and the

premise is that it does not.
Suppose that r (p−1)/2 = 1, and let α be a primitive element in GF (p). Obviously,

all even powers of α are squares, and all odd powers of α are nonsquares. All that we
need to prove is that r is an even power of α. Suppose on the contrary that it is odd.
Then r = α2i+1 and

r (p−1)/2 = (α2i+1)(p−1)/2

= αi(p−1)α(p−1)/2

= α(p−1)/2

�= 1,

because α has order p − 1. Thus r (p−1)/2 = 1 implies that r is an even power of α.
Hence r is a square. �

We are now ready to restate and prove Theorem 10.7.1, whose proof has remained
pending.

Theorem 10.7.1 In GF (2m − 1), where 2m − 1 is a Mersenne prime, the element −1
does not have a square root. Hence x2 + 1 has no zeros.

Proof Suppose that −1 has the square root r . Then r2 = −1, and by Theorem 10.7.3,

r (p−1)/2 = 1,

336 Computation in finite fields and rings

where p = 2m − 1. Then

r (2m−2)/2 = 1

or

r2m−1
r−1 = 1.

But r2 = −1, by the premise, and m − 1 is even. Hence r2m−1
is the product of an even

number of copies of r2. Then

r2m−1 = 1

and

r−1 = 1,

so r = 1 and r2 is not equal to −1. This proves that there is no square root of −1 in
GF (p) if p is a Mersenne prime. �

10.8 Integer ring transforms

A Fourier transform of blocklength n exists in a field F whenever F contains an
element of order n. All of the elementary properties of the Fourier transform are valid
whenever it exists.

It is often possible to also define transforms in a ring R, but now the situation is
not as straightforward. In this section, we shall study transforms in Z/〈q〉, the ring of
integers modulo q. When q is a prime, Z/〈q〉 is a field, and we have already seen that,
in a field, the Fourier transform exists together with all its basic properties. It is only
necessary here to consider composite q. We shall see that, over Z/〈q〉, meaningful
Fourier transforms can be defined even when q is composite. However, the structure
of these Fourier transforms is merely a diminished echo of the structure of Fourier
transforms based on the prime factors of q. We shall find that not much value is added
by working with a composite q.

We want to define an integer ring transform

Vk =
n−1∑
i=0

ωikvi, k = 0, . . . , n − 1

of a vector v over the ring Z/〈q〉 so that the inverse transform

vi = n−1
n−1∑
k=0

ω−ikVk, i = 0, . . . , n − 1

337 10.8 Integer ring transforms

exists and the convolution theorem holds. To get a satisfactory Fourier transform, we
need two things: an element ω of order n, and an inverse for n in Z/〈q〉. We also need
an inverse for ω, but this comes without asking because ω−1 = ωn−1 is an immediate
consequence of ωn = 1.

We need to determine the values of n for which an ω of order n exists in Z/〈q〉. We
shall begin with the simple case, q = pm for p an odd prime. This is not a field because
in Z/〈pm〉, multiplication is defined modulo pm. According to Theorem 9.1.8, this ring
contains an element of order (p − 1)pm−1, and according to Theorem 9.1.5 (Euler’s
theorem), the order of every element in Z/〈pm〉 coprime to pm divides (p − 1)pm−1.
This condition says that we can have an ω of order n for all n that divide (p − 1)pm−1.
However, Theorem 9.2.2 says that the inverse of n exists if and only if n and pm are
coprime. Therefore n cannot have p as a factor. We can choose only an ω whose order n

divides p − 1. The next theorem shows that for every such ω there is a suitable Fourier
transform. However, the blocklengths that can be chosen for a Fourier transform in
Z/〈pm〉 are the same blocklengths as those that can be chosen in GF (p). Only the
wordlength is increased from about log2 p bits to about m log2 p bits. Because the
wordlength of a Fourier transform over GF (p) is usually large enough, there is rarely
an advantage in going into Z/〈pm〉.

The situation for an arbitrary q is similar and is proved in the following theorem.

Theorem 10.8.1 Over the ring Z/〈q〉 there exists an invertible Fourier transform of
blocklength n if and only if n divides p − 1 for every prime factor p of q.

Proof The proof will be given first for the case in which q is a prime power. Later,
the Chinese remainder theorem will be used to relate the case in which q is a product
of prime powers to a set of Fourier transforms.

The converse is the easiest to prove. The blocklength n has an inverse modulo q

only if n and q are coprime because

nn−1 = 1 + Qq.

Any factor common to both n and q must then be a factor of one, which is impossible.
Further, Theorem 9.1.5 requires that every element ω whose order n is coprime to
q has an order that divides φ(q) = (p − 1)pm−1. Therefore a Fourier transform of
blocklength n does not exist in Z/〈pm〉 unless n divides p − 1.

Now prove the direct part. There is no point in considering p equal to two, because
then n equals one and the theorem becomes trivial. Hence p is an odd prime, so
Theorem 9.1.8 guarantees the existence of an element π of order (p − 1)pm−1. We
will choose ω = πbpm−1

as an element of order (p − 1)/b for any b that divides p − 1.
Hence, for any divisor of p − 1, we have an ω of that order. All that remains is to show
that the inverse Fourier transform is valid. This we show by examining the inverse

338 Computation in finite fields and rings

Fourier transform

1

n

n−1∑
k=0

ω−ikVk = 1

n

n−1∑
k=0

ω−ik

n−1∑
i ′=0

ωi ′kvi ′

= 1

n

n−1∑
i ′=0

vi ′

[
n−1∑
k=0

ω−k(i ′−i)

]
.

The sum on k is equal to n if i ′ is equal to i, while if i ′ is not equal to i, then the
summation becomes

n−1∑
k=0

(ω−(i ′−i))k = 1 − ω−(i ′−i)k

1 − ω−(i ′−i)
.

The right side is zero because i ′ − i �= 0 (mod n). This is because i and i ′ are both less
than n. Then

1

n

n−1∑
k=0

ω−ik = 1

n

n−1∑
i ′=0

vi ′(nδii ′) = vi,

as was to be proven.
Now let q = p

m1
1 p

m2
2 . . . pmr

r . The use of the Chinese remainder theorem for integers,
as in the Good–Thomas algorithm, provides a mapping from Z/〈q〉 to Z/〈pm1

1 〉 ×
Z/〈pm2

2 〉 × · · · × Z/〈pmr
r 〉. The existence of a Fourier transform over Z/〈q〉 can be

related to the existence of a Fourier transform in each of the factor groups, and the
condition that n divides pi − 1 must hold in each factor group. �

Integer ring transforms, with q not a prime, are so severely constrained by The-
orem 10.8.1 that it seems there will be very few applications. Nevertheless, some
possibilities remain that might fit the needs of a special application.

For example, we have the factorization

240 + 1 = (257)(4278 255 361)

= p1p2.

Because 256 divides both p1 − 1 and p2 − 1, there is a 256-point Fourier transform
in Z/〈240 + 1〉. This transform will have 40 bits of precision in a 41-bit wordlength.
A radix-two Cooley–Tukey FFT can be used in this ring. Arithmetic overflow is
implemented simply by using 240 = −1. The element two cannot be used for ω because
two has order 80. An element of order 256 is needed as ω. Therefore it will not be
possible to turn multiplications into shifts. Multiplications will be general 40-bit by
40-bit multiplications.

339 10.10 The Preparata–Sarwate algorithm

In this way, we can construct a procedure for 256-point cyclic convolution with on
the order of 40 bits of precision and using about 256 log2 256 + 256 multiplications;
each of the multiplications is a 40-bit by 40-bit multiplication. This procedure has both
more precision and fewer multiplications than doing the same thing with a complex
FFT in a forty-bit wordlength.

10.9 Chevillat number transforms

The Chevillat numbers are a loosely defined set of integers for which, in Z/〈q〉, there
is a single-radix Fourier transform algorithm of large order. A Chevillat number is
usually a prime, but not always. The Chevillat numbers correspond to good Fourier
transforms but have no other apparent number-theoretic significance. They were found
by computer search.

In Z/〈q〉, the Fourier transform

Vk =
n−1∑
i=0

ωikvi, k = 0, . . . , n − 1

is convenient to compute with a single-radix Cooley–Tukey FFT whenever the order
of ω is a power of a small prime. Hence, for each q, we can tabulate the largest order to
see when the blocklength n can be made a large power of a small prime. A tabulation
of Chevillat numbers that are primes is shown in Table 10.2. The calculation of the
residue modulo p, which is necessary in calculations in Z/〈p〉, is not as convenient in
the general case as it is when p is a Mersenne prime or a Fermat prime.

10.10 The Preparata–Sarwate algorithm

Just as a computation in the complex field can be embedded into a Galois field, so
a computation in a Galois field can be embedded into the complex field. One may
perform convolutions in GF (q) by using a complex-valued FFT. Suppose that in the
field GF (q),

s(x) = g(x)d(x)

is to be computed. In general, the elements of GF (q) can be represented as polynomials
over some prime field GF (p). We can think of a product of field elements in GF (q) as a
convolution of polynomials modulo an irreducible polynomial p(x). The computation
of the residue modulo the irreducible polynomial can be held pending until after all

340 Computation in finite fields and rings

Table 10.2 Table of Chevillat single-radix Fourier transforms

Maximum Maximum Maximum
Word single-radix Word single-radix Word single-radix
length q FFT length q FFT length q FFT

8 163 81 12 2917 729 15 17497 2187
193 64 3329 256 18433 2048
197 49 3457 128 25601 1024
241 16 3889 243 28751 625
251 125 4001 32, 125 28813 2401

9 257 256 4019 49 30871 343
401 25 4049 16 32077 729
449 64 4051 81, 25 32251 125
487 243 5347 243 32257 512
491 49 7001 125 32401 25

10 751 125 7547 343 32537 49
769 256 7681 512 32563 243
883 49 7841 49 32609 32
919 27 7937 256 16 39367 19 683
929 32 8101 81, 25 40961 8192

1009 16 8161 32 52489 6561
11 1373 343 14 8263 243 61441 4096

1409 128 13 751 625 62501 15 625
1459 729 14 407 2401 64153 729
1471 49 15 361 1024 64513 1024
1601 64 16 001 128, 125 65089 64
1783 81 16 073 49 65101 25
1951 25 16 193 64 65171 343
1999 27 16 301 25 65269 49
2017 32 16 363 81 65449 81

16 369 16 65521 16

other computations of the cyclic convolution are complete. The original convolution
will be written as a two-dimensional convolution of integers, which can be embedded
into the complex field.

The field elements gi and di in GF (q) are expressed as polynomials over the prime
field GF (p) in the form

gi =
m−1∑
�=0

gi�z
�,

di =
m−1∑
�=0

di�z
�,

341 10.10 The Preparata–Sarwate algorithm

where q = pm and gi� and di� are nonnegative integers less than p. The linear convo-
lution of g and d is

si =
n−1∑
k=0

gkdi−k

=
n−1∑
k=0

m−1∑
�=0

m−1∑
�′=0

gk�d(i−k)�′z�+�′
(mod p)(mod p(z)),

where p is the characteristic of the field and p(z) is a prime polynomial of degree m.
Define

sii ′ =
n−1∑
k=0

m−1∑
k′=0

gkk′d(i−k)(i ′−k′),
i = 0, . . . , n − 1,

i ′ = 0, . . . , 2m − 1,

interpreted as a two-dimensional convolution of integers; each integer in the two-
dimensional array is between zero and p − 1, inclusively. Then

si =
2m−1∑
i ′=0

sii ′z
i ′(mod p) (mod p(z)).

The residue computations are done last; first, the residue of each integer modulo p is
found, then the residue of

si(z) =
2m−1∑
i=0

sii ′z
i ′

is found modulo p(x). The computations of the two residue computations are simple in
comparison with the computations of the two-dimensional convolution of integers. The
two-dimensional convolution of integers can be computed in any convenient surrogate
field, such as the real field or the complex field.

One may also use as the surrogate field any convenient finite field, even one whose
characteristic is different from the original field. For example, to convolve sequences
in GF (2), whose blocklength n is smaller than one-half of a Fermat prime 2m + 1 for
m = 2, 4, 8, or 16 (so that 2m + 1 = 5, 17, 257, or 65, 537), one can use GF (2m + 1).
The sequences in GF (2) can be regarded as sequences of integers (which happen to
only take the values zero or one). The linear convolution of the integer sequences has
length smaller than 2m + 1, and is nowhere larger than n. Hence the linear convolution
in GF (2) can be done as a cyclic convolution in GF (2m + 1), followed by a modulo 2
reduction. The cyclic convolution in GF (2m + 1) can be done by any fast convolution
method. The field GF (2m + 1) has a Fourier transform whose size n is any divisor of
2m, so one scheme is to use a fast Fourier transform with the convolution theorem.
The Fourier transform of size n can be computed by the Cooley–Tukey FFT with
(n/2) log2 n multiplications in GF (216 + 1) and with the same number of additions.

342 Computation in finite fields and rings

Problems for Chapter 10

10.1 a Design logic circuits for addition and multiplication in the Mersenne field
GF (7). Is there an advantage in allowing zero to have two representations?

b Design logic circuits for addition and multiplication in the Fermat field
GF (5). Is there an advantage in allowing zero, one, and two each to have
two representations?

10.2 a Verify that, if ω = 2 in the Fermat field GF (22m + 1), then all multiplica-
tions are indeed multiplications by powers of two and can be replaced by
shifts.

b In GF (193) the element ω = 8 has order 32, and so it can be used as
the kernel of a 32-point Fourier transform in GF (193). In this field, is it
meaningful to say that all multiplications are multiplications by powers of
two and can be replaced by shifts?

10.3 In the ring Z/〈15〉 the element two has order four. Write out four by four
matrices in the form of a four-point Fourier transform and inverse Fourier
transform. Show that they do not behave in the standard way for Fourier
transforms. What goes wrong? Why?

10.4 a In the Fermat prime field GF (17), what is the order of the element two?
b Describe a radix-two, eight-point Cooley–Tukey FFT in GF (17). How

many multiplications are there?
c Describe a radix-two, four-point Cooley–Tukey FFT using the element four

as the kernel of the Fourier transform.
d In GF (17),

√
2 = 11. Is eleven a primitive element? Describe a radix-two,

sixteen-point Cooley–Tukey FFT in GF (17) with a minimum number of
multiplications.

10.5 Let q = (28 + 1)(216 + 1). In Z/〈q〉, what is the order of the element two?
10.6 The integer 31 in a Mersenne prime.

a In the field GF (31), what is the order of the element two?
b Give a five-point Winograd FFT in GF (31).
c In GF (31) the element −1 has no square root. What is the order of the

element 1 + j in the extension field GF (312)?
d What is the largest possible blocklength of a Fourier transform in

GF (312)?
e Describe the structure of an eight-point FFT in GF (312).

10.7 In the complex Mersenne field GF ((217 − 1)2), show that the element 1 + j
has order 136. This means there is a Fourier transform of blocklength 136 in
this field. Describe the structure of a fast algorithm for computing this Fourier
transform.

343 Notes

10.8 Describe how to simultaneously compute the GF ((217 − 1)2)-valued Fourier
transform of blocklength 4096 of two GF (217 − 1)-valued vectors using one
pass through an FFT algorithm in GF ((217 − 1)2).

10.9 Construct a five-point Winograd FFT in GF (41). (Hint: What is the order of
two in GF (41)?)

10.10 There is a 17-point Fourier transform in GF ((217 − 1)2).
a Describe how this can be computed with two 16-point Fourier transforms

in the complex field. Portray the computation in the form of a flow diagram.
b How many real multiplications and real additions are required if the 16-point

Fourier transforms in the complex field are computed by using a Winograd
small FFT?

c What wordlength and rounding procedure should be used so that the com-
plex computations do, indeed, give correct answers in GF ((217 − 1)2)?

10.11 There is a 17-point Fourier transform in the complex field.
a Describe how this can be computed with two 16-point Fourier transforms

in a complex Mersenne field.
b How many multiplications and additions are required in the surrogate field?

10.12 a Show that the polynomial x32 − 1 has 32 distinct zeros in GF (216 + 1).
b How many general multiplications will be used by a 32-point Winograd

cyclic convolution in the extension field GF ((216 + 1)m)?
c How many general multiplications will be needed to compute a 32-point

cyclic convolution in GF ((216 + 1)m) by using an FFT and the convolution
theorem?

d Explain the relationship between parts (b) and (c).
10.13 Develop in detail a 16-point Winograd small FFT for GF (17) or an extension

of .GF (17). How many nontrivial multiplications are needed?.
10.14 Construct a program that computes a 75-point fast Fourier transform in

GF (220). Build the FFT out of three-point and five-point Winograd FFTs.

Notes for Chapter 10

Fourier transforms had already been studied in an arbitrary field, but Rader (1972)
was the first to point out that a real convolution could be computed by embedding it
in a field of integers modulo a Mersenne prime or a Fermat prime. He proposed the
application to digital signal processing, noting that the computations could then be
simpler. Agarwal and Burrus (1973) also proposed the use of Fermat transforms and
developed their structure (1974, 1975). Chevillat (1978) explored the use of other prime
fields. Some of the implementation considerations were explored by McClellan (1976)

344 Computation in finite fields and rings

and by Leibowitz (1976). The use of a complex extension of a Galois field was suggested
by Reed and Truong (1975) and by Nussbaumer (1976), as a way of doing complex
convolutions. Our Table 10.1 is based on the work of Reed and Truong. Applications
of the Winograd FFTs in finite fields were studied by Miller, Truong, and Reed (1980).

Convolution algorithms in Galois fields of small characteristics can look different
from convolution algorithms in the real field. Rice (1980) studied the construction of
convolution algorithms in small Galois fields. We have used some of his examples. The
modification of the Goertzel semifast algorithm for finite fields is due to Blahut (1983a).
Trifonof and Fedorenko (2003) and Fedorenko (2006) developed alternative semifast
algorithms.

The idea of using surrogate fields was inverted by Preparata and Sarwate (1977), who
embedded convolutions in a Galois field into the complex field. Games (1985) studied
the use of algebraic integers as surrogates to compute real convolutions. Cozzens and
Finkelstein (1985) developed a method of computing the Fourier transform in the
complex field by using a ring of algebraic integers.

The representation of the data – as opposed to the indices – with a residue number sys-
tem has been well-studied. One may refer to the textbook by Szabo and Tanaka (1967)
or the work by Jenkins and Leon (1977). The Montgomery multiplication algorithm
for modular multiplication was introduced by Montgomery (1985). Kaliski (1995), as
well as Dussé and Kaliski (1991), extended the methods of Montgomery. The notion
of computation with a residue number system has been extended to the use of finite
rings in order to obtain large dynamic range by Wigley, Jullien, and Reaume (1994).

11 Fast algorithms and multidimensional
convolutions

Just as one can define a one-dimensional convolution, so one can define a multidi-
mensional convolution. Multidimensional linear convolutions and cyclic convolutions
can be defined in any field of interest on multidimensional arrays of data and are
useful in many ways. We have seen in earlier chapters that multidimensional arrays
and multidimensional convolutions can be created artificially as part of an algorithm
for processing a one-dimensional data vector. Multidimensional arrays also arise nat-
urally in many signal-processing problems, especially in the processing of image data
such as satellite reconnaissance photographs, medical imagery including X-ray images,
seismic records, and electron micrographs.

This chapter will begin the study of fast algorithms for multidimensional convo-
lutions by nesting fast algorithms for one-dimensional convolutions. Then we shall
study ways to construct a fast algorithm for a one-dimensional cyclic convolution
by temporarily mapping it into a multidimensional convolution, a procedure that is
known as the Agarwal–Cooley convolution algorithm. The Agarwal–Cooley algo-
rithm for one-dimensional cyclic convolution is a powerful adjunct to the convolu-
tion methods studied in Chapter 6, which become unwieldy for large blocklength.
It gives a way to build algorithms for large one-dimensional cyclic convolutions by
combining the small convolution algorithms. Then, in the latter half of the chap-
ter, we shall study methods that are derived specifically to compute two-dimensional
convolutions.

11.1 Nested convolution algorithms

A two-dimensional convolution is an operation on a pair of two-dimensional arrays. We
can think of the convolution as a filtering operation wherein one two-dimensional array
is a two-dimensional filter through which a two-dimensional data array is passed to
form a two-dimensional output signal. Such operations are useful for image processing.

Given an N ′ by N ′′ array called the data array,

d = {di ′i ′′ | i ′ = 0, . . . , N ′ − 1; i ′′ = 0, . . . , N ′′ − 1},
345

346 Fast algorithms and multidimensional convolutions

and an L′ by L′′ array called the filter array,

g = {gi ′i ′′ | i ′ = 0, . . . , L′ − 1; i ′′ = 0, . . . , L′′ − 1},

compute a new array called the signal array,

s = {si ′i ′′ | i ′ = 0, . . . , L′ + N ′ − 2; i ′′ = 0, . . . , L′′ + N ′′ − 2}

by the equation

si ′i ′′ =
N ′−1∑
k′=0

N ′′−1∑
k′′=0

gi ′−k′,i ′′−k′′dk′k′′,
i ′ = 0, . . . , L′ + N ′ − 2,

i ′′ = 0, . . . , L′′ + N ′′ − 2.

The new array s is an L′ + N ′ − 1 by L′′ + N ′′ − 1 array formed as the two-dimensional
convolution of d and g.

One also can form convolutions of higher dimension by a straightforward extension.
However, we shall restrict our attention to two-dimensional convolutions because all
the ideas can be easily extended to higher dimensions.

We shall express a two-dimensional convolution in the notation of polynomials; the
polynomial notation can be introduced along either or both dimensions. Thus the array
d can be represented as a vector of polynomials,

di ′(y) =
N ′′−1∑
i ′′=0

di ′i ′′y
i ′′, i ′ = 0, . . . , N ′ − 1,

or as a polynomial in two variables,

d(x, y) =
N ′−1∑
i ′=0

N ′′−1∑
i ′′=0

di ′i ′′y
i ′′xi ′ .

Similar representations can be used for g and s:

gi ′(y) =
L′′−1∑
i ′′=0

gi ′i ′′y
i ′′, i ′ = 0, . . . , N ′ − 1,

si ′(y) =
L′′−N ′′−2∑

i ′′=0

si ′i ′′y
i ′′, i ′ = 0, . . . , N ′ − 1,

and

g(x, y) =
L′−1∑
i ′=0

L′′−1∑
i ′′=0

gi ′i ′′y
i ′′xi ′,

s(x, y) =
L′+N ′−2∑

i ′=0

L′′−N ′′−2∑
i ′′=0

si ′i ′′y
i ′′xi ′ .

347 11.1 Nested convolution algorithms

Then the two-dimensional convolution can be written either as a one-dimensional
convolution of polynomials,

si ′(y) =
N ′−1∑
k′=0

gi ′−k′(y)dk′(y),

or as a product of polynomials in two variables,

s(x, y) = g(x, y)d(x, y).

A two-dimensional cyclic convolution also can be written this way in terms of
polynomials. Thus

s(x, y) = g(x, y)d(x, y) (mod xn′ − 1)(mod yn′′ − 1),

where n′ and n′′ need not be equal. A two-dimensional cyclic convolution satisfies the
convolution theorem. If D and G are the two-dimensional Fourier transforms of d and
g, respectively, and Sk′k′′ = Gk′k′′Dk′k′′ , then S is the two-dimensional Fourier transform
of s. Hence a two-dimensional cyclic convolution can be computed by using a two-
dimensional FFT algorithm, studied in Chapter 12. One can also use direct methods.

There are a great many direct ways in which to work on a two-dimensional linear
or cyclic convolution. The simplest thing to try is to compute the two-dimensional
convolution as a sequence of one-dimensional convolutions, first along all the rows,
then along all the columns. Then, however, in the formula

si ′i ′′ =
N ′−1∑
k′=0

[
N ′′−1∑
k′′=0

gi ′−k′,i ′′−k′′dk′k′′

]
,

the linear convolution on k′′, as specified by the brackets, must be computed for each
i ′ and k′ of interest.

The two-dimensional convolution may be easier to understand when it is written as
a convolution of polynomials. Thus

si ′(y) =
N ′−1∑
k′=0

gi ′−k′(y)dk′(y), i ′ = 0, . . . , L′ + N ′ − 2,

from which it is easy to see that the obvious implementation of the convolution of poly-
nomials uses L′N ′ polynomial products, and each polynomial product is a convolution
and so requires L′′N ′′ multiplications. There is a total of L′L′′N ′N ′′ multiplications,
which is usually unacceptable for large problems. This is why fast algorithms are
needed for two-dimensional filtering.

The convolution algorithms that we studied in Chapter 3, though derived for convo-
lutions in an arbitrary field, actually are valid in some rings, such as polynomial rings.
Hence a convolution of polynomials can be computed by any of these fast algorithms.
Additions in the fast algorithm become additions of polynomials, and multiplica-
tions become multiplications of polynomials. Those multiplications of polynomials

348 Fast algorithms and multidimensional convolutions

Enter vector
of polynomials

()d x

Addition of polynomial
() ()D x xA d

Multiplication of polynomials

() () () (mod 1)

0, , () 1

n
k k kS x G x D x x

k M n

Addition of polynomials
() ()s x xC S

Addition
D A d

Multiplication

Addition
s C S

Call
subroutine
for each k

Return

Filter vector defined
by () ()kd x D x

d

Exit

0, , () 1
kS G D

M n

Figure 11.1 An algorithm for two-dimensional cyclic convolution

are themselves convolutions and, in turn, can be computed by any fast convolution
algorithm. Thus we have a way to compute a two-dimensional convolution by nesting
a fast algorithm for a one-dimensional convolution inside another fast algorithm for a
one-dimensional convolution.

Of course, everything that was said for linear convolution applies also to cyclic
convolution. Indeed, the methods may be applied to compute a polynomial product
modulo any polynomial m(x).

For example, to compute a two-dimensional four by four cyclic convolution, we use
the four-point cyclic convolution algorithm in the form

s = C[(Bg) · (Ad)],

as given in Figure 5.13. This algorithm uses five multiplications and fifteen additions.
Hence, when used for a cyclic convolution of polynomials, it requires five polynomial
multiplications and 15 polynomial additions. Each polynomial multiplication is itself
a cyclic convolution that can be computed with the same algorithm, using five real
multiplications and 15 real additions. Each polynomial addition requires four real
additions. Hence the four by four cyclic convolution uses 25 real multiplications and
135 real additions. This procedure is shown in Figure 11.1 for an n′ by n′′ cyclic

349 11.1 Nested convolution algorithms

Enter
two-dimensional

frequency domain
convolution

Enter
nested Winograd

convolution

 Inverse Fourier transform
 each row of
 Then inverse Fourier

 transform each column.

S

Multiply each row of by
 and each row of by .

Then multiply each column
 of new arrays by or by ,

 where , , , are
 matrices of 0 1

d A
g B

A B
A A B B

0, , () 1
0, , () 1

k k k k k kS G D
k M n
k M n

Multiply each column of by .
Then multiply each row of new

 array by .

S C

C

0, , 1
0, , 1

k k k k k kS G D
k n
k n

Convolution (mod 1)
 (mod y 1)

n

n
x

Exit
Convolution (mod ())

 (mod m (y))
m x

Exit

 Fourier transform each row of and .d g
i k nW

i k nW

 Then Fourier transform each column

Figure 11.2 Comparison of methods for two-dimensional convolution

convolution. The subroutine, as presented, must know the index k′′ and have access to
a precomputed array G with elements Gk′k′′ .

We can think of this composite algorithm integrated into a single algorithm by using
a sequence of operations on the two-dimensional arrays. First, multiply every row of
d by the matrix A′′ and every row of g by the matrix B′′. Then multiply every column
of the first new array by A′ and every column of the second new array by B′. This
produces two M(n′) by M(n′′) arrays. Multiply their elements componentwise. Then
collapse the resulting M(n′) by M(n′′) array to the n′ by n′′ output array s by first
multiplying every column by C ′, then multiplying every row by C ′′.

In Figure 11.2 this procedure is compared to the use of a two-dimensional Fourier
transform for cyclic convolution. Clearly, this procedure is a generalization of the use
of a two-dimensional Fourier transform. Now the “transforms” use only additions, but
the intermediate array is of size M(n′) by M(n′′), rather than n′ by n′′.

The nested algorithm is more general in another way; it will compute a polynomial
convolution modulo any two polynomials m′(x) and m′′(y). The Fourier transform
method only computes products modulo xn′ − 1, yn′′ − 1.

350 Fast algorithms and multidimensional convolutions

The performance of the nested algorithm is given by the number of multiplications
M(n′ × n′′) and the number of additions A(n′ × n′′) needed for an n′ by n′′ convolution.
The total number of multiplications is easily seen to be given by

M(n′ × n′′) = M(n′)M(n′′).

Similarly, by looking at Figure 11.1, it is easy to see that

A(n′ × n′′) = n′A(n′′) + M(n′′)A(n′).

The total number of multiplications does not depend on which factor is called n′ and
which is called n′′, but the total number of additions does. Therefore one should check
both cases. For example, a seven by nine two-dimensional cyclic convolution can use
one-dimensional algorithms with performance given by

M(7) = 16, A(7) = 70,

M(9) = 19, A(9) = 74.

The total number of multiplications is 304. The total number of additions is either 1848
or 1814, depending on which dimension is called n′.

11.2 The Agarwal–Cooley convolution algorithm

The Agarwal–Cooley convolution algorithm is a method of breaking an n′n′′-point one-
dimensional cyclic convolution into an n′ by n′′ two-dimensional cyclic convolution,
provided that n′ and n′′ are coprime. It can be used to combine an n′-point Winograd
cyclic convolution algorithm having M(n′) multiplications, and an n′′-point Winograd
cyclic convolution algorithm having M(n′′) multiplications to get an n′n′′-point cyclic
convolution algorithm having M(n′)M(n′′) multiplications.

The Agarwal–Cooley convolution algorithm breaks a one-dimensional cyclic con-
volution into a multidimensional cyclic convolution by using the Chinese remainder
theorem for integers. It is different from the method of using the Chinese remainder
theorem for polynomials in the Winograd convolution algorithm. It does not reduce the
number of multiplications to as low a level as did the Winograd algorithm. In compen-
sation, it does not have any tendency for the number of additions to get out of hand
for large n as did the Winograd algorithm. Further, it is a simpler structure. When
n is large, it is more manageable because it can be broken into subroutines. Good
convolution algorithms will use the Agarwal–Cooley convolution algorithm to break
a long cyclic convolution into short cyclic convolutions, then will use the Winograd
convolution algorithm to do the short cyclic convolutions efficiently.

The Agarwal–Cooley algorithm is built from the following three ideas. First, the
Chinese remainder theorem for integers maps the one-dimensional cyclic convolution
into a multidimensional cyclic convolution. Then, the Winograd cyclic convolution

351 11.2 The Agarwal–Cooley convolution algorithm

algorithms are used on each component of the multidimensional cyclic convolution.
Finally, the Kronecker product theorem is used to bind together the various matrices.

Given di and gi for i = 0, . . . , n − 1, we want to compute the cyclic convolution

si =
n−1∑
k=0

g((i−k))dk, i = 0, . . . , n − 1,

where the double parentheses on the indices designate modulo n.
We will turn this one-dimensional convolution into a two-dimensional convolution.

By using the Chinese remainder theorem, we will map the one-dimensional data vectors
at the input into two-dimensional arrays and also map the two-dimensional array at
the output back into a one-dimensional vector. Replace the indices i and k by double
indices (i ′, i ′′) and (k′, k′′), given by

i ′ = i (mod n′),

i ′′ = i (mod n′′),

and

k′ = k (mod n′),

k′′ = k (mod n′′).

We have already seen in the discussion of the Chinese remainder theorem how the
original indices can be recovered from the new indices. The original indices are given
by

i = N ′′n′′i ′ + N ′n′i ′′ (mod n),
i ′ = 0, . . . , n′ − 1,

i ′′ = 0, . . . , n′′ − 1,

k = N ′′n′′k′ + N ′n′k′′ (mod n),
k′ = 0, . . . , n′ − 1,

k′′ = 0, . . . , n′′ − 1,

where N ′ and N ′′ are those integers that satisfy

N ′n′ + N ′′n′′ = 1.

This is the same mapping between components of a vector and elements of a two-
dimensional array as was used in the Good–Thomas FFT algorithm. The mapping is
illustrated in Figure 11.3.

The convolution

si =
n−1∑
k=0

g((i−k))dk

can be written

sN ′′n′′i ′+N ′n′i ′′ =
n′−1∑
k′=0

n′′−1∑
k′′=0

gN ′′n′′(i ′−k′)+N ′n′(i ′′−k′′)dN ′′n′′k′+N ′n′k′′ .

352 Fast algorithms and multidimensional convolutions

Two-dimensional
cyclic

convolution

0

1

2

14

s
s
s

s
0

1

2

14

g
g
g

g

0

1

2

14

d
d
d

d

0 1

1

2 14

g g
g

g g

0 3

1

2 14

s s
s

s s

0 3

1

2 14

d d
d

d d

C.R.T.

Figure 11.3 Illustration of Agarwal–Cooley algorithm

The double summation on k′ and k′′ is equivalent to the single summation on k because
it picks up the same terms. Now define the two-dimensional variables, also called d,
g, and s, given by

dk′k′′ = dN ′′n′′k′+N ′n′k′′,
k′ = 0, . . . , n′ − 1,

k′′ = 0, . . . , n′′ − 1,

gk′k′′ = gN ′′n′′k′+N ′n′k′′,
k′ = 0, . . . , n′ − 1,

k′′ = 0, . . . , n′′ − 1,

sk′k′′ = sN ′′n′′k′+N ′n′k′′,
k′ = 0, . . . , n′ − 1,

k′′ = 0, . . . , n′′ − 1,

so that the convolution now becomes

si ′i ′′ =
n′−1∑
k′=0

n′′−1∑
k′′=0

g((i ′−k′))((i ′′−k′′))dk′k′′,

where the first and second indices are interpreted modulo n′ and modulo n′′, respec-
tively. This is now a two-dimensional cyclic convolution. However, there is not yet any
improvement in computational complexity because, for every pair of indices i ′ and i ′′,
every dk′k′′ multiplies something. Hence there are still (n′n′′)2 multiplications.

For the algorithm to be useful, we must use a fast algorithm for the two-dimensional
cyclic convolutions, as studied in the previous section. The Agarwal–Cooley convo-
lution algorithm can be summarized as a map from a one-dimensional array into a
multidimensional array, followed by a multidimensional fast convolution algorithm,
followed by a map from the multidimensional array back into a one-dimensional array.

The performance of the n-point Agarwal–Cooley algorithm, which is tabulated in
Table 11.1, is determined by the equations

A(n) = n′A(n′′) + M(n′′)A(n′),
M(n) = M(n′)M(n′′)

for the number of additions and multiplications under nesting.

353 11.2 The Agarwal–Cooley convolution algorithm

Table 11.1 Performance of the Agarwal–Cooley convolutional algorithm

Number of real Number of Real multiplications Real additions
Blocklength n multiplications M(n) real additions A(n) per point M(n)/n per point A(n)/n

18 38 184 2.11 10.22
20 50 230 2.50 11.50
24 56 272 2.33 11.33
30 80 418 2.67 13.93
36 95 505 2.64 14.03
48 132 900 2.75 18.75
60 200 1120 3.33 18.67
72 266 1450 3.69 20.14
84 320 2100 3.81 25.00

120 560 3096 4.67 25.80
180 950 5470 5.28 30.39
210 1280 7958 6.10 37.90
240 1056 10 176 4.40 42.40
360 2280 14 748 6.33 40.97
420 3200 20 420 7.62 48.62
504 3648 26 304 7.24 52.19
840 7680 52 788 9.14 62.84

1008 10 032 71 265 9.95 70.70
1260 12 160 95 744 9.65 75.99
2520 29 184 241 680 11.58 95.90

One consequence of these equations is that in determining the number of additions
in the large algorithm, the number of multiplications in the small algorithms is much
more important than the number of additions. For example, suppose we want to form
a 504-point cyclic convolution by combining seven-point, nine-point, and eight-point
cyclic convolutions. We start with

M(7) = 16, A(7) = 70,

M(9) = 19, A(9) = 74,

M(8) = 14, A(8) = 46,

or

M(8) = 12, A(8) = 72.

It seems that the eight-point algorithm with 14 multiplications is better because it trades
two more multiplications for 26 fewer additions. However, when these are used to build
a 504-point algorithm, the results are surprising:

M(504) = 4256, A(504) = 28240,

or

M(504) = 3648, A(504) = 26304.

354 Fast algorithms and multidimensional convolutions

The eight-point algorithm with 12 multiplications leads to a 504-point algorithm with
both fewer additions and fewer multiplications.

Recall from Section 5.6 that the Winograd convolution algorithms were written as

s = CG Ad,

where A is an M(n) by n matrix, G is an M(n) by M(n) matrix, and C is an n by
M(n) matrix. The computation will proceed as follows. First, each column of the two-
dimensional array is multiplied by the matrix A′′. Then each column of the resulting
array is multiplied componentwise by the vector of constants that are given by the
diagonal elements of G′′. Then the polynomial products, regarded as convolutions,
begin. But this step starts by multiplying each row of the two-dimensional array by
A′. Then each row is multiplied componentwise by a vector of constants, given by
the diagonal elements of G. Alternatively, the componentwise multiplication of the
columns by G′′ can be deferred until after the multiplication of the rows by A′. Then the
elements of G′ and G′′ can be multiplied to form an array so that the intermediate array
itself is multiplied elementwise by an array of constants. To complete the polynomial
multiplication, each column is multiplied by C ′, then each row is multiplied by C ′′.

These steps can be collapsed into a more compact form by binding the two cyclic
convolution algorithms into one cyclic convolution algorithm. Let the two-dimensional
input array be stacked by columns into a one-dimensional input array. Similarly, let the
columns of the output two-dimensional array be stacked into a one-dimensional output
array. Then the algorithm looks like

s = (C ′′ × C ′)(G′ × G′′)(A′ × A′′)d,

using the notation of the Kronecker product. Alternatively, one can form the one-
dimensional output array by reading the two-dimensional array by rows. Then the
algorithm will be in the more symmetric form:

s = (C ′ × C ′′)(G′ × G′′)(A′ × A′′)d,

where this s has the same elements as before but arranged in a different order. In either
case, by defining new matrices in the obvious way, this can be written

s = CG Ad.

There is one last detail to take care of: d and s are not in their natural order. They were
scrambled by reading them into a two-dimensional array down the extended diagonal
and then stacking columns (or rows). To put them back in their natural order, permute
the columns of the matrix A appropriately, then permute the rows of the matrix C.

As an example, we will construct a 12-point cyclic convolution algorithm. We use
the three-point cyclic convolution algorithm, given bys0

s1

s2

 =

1 1 0 −1
1 −1 −1 2
1 0 1 −1

G′′
0

G′′
1

G′′
2

G′′
3

1 1 1
1 0 −1
0 1 −1
1 1 −2

d0

d1

d2

 ,

355 11.2 The Agarwal–Cooley convolution algorithm

where
G′′

0

G′′
1

G′′
2

G′′
3

 =

1
3

1
3

1
3

1 0 −1
0 1 −1
1
3

1
3 − 2

3

g′′

0

g′′
1

g′′
2

 ,

and the four-point cyclic convolution algorithm, given by

s0

s1

s2

s3

 =

1 1 0 0 −1
1 −1 1 −1 0
1 1 −1 0 1
1 −1 −1 1 0

G′
0

G′
1

G′
2

G′
3

G′
4

×

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 0 −1 0
0 1 0 −1

d0

d1

d2

d3

 ,

where
G′

0

G′
1

G′
2

G′
3

G′
4

 =

1
4

1
4

1
4

1
4

1
4 − 1

4
1
4 − 1

4
1
2 0 − 1

2 0
1
2 − 1

2 − 1
2

1
2

1
2

1
2 − 1

2 − 1
2

g′

0

g′
1

g′
2

g′
3

 .

First, write the 12 coefficients of the filter g in a three by four array by writing the
12 coefficients down the extended diagonal, and then stack columns

g0

g1

g2

...

g11

→

g0 g9 g6 g3

g4 g1 g10 g7

g8 g5 g2 g11

 →

g0

g4

g8

g9

g1

g5

g6

g10

g2

g3

g7

g11

.

356 Fast algorithms and multidimensional convolutions

Next, express the 20 coefficients of the vector G as a matrix multiplying the vector g.
The matrix is the Kronecker product of two component matrices as follows:

G0

G1

G2

...

G19

=

1
4

1
4

1
4

1
4

1
4 − 1

4
1
4 − 1

4

1
2 0 − 1

2 0

1
2 − 1

2 − 1
2

1
2

1
2

1
2 − 1

2 − 2
2

×

1
3

1
3

1
3

1 0 −1
0 1 −1
1
3

1
3 − 2

3

g0

g4

g8

g9

...

g11

.

The same construction is used to convert the 12 data coefficients of d into the 20
components of D. We write the Kronecker product explicitly:

D0

D1

D2

D3
...

D19

=

1 1 1 1 1 1 1 1 1 1 1 1

1 0 −1 1 0 −1 1 0 −1 1 0 −1

0 1 −1 0 1 −1 0 1 −1 0 1 −1

1 1 −2 1 1 −2 1 1 −2 1 1 −2

1 1 1 −1 −1 −1 1 1 1 −1 −1 −1

1 0 −1 −1 0 1 1 0 −1 −1 0 1

0 1 −1 0 −1 1 0 1 −1 0 −1 1

1 1 −2 −1 −1 2 1 1 −2 −1 −1 2

1 1 1 1 1 1 −1 −1 −1 −1 −1 −1

1 0 −1 1 0 −1 −1 0 1 −1 0 1

0 1 −1 0 1 −1 0 −1 1 0 −1 1

1 1 −2 1 1 −2 −1 −1 2 −1 −1 2

1 1 1 0 0 0 −1 −1 −1 0 0 0

1 0 −1 0 0 0 −1 0 1 0 0 0

0 1 −1 0 0 0 0 −1 1 0 0 0

1 1 −2 0 0 0 −1 −1 2 0 0 0

0 0 0 1 1 1 0 0 0 −1 −1 −1

0 0 0 1 0 −1 0 0 0 −1 0 1

0 0 0 0 1 −1 0 0 0 0 −1 1

0 0 0 1 1 −2 0 0 0 −1 −1 2

d0

d4

d8

d9

d1

d5

d6

d10

d2

d3

d7

d11

.

357 11.3 Splitting algorithms

Finally, permute columns of the matrix and the components of the vector to rewrite
this as

D0

D1

D2

D3

...

D18

D19

=

1 1 1 1 1 1 1 1 1 1 1 1
1 0 −1 1 0 −1 1 0 −1 1 0 −1
0 1 −1 0 1 −1 0 1 −1 0 1 −1
1 1 −2 1 1 −2 1 1 −2 1 1 −2
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 0 −1 −1 0 1 1 0 −1 −1 0 1
0 −1 −1 0 1 1 0 −1 −1 0 1 1
1 −1 −2 −1 1 2 1 −1 −2 −1 1 2
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 0 1 −1 0 −1 −1 0 −1 1 0 1
0 1 1 0 1 −1 0 −1 −1 0 −1 1
1 1 2 −1 1 −2 −1 −1 −2 1 −1 2
1 0 −1 0 1 0 −1 0 1 0 −1 0
1 0 1 0 0 0 −1 0 −1 0 0 0
0 0 1 0 1 0 0 0 −1 0 −1 0
1 0 2 0 1 0 −1 0 −2 0 −1 0
0 1 0 −1 0 1 0 −1 0 1 0 −1
0 0 0 −1 0 −1 0 0 0 1 0 1
0 1 0 0 0 −1 0 −1 0 0 0 1
0 1 0 −1 0 −2 0 −1 0 1 0 2

d0

d1

d2

d3

d4

...

d11

.

This defines the computation

D = Ad.

By following through a similar development, we can also obtain the matrix C. Hence
we have reproduced the standard form

s = CG Ad

for a 12-point cyclic convolution. With this form, the scrambling operations have been
absorbed into the matrices of preadditions and postadditions.

11.3 Splitting algorithms

We have seen how convolution algorithms can be nested to form a multidimensional
convolution algorithm. To compute the two-dimensional cyclic convolution,

s(x, y) = g(x, y)d(x, y) (mod xn′ − 1)(mod yn′′ − 1),

358 Fast algorithms and multidimensional convolutions

we nest algorithms that compute

s(x) = g(x)d(x) (mod xn′ − 1)

and

s(y) = g(y)d(y) (mod yn′′ − 1).

More generally, to compute

s(x, y) = g(x, y)d(x, y) (mod p(x))(mod q(y)),

where p(x) and q(y) are polynomials of degree n′ and n′′, respectively, we nest algo-
rithms for the two simpler one-dimensional problems

s(x) = g(x)d(x) (mod p(x))

and

s(y) = g(y)d(y) (mod q(y)).

If the number of multiplications used by the component problems are M(n′) and M(n′′),
respectively, then the two-dimensional polynomial product will use M(n′)M(n′′)
multiplications.

The one-dimensional algorithms were designed by using the Chinese remainder the-
orem on each dimension individually. This suggests one more possibility to explore.
One can use the Chinese remainder theorem instead on the level of the two-dimensional
problem to break the two-dimensional convolution into smaller two-dimensional
pieces. Suppose

p(x) = p(0)(x)p(1)(x),

where p(0)(x) and p(1)(x) are coprime. The polynomial product

s(x, y) = g(x, y)d(x, y) (mod p(x))(mod q(y))

can be broken into

s(0)(x, y) = g(0)(x, y)d (0)(x, y) (mod p(0)(x))(mod q(y))

and

s(1)(x, y) = g(1)(x, y)d (1)(x, y) (mod p(1)(x))(mod q(y)).

The pieces can be combined into s(x, y) by using the Chinese remainder theorem.
Alternatively, if q(y) = q(0)(y)q(1)(y), then this factorization can be used to break
down the problem in the y variable.

359 11.3 Splitting algorithms

Both of these can be used at once to break the problem into four pieces:

s(0,0)(x, y) = g(0,0)(x, y)d (0,0)(x, y) (mod p(0)(x))(mod q(0)(y)),

s(0,1)(x, y) = g(0,1)(x, y)d (0,1)(x, y) (mod p(0)(x))(mod q(1)(y)),

s(1,0)(x, y) = g(1,0)(x, y)d (1,0)(x, y) (mod p(1)(x))(mod q(0)(y)),

s(1,1)(x, y) = g(1,1)(x, y)d (1,1)(x, y) (mod p(1)(x))(mod q(1)(y)),

where

g(i,j)(x, y) = g(x, y) (mod p(i)(x))(mod q(j)(y)),

and so on. The output polynomial s(x, y) can be assembled from the four pieces by
using the Chinese remainder theorem for polynomials twice.

Let M0 and M1 be the number of multiplications necessary to do a polynomial
product modulo p(0)(x) and p(1)(x), respectively, and let M ′

0 and M ′
1 be the number

of multiplications necessary to do a polynomial product modulo q(0)(y) and q (1)(y),
respectively. Then it takes

M = (M0 + M1)(M ′
0 + M ′

1)

multiplications to compute

s(x, y) = g(x, y)d(x, y) (mod p(x))(mod q(y))

directly, while to compute it by using the Chinese remainder theorem on two-
dimensional pieces, as above, uses

M = M0M
′
0 + M0M

′
1 + M1M

′
0 + M1M

′
1

multiplications, which is the same number, so the number of multiplications is not
reduced. Though there is no advantage in the number of multiplications, there may be
advantages in the dataflow of the computation and in the number of additions.

There are many ways in which a two-dimensional convolution can be split by using
the Chinese remainder theorem. Table 11.2 shows examples of the performance that
can be obtained when the Agarwal–Cooley algorithm has been modified by splitting it
differently. Table 11.2 should be compared with Table 11.1.

As an example, we will outline the development of a 20-point cyclic convolution
algorithm. This one-dimensional cyclic convolution is first mapped into a four by five
two-dimensional cyclic convolution

s(x, y) = g(x, y)d(x, y) (mod x4 − 1)(mod y5 − 1).

We choose to split this product as

s(0)(x, y) = g(0)(x, y)d (0)(x, y) (mod x4 − 1)(mod y − 1),

s(1)(x, y) = g(1)(x, y)d (1)(x, y) (mod x4 − 1)(mod y4 + y3 + y2 + y + 1),

360 Fast algorithms and multidimensional convolutions

Table 11.2 Performance of an enhanced Agarwal–Cooley convolution

Number of real Number of Real multiplications Real additions
Blocklength n multiplications M(n) real additions A(n) per point M(n)/n per point A(n)/n

18 38 184 2.11 10.22
20 50 215 2.50 11.75
24 56 244 2.33 11.17
30 80 392 2.67 13.07
36 95 461 2.64 12.81
48 132 840 2.75 17.50
60 200 964 3.33 16.07
72 266 1186 3.69 16.47
84 320 1784 3.81 21.24

120 560 2468 4.67 20.57
180 950 4382 5.28 24.34
210 1280 6458 6.10 30.75
240 1056 9696 4.40 40.40
360 2280 11840 6.33 32.89
420 3200 15256 7.62 36.32
504 3648 21844 7.24 43.34
840 7680 39884 9.14 47.48

1008 10032 56360 9.95 55.91
1260 12160 72268 9.65 57.36
2520 29184 190148 11.58 75.46

but not to split it any further as a two-dimensional problem. To compute s(0)(x, y),
we nest an algorithm for a polynomial product modulo x4 − 1 with an algorithm for a
polynomial product modulo y − 1. To compute s(1)(x, y), we nest an algorithm for a
polynomial product modulo x4 − 1 with an algorithm for a polynomial product modulo
y4 + y3 + y2 + y + 1. Finally, s(0)(x, y) and s(1)(x, y) are combined into s(x, y) by
using

s(x, y) = a(0)(y)s(0)(x, y) + a(1)(y)s(1)(x, y) (mod y5 − 1),

where a(0)(y) and a(1)(y) are obtained from the Chinese remainder theorem for polyno-
mials. They are the same as would be used to combine s(0)(y) and s(1)(y) if the problem
were a one-dimensional polynomial product modulo y5 − 1.

We see that the overall computation is made up of the same subcomputations
as before, but they are put together a little differently. Now one application of the
Chinese remainder theorem has been pulled out to appear after the nesting is com-
plete, and one polynomial reduction has been pulled out to appear before the nesting
begins.

361 11.3 Splitting algorithms

To determine the number of additions, we must look more closely at the number of
additions used by the one-dimensional five-point cyclic convolution algorithm. This is

polynomial multiplication modulo y − 1: 0 additions,
polynomial multiplication modulo

y4 + y3 + y2 + y + 1: 16 additions,
Chinese remainder theorem: 15 additions.

We denote these by A(0)(5), A(1)(5), and Acrt(5), respectively. The modulo x4 − 1
computation uses 15 additions. The number of additions used by the two-dimensional
algorithm is then derived by looking at each of the three subcomputations

A(20) = (4 · 0 + 1 · 15) + (4 · 15 + 5 · 16) + (15 · 4)

= 215,

which is fewer than the 230 additions that are needed by the pure form of the Agarwal–
Cooley algorithm.

We emphasize that there is no noticeable increase in the organizational complexity
of the computation in using the split-nesting algorithms. All that happens is that
the computation jumps between steps that perform additions along rows of the two-
dimensional array and steps that perform additions along columns. We can think of
this simply as a change in the sequence in which subroutines are called.

To reduce the number of multiplications by using the Chinese remainder theorem
requires one more innovation, which is going into an extension field to split the problem.
We shall allow coprime factorizations of q(y) that use the indeterminate x in the
coefficients of the factor polynomials. (Formally stated, we allow factorizations of
q(y) in the extension field generated by the indeterminate x.) This means that we
can find smaller factors of q(y) than we could find previously when studying one-
dimensional problems. This method to find better algorithms is not available in one
dimension. In two dimensions, the symbol x becomes mixed up in the y convolutions,
so when viewed by itself the y convolution becomes more complicated. When it is
combined with the x convolution, however, the symbol x, arising in the factorization
of q(y), can be combined algebraically with the symbol x of the x convolution. This
means that the two-dimensional algorithm is made simpler.

We will explain the method concretely with an example. Let

s(x, y) = g(x, y)d(x, y) (mod x4 − 1)(mod y4 − 1).

This is a two-dimensional cyclic convolution. First, replace it with two polynomial
products,

s(0)(x, y) = g(0)(x, y)d (0)(x, y) (mod x2 − 1)(mod y4 − 1)

362 Fast algorithms and multidimensional convolutions

and

s(1)(x, y) = g(1)(x, y)d (1)(x, y) (mod x2 + 1)(mod y4 − 1).

Solve the first subproblem as already explained. This takes ten multiplications when
using a four-point and a two-point cyclic convolution algorithm with five multiplica-
tions and two multiplications, respectively.

The second subproblem would require 15 multiplications when using the best pos-
sible algorithm for the one-dimensional polynomial product modulo y4 − 1, and the
best possible polynomial product for the two-dimensional polynomial product modulo
x2 + 1. Then the total number of multiplications is 25, the same as would be obtained
by using a four-point cyclic convolution algorithm on both axes.

Instead, choose the factorization

y4 − 1 = (y − 1)(y + 1)(y − x)(y + x) (mod x2 + 1).

This works because modulo x2 + 1, x2 = −1. Now one can build an algorithm modulo
y4 − 1 with four multiplications. Each multiplication is a multiplication of first-degree
polynomials in x modulo x2 + 1. But the computation requires the multiplication of
first-degree polynomials anyway. By using the factorization y2 + 1 = (y − x)(y + x),
the y dependence is partially deflected into x dependence, and the x dependence is
absorbed into work that is needed anyway.

In this way, one can compute s(1)(x, y) using 12 multiplications. Hence the original
four-point by four-point cyclic convolution is computed with 22 multiplications.

One can press this method even further, introducing even more symbols as zeros of
yn + 1. When pressed to the limit, this amounts to computing the Fourier transform in
a polynomial representation of an extension field. We shall drop the topic for now, but
we shall see it later in a different form, after we study the polynomial representations
of an extension field in Section 11.5.

11.4 Iterated algorithms

Construction of convolution algorithms by the method of iteration depends on the fact
that the small convolution algorithms over the field F , despite the setting in which
they were developed, are actually valid identities in any ring containing F . The final
algorithms do not assume that multiplication is commutative, nor do they involve
division except for some small scalars. Only addition, subtraction, and multiplication
are used for the input variables.

First, consider the one-dimensional four by four linear convolution

s(x) = g(x)d(x),

363 11.4 Iterated algorithms

where g(x) and d(x) each has degree three. Write them parenthesized as follows:

g(x) = (g3x + g2)x2 + (g1x + g0),

d(x) = (d3x + d2)x2 + (d1x + d0).

Define the following polynomials in two variables:

g(y, z) = (g3y + g2)z + (g1y + g0),

d(y, z) = (d3y + d2)z + (g1y + g0),

and

s(y, z) = g(y, z)d(y, z).

Then the desired convolution is obtained from s(y, z) by

s(x) = s(x, x2).

We can rewrite the computation in abbreviated form as

s2(y)z2 + s1(y)z + s0(y) = (g1(y)z + g0(y))(d1(y)z + d0(y)),

where now all of the coefficients are actually polynomials in y of degree one.
A two by two linear convolution algorithm iss0

s1

s2

 =

 1 0 0
−1 1 −1

0 0 1

g0

g0 + g1

g1

1 0

1 1
0 1

[
d0

d1

]
.

This identity holds even if the input variables are from a ring of polynomials. Thens0(y)
s1(y)
s2(y)

 =

 1 0 0
−1 1 −1

0 0 1

g0(y)

g0(y) + g1(y)
g1(y)

1 0

1 1
0 1

[
d0(y)
d1(y)

]
.

There are three polynomial multiplications and three polynomial additions, excluding
the additions involving the coefficients of g(x). Each polynomial product, in turn, can
use the two by two linear convolution algorithm; each requires three multiplications
and three additions, so there is a total of nine multiplications in the iterated four by
four linear convolution algorithm. This is poorer than the optimum algorithm, which
uses seven multiplications. The advantage is in the number of additions. Excluding
those additions involving only the coefficients of g(x), the total number of additions
used is 15.

The resulting four by four convolution algorithm itself can be iterated to obtain a
16 by 16 convolution algorithm with 81 multiplications and 195 additions, which is
5.06 multiplications and 12.19 additions per output sample. This can be iterated again
to obtain a 256 by 256 convolution algorithm with 6561 multiplications and 18 915
additions, which is 25.63 multiplications and 73.89 additions per output sample.

364 Fast algorithms and multidimensional convolutions

In general, iteration can be used to compute

s(x) = g(x)d(x)

whenever the number of coefficients in g(x) and the number of coefficients in d(x)
have a common factor. Let

deg d(x) = MN − 1,

deg g(x) = ML − 1.

Convert the polynomial d(x) into a two-dimensional polynomial, d(y, z), defining new
indices � and k by

i = M� + k, � = 0, . . . , N − 1,

k = 0, . . . , M − 1,

and

d(y, z) =
N−1∑
�=0

(
M−1∑
k=0

dM�+ky
k

)
z�.

Similarly, convert the polynomial g(x) into a two-dimensional polynomial g(y, z) by
using new indices � and k, satisfying

i = M� + k, � = 0, . . . , L − 1,

k = 0, . . . , M − 1,

and

g(y, z) =
L−1∑
�=0

(
M−1∑
k=0

gM�+ky
k

)
z�.

Compute

s(y, z) = g(y, z)d(y, z).

Then s(x) can be obtained by

s(x) = s(x, xM),

which requires only additions. The two-dimensional convolution uses an L by N linear
convolution and also an M by M linear convolution. The total number of multiplications
is the product of the number of multiplications required by each of the two small
algorithms.

Of course, one of the two component algorithms might itself have been constructed
by iteration. In this way, the iteration procedure can be repeated any number of times to
build large convolution algorithms. Further, in cases in which the number of coefficients
in d(x) and g(x) does not have a common factor, it is easy to pad one of them with
dummy coefficients, equal to zero, so that iteration then can still be used.

365 11.4 Iterated algorithms

Iteration can also be used to compute the polynomial product

s(x) = g(x)d(x) (mod m(x)).

One way is to compute the linear convolution first and then to reduce modulo m(x).
One can usually do better than this by trying harder.

We shall consider only the case in which m(x) equals xn + 1 and n is a power of
two. This is an important case because

x2n − 1 = (xn − 1)(xn + 1),

so products modulo xn + 1 occur whenever one computes a 2n-point cyclic convolution
using the Chinese remainder theorem.

To compute

s(x) = g(x)d(x) (mod xn + 1),

replace the one-dimensional polynomial

d(x) =
n−1∑
i=0

dix
i

by the two-dimensional polynomial

d(y, z) =
n′′−1∑
i ′′=0

n′−1∑
i ′=0

di ′+n′i ′′y
i ′zi ′′,

where n = n′n′′. The original polynomial can be recovered by setting y equal to x and
z equal to xn′

. Similarly, define g(y, z), and let

s(y, z) = g(y, z)d(y, z) (mod zn′′ + 1).

We only need to be concerned with computing s(y, z) because then s(x) can be obtained
as

s(x) = s(x, xn′
) (mod xn + 1)

with no multiplications.
Consider the bivariate convolution restated as the linear convolution

s(y) = g(y)d(y),

where the coefficients of the polynomials g(y), d(y), and s(y) are themselves poly-
nomials in z, and products of polynomials in z are understood to be products modulo
zn′′ + 1.

It may be that this procedure will be easier to understand if we take the case in
which n′′ = 2 and z is replaced by j. Then we see that we have replaced a product
of real polynomials modulo xn + 1 by a product of complex polynomials modulo
xn/2 + 1. The advantage of this form is that the Cook–Toom algorithm can now be

366 Fast algorithms and multidimensional convolutions

used with zeros at ±j. In the general case, we may think of z as representing an n′′th
root of −1.

We shall use the Cook–Toom algorithm, but allowing “zeros” to occur at powers of
z. (The formal statement is that we are choosing zeros in the extension field generated
by z.) Choosing powers of z as zeros means that under modulo y − z� reduction,
the coefficients of the polynomials g(y) and d(y) will become polynomials in z. The
reason this does not hurt here is that they started out as polynomials in z anyway, so the
complexity does not grow. If we allow the degrees of these polynomials in z to grow
beyond what they started with, however, there will be an increase in complexity. This
imposes an inequality relationship between n′ and n′′. The linear convolution can be
computed with the Cook–Toom algorithm by choosing the polynomial with zeros at
±z� for � smaller than n′′. Thus

m(y) = y(y − ∞)
n′′−1∏
�=0

(y − z�)(y + z�).

This is a polynomial of degree 2n′′ + 2, so it can be used if s(y) has degree at most
2n′′ + 1. If s(y) has a smaller degree, some of the factors in m(y) can be discarded. We
shall always use a polynomial m(y) satisfying deg m(y) = deg s(y) + 1 = 2n′ − 1.

Because the factors of m(y) are all of first degree, only one multiplication is needed
for each coefficient of s(y). Those multiplications, of course, are actually multiplica-
tions of polynomials in z modulo zn′′ + 1.

The iterated algorithm requires that 2n′ − 1 < 2n′′ + 1. As long as this condition
is satisfied, a polynomial product modulo x ′′ + 1 is broken into 2n′ − 1 polynomial
products modulo xn′′ + 1. These, in turn, can be broken into smaller pieces by repeating
the same procedure, as shown conceptually in the flow diagram of Figure 11.4. The
flow diagram omits a criterion for choosing the factorization n = n′n′′, and a general
rule for the preadditions and postadditions. The number of multiplications and the
number of additions satisfy the recursions

M(n) = (2n′ − 1)M(n′′),

A(n) = (2n′ − 1)A(n′′) + A1(n) + A2(n),

where A1(n) is the number of preadditions needed to reduce d(y) modulo the factors
of m(y), and A2(n) is the number of additions needed to recover s(y) from its residues.
The actual values of A1(n) and A2(n) will depend on the choice of the 2n′ − 1 factors
of m(y).

For example, a polynomial product modulo x4 + 1 can be reduced to three polyno-
mial products modulo x2 + 1, and these polynomial products can each be computed
with three multiplications. Hence we will obtain an algorithm that uses nine multi-
plications. Similarly, a polynomial product modulo x16 + 1 can be reduced to seven

367 11.4 Iterated algorithms

Enter
procedure mod 1nx

1n
YesNo

Reduction mod()y z

Call
procedure mod 1

2 1 times
nx

n

“Lagrange interpolation”

Exit
procedure mod 1x

Call
mod 1 algorithmnx

n n

n n n

Figure 11.4 Conceptual structure of iterated algorithm

polynomial products modulo x4 + 1, employing a total of 63 multiplications or 49 mul-
tiplications, depending on which modulo x4 + 1 algorithm is chosen. The performance
of the iterated algorithm for a variety of iteration schemes is tabulated in Table 11.3.
The iteration schemes are identified in the last column as n′ by n′′ iteration schemes,
and n′′ may be decomposed further.

A slightly different version of the iterated algorithm is obtained if we choose

m(x) =
n′′−1∏
�=0

(x − z�)(x + z�)

=
2n′′−1∏
�=0

(x − z�) (mod zn′′ + 1).

368 Fast algorithms and multidimensional convolutions

Table 11.3 Performance of some iterated algorithms for products
modulo xn + 1

Modulus Number of Number of Iteration scheme
polynomial multiplications additions (n′ by n′′)

x2 + 1 3 3 –
x4 + 1 9 15 2 by 2

7 41 –
x8 + 1 27 57 2 by (2 by 2)

21 77 2 by 4
x16 + 1 63 205 4 by (2 by 2)

49 4 by 4
x32 + 1 189 599 4 by (2 by (2 by 2))

147 739 4 by (2 by 4)
x64 + 1 405 1599 8 by (2 by (2 by 2))

315 1899 8 by (2 by 4)
x128 + 1 945 4563 8 by (4 by (2 by 2))
x256 + 1 1953 10531 16 by (4 by (2 by 2))
x512 + 1 5859 26921 16 by (4 by (2 by (2 by 2)))

x1024 + 1 11907 58889 32 by (4 by (2 by (2 by 2)))
x2048 + 1 25515 143041 32 by (8 by (2 by (2 by 2)))
x4096 + 1 51435 304769 64 by (8 by (2 by (2 by 2)))

The polynomial m(x) now has degree 2n′′, although a degree of 2n′′ − 1 would suffice.
Hence this choice of m(x) will use one unnecessary polynomial product. It has the
advantage that when n′ is large, the preadditions and the postadditions can be executed
in the form of a radix-two Cooley–Tukey FFT. In fact, we have now pushed the
development so far that we are touching on a new topic known as a polynomial
transform. This is the topic that will be studied in the remainder of the chapter. Thus
we shall abandon the line we have been following so that the polynomial transform
can be introduced in a more fundamental way.

11.5 Polynomial representation of extension fields

A discrete Fourier transform maps a vector of real numbers into a vector of complex
numbers. In practical problems of signal processing, sequences do not consist of
arbitrary real numbers. Sequences consist of rational numbers or, perhaps even more
simply, of integers. In this section, we shall restrict the domain of the Fourier transform
to the set of rationals Q. This restriction really costs nothing from a practical point
of view, and yet it leads to radically different computational insights. The Fourier

369 11.5 Polynomial representation of extension fields

transform of blocklength n then maps vectors of length n of rational numbers into
vectors of length n of elements from an extension field. Extension fields of Q were
studied in Section 9.7, emphasizing that these fields are subfields of the complex field
C. In this section, we shall suppress this fact and regard the elements of the extension
field Q[x]/〈f (x)〉 simply as polynomials in x over the field Q.

To restate this distinction, recall that the discrete Fourier transform

Vk =
n−1∑
i=0

ωikvi, k = 0, . . . , n − 1

with ω = e−j2π/n produces a vector V of complex numbers, where ω is a complex zero
of the cyclotomic polynomial of degree n. An arbitrary complex number, however,
cannot occur in the transform. Complex numbers can occur only in the subfield known
as Q(ω) or, more simply, as Qm.

Let xn − 1 be factored into its prime polynomial factors over the rationals:

xn − 1 = p0(x)p1(x) · · · pS(x).

Each of the factors must be a cyclotomic polynomial, �n(x). When n is small, the
cyclotomic polynomial of degree n has coefficients equal only to −1, 0, or +1. Because
ω is a zero of xn − 1, it is a zero of one of the cyclotomic polynomials, say �m(x), a
polynomial of degree m with the leading coefficient equal to one:

p(x) = xm + pm−1x
m−1 + · · · + p1x + p0.

Because p(ω) = 0, this gives

ωm = −pm−1ω
m−1 − · · · − p1ω − p0.

Hence ω can be expressed in terms of lesser powers of ω. For i less than m, ωi cannot
be so expressed because, if it could, ω would be a zero of another polynomial of degree
smaller than the degree of p(x).

The field Qm can be represented as the set of all polynomials in ω with rational
coefficients and with degrees at most m − 1. Addition is polynomial addition, and
multiplication is polynomial multiplication modulo �m(x). The polynomials are not
to be evaluated, but are represented by a list of m coefficients. It takes m words of
memory to store one element of Qm instead of the two words of memory that suffice
for the usual representation of complex numbers.

To emphasize that the number representation consists of the polynomials themselves,
and not the complex values that the polynomials take on at ω, we may use the variable
x in place of ω. Then the numbers are

a = am−1x
m−1 + am−2x

m−2 + · · · + a1x + a0,

as represented by the list of coefficients. Of course, if we wanted to know the “true”
complex value of a, we could just substitute ω for x and carry out the indicated

370 Fast algorithms and multidimensional convolutions

calculations. However, our aim is to derive algorithms that use the polynomial represen-
tation as intermediate variables, and this form will actually lead to simpler algorithms
in some instances.

For example, if n is a power of two, then

xn − 1 = (xn/2 + 1)(xn/4 + 1) · · · (x + 1)(x − 1).

The cyclotomic polynomial xn/2 + 1 leads to an extension field whose elements are
all the rational-valued polynomials of degree less than n/2; addition is polynomial
addition; multiplication is polynomial multiplication modulo xn/2 + 1.

More specifically, the field Q8 consists of all rational-valued polynomials of degree
seven or less with polynomial arithmetic modulo x8 + 1. A sample multiplication in
the field is(
x7 − 1

2x2 + 1
4

)
(x2 − 1) = x9 − x7 − 1

2x4 + 3
4x2 − 1

4

= −x7 − 1
2x4 + 3

4x2 − x − 1
4 .

The polynomial representation is not limited to extensions of the rationals. One also
can so extend the complex rationals. A complex rational is a complex number of the
form v = a + jb, where a and b are rational numbers. The complex rationals form a
subfield of the complex numbers, which is sometimes denoted by Q(j). Applications
of digital signal processing often must deal with complex-valued vectors. Because of
wordlength limitations, these always are vectors of complex rationals (or, even more
specifically, of complex integers).

The complex rationals can be extended to contain an nth root of unity. This is the
smallest extension field in which the Fourier transform of blocklength n exists. If
Q(ω) contains j (that is, contains a zero of x2 + 1), then the extension field Q(ω)
contains all the complex rationals. It is the extension field we need. This will happen
if the cyclotomic polynomial is of the form xr + 1, which occurs only if r is even.
Otherwise, the element j must be appended.

Let ω be an nth root of unity, n not a power of two, and let �n(x) be the cyclotomic
polynomial of degree m with ω as a zero. Then the extension field Q(j, ω) or, more
simply, Q(j)m, is the set of polynomials of degree less than m with coefficients in
Q(j). Addition is polynomial addition; multiplication is polynomial multiplication
modulo �n(x). Coefficients of the polynomials are added and multiplied as complex
numbers.

It requires 2m rational numbers to specify one element of Q(j, ω). With this dif-
ference and the more general addition and multiplication of coefficients, everything
that we shall discuss in subsequent sections for processing sequences of rationals also
holds for processing sequences of complex rationals. Consequently, we shall not again
mention the complex rationals.

371 11.6 Convolution with polynomial transforms

11.6 Convolution with polynomial transforms

The Fourier transform

Vk =
n−1∑
i=0

ωikvi, i = 0, . . . , n − 1

takes values only in the extension field Q(ω) if v is a vector over the rationals. More
generally, the Fourier transform takes its values only in Q(ω) if v takes its values only
in Q(ω).

Let m be the degree of the cyclotomic polynomial �m(x) that has ω as a zero. Then
Q(ω) is represented by the set of polynomials of degree less than m. In the polynomial
representation of Q(ω), the Fourier transform becomes

Vk =
n−1∑
i=0

xikvi (mod �m(x)), i = 0, . . . , n − 1.

This formula is simpler to evaluate than the usual formula because multiplication by
x is an indexing operation, and the modulo �m(x) reduction consists of at most m

additions. Any FFT algorithm, such as the Cooley–Tukey FFT, can be used for the
computation, but now a multiplication is a multiplication by x, which requires no
real multiplications and at most m real additions. Similarly, an addition becomes a
polynomial addition, which requires m real additions. When applied to rational-valued
inputs, the Fourier transform maps vectors of zero-degree polynomials into vectors of
(m − 1)-degree polynomials. More generally, the Fourier transform maps vectors of
(m − 1)-degree polynomials into vectors of (m − 1)-degree polynomials.

The validity of the convolution theorem does not depend on the method of rep-
resenting numbers. It applies to vectors whose components are in the conventional
representation, and it applies to vectors whose components are in the polynomial
representation. Hence, to perform a cyclic convolution of rational sequences

si =
n−1∑
k=0

g((i−k))dk,

take the Fourier transforms of g and d in the field Qm, multiply in the frequency
domain

Sk = GkDk,

and take the inverse Fourier transform. With the polynomial representation of the field
Qm, the transform uses no multiplications, so it is easy to compute. The spectral
products, however, are now products of polynomials modulo p(x), and so they require
a large number of real multiplications. The computational complexity has been moved
from one place to another. The increase in complexity in computing the spectral

372 Fast algorithms and multidimensional convolutions

products more than offsets the savings in computing the Fourier transforms, so there is
no net advantage. Later, we shall look at two-dimensional cyclic convolutions. This is
where savings will be found.

For example, let n = 64; then the cyclotomic polynomial is

�32(x) = x32 + 1.

An element of Q(ω) is a polynomial of degree 31, described by a list of 32 rational
numbers. Each product

Sk = GkDk

is a product of polynomials modulo x32 + 1. This polynomial is an irreducible polyno-
mial, so the polynomial product requires at least 2 · 32 − 1 multiplications. In practice,
the number of multiplications will be considerably greater than 63. A practical 32-point
algorithm, tabulated in Table 11.3, uses 147 multiplications.

There are 64 components in the Fourier transform. Using the practical 32-point
algorithm, each component uses 147 real multiplications. This is considerably more
multiplications than are needed by a conventional representation using an FFT.

Actually, there are many constraints relating the Sk , because the inverse Fourier
transform must be real-valued. The inverse Fourier transform si will again consist of 64
polynomials, each represented by 32 rational numbers, but each polynomial must have
a degree of zero, so 31 of the polynomial coefficients will equal zero. This constraint
on the inverse Fourier transform can be used to set up constraints among the Sk so that
all 64 of them need not be computed. If one works through such a procedure, however,
it will begin to look like an algorithm based on the Chinese remainder theorem, which
can be derived directly. We will not press this procedure further.

There are also shorter Fourier transforms defined in the extension field Qm. Suppose
that n, as defined above, is composite, so that n = n′n′′. Then we also have the n′-point
Fourier transform

Vk =
n′−1∑
i=0

(xn′′
)ikvi, i = 0, . . . , n′ − 1,

where the polynomial arithmetic is understood to be in the field Qm. The kernel of
the transform is xn′′

instead of x. With this definition of the Fourier transform, there is
a corresponding inverse Fourier transform, and the convolution theorem holds just as
before.

11.7 The Nussbaumer polynomial transforms

The transforms that we have constructed as Fourier transforms in an extension field
can be studied in their own regard. We introduced these transforms in an extension of

373 11.7 The Nussbaumer polynomial transforms

the rational field, so all coefficients of the polynomials are rational numbers. Now that
we have the transforms, the inverse transforms, and so on, we have a set of identities
involving polynomials. The identities still hold even if we now allow the coefficients
to be real numbers (or complex numbers).

In this section, we shall study the polynomial transforms once again; this time we
do not think of them as notational variations of the usual Fourier transform, but rather
as transforms in their own right.

In the ring of polynomials modulo p(x), a polynomial transform is defined as

Vk(x) =
n−1∑
i=0

ω(x)ikvi(x), k = 0, . . . , n − 1,

where ω(x) is an element of order n in the ring, and, of course, multiplication in the
ring is modulo p(x). We will restrict the discussion by considering only the case in
which ω(x) = x, and p(x) is a factor of xn − 1, specifically, a cyclotomic polynomial.
There seem to be no other cases of real interest anyway.

Definition 11.7.1 Let p(x) be a polynomial of degree m. Let vi(x) for i = 0, . . . , n − 1
be a vector of polynomials of degree at most n − 1 over the field F . The polynomial
transform of vi(x) is the vector of polynomials

Vk(x) =
n−1∑
i=0

xikvi(x) (mod p(x)), k = 0, . . . , n − 1.

The polynomial transform is easy to compute. There are no general multipli-
cations of ring elements. Multiplication by xik is trivial, and if p(x) is chosen
so that it has only 0, 1, and −1 as coefficients, the modulo reduction uses only
additions.

The merit of the polynomial transform will be established by proving two theo-
rems: that there is an inverse polynomial transform with the same structure, and that
the polynomial transform supports cyclic convolution. Of course, all of this follows
immediately if we recognize the polynomial transform as a notational variation of a
Fourier transform, as we did in the previous section. Nevertheless, it is instructive to
give a more direct proof.

Let n be the smallest integer such that p(x) divides xn − 1. The proof of the theorem
will use the fact that, if a(x) divides xn − 1, then for any polynomial f (x),

Ra(x)[f (x)] = Ra(x)[Rx ′′−1[f (x)]].

We begin with the simplest case, which is the case in which n is a prime.

Theorem 11.7.2 Over a field F , suppose that p(x), a polynomial of degree m − 1,
divides xn − 1, where n is a prime. A vector v(x) of length n of polynomials of degree

374 Fast algorithms and multidimensional convolutions

m − 1 and its polynomial transform V (x) are related componentwise by

Vk(x) =
n−1∑
i=0

xikvi(x) (mod p(x)), k = 0, . . . , n − 1,

vi(x) = 1

n

n−1∑
k=0

x(n−1)ikVk(x) (mod p(x)), i = 0, . . . , n − 1.

Proof To avoid the trivial case, we assume that p(x) has a degree of at least two.
Evaluate the right side of the second equation:

1

n

n−1∑
k=0

x(n−1)ikVk(x) = 1

n

n−1∑
k=0

x(n−1)ik

[
n−1∑
�=0

x�kv�(x)

]
(mod p(x))

= 1

n

n−1∑
�=0

[
v�(x)

n−1∑
k=0

x(�+ni−i)k

]
(mod p(x)).

The inner sum must now be evaluated. If i equals �, then

1

n

n−1∑
k=0

x(�+ni−i)k = 1

n

n−1∑
k=0

xnik

= 1

n

n−1∑
k=0

1 (mod xn − 1)

= 1 (mod p(x)),

because p(x) divides xn − 1. If i is not equal to �, consider the ring identity

(1 − xr)
n−1∑
k=0

xrk = 1 − xrn,

where r = � + ni − i is not a multiple of n. Therefore

(1 − xr) �= 0 (mod xn − 1)

while

(1 − xrn) = 0 (mod xn − 1).

Because p(x) divides xn − 1, this implies that

n−1∑
k=0

xrk = 0 (mod p(x)).

Thus we have shown that

1

n

n−1∑
k=0

x(�+ni−i)k =
{

1 if � = i (mod p(x)),
0 if � �= i (mod p(x)).

375 11.7 The Nussbaumer polynomial transforms

Hence

1

n

n−1∑
k=0

x(n−1)ikVk(x) = vi(x) (mod p(x)),

which completes the proof of the theorem. �

The inverse polynomial transform can be written more simply as

vi(x) = 1

n

n−1∑
k=0

x−ikVk(x) (mod p(x)),

because xn = 1 modulo p(x), although technically x−ik is not a polynomial. Just as
multiplication by x can be implemented by reindexing the coefficients and reducing
xm modulo p(x), so too multiplication by x−1 can be implemented by reindexing
coefficients and using p(x) to eliminate x−1 by writing

pmxm + pm−1x
m−1 + · · · + p1x + p0 = 0,

and so

x−1 = p−1
0 [pmxm−1 + pm−1x

m−2 + · · · + p1].

Hence the inverse polynomial transform is as easy to compute as the direct polynomial
transform.

Theorem 11.7.3 (Convolution theorem) In the ring of polynomials modulo p(x), if
the vector of polynomials with components si(x) is related to the vectors of polynomials
gi(x) and di(x) for i = 0, . . . , n − 1 by a cyclic convolution of polynomials

si(x) =
n−1∑
�=0

gi−�(x)d�(x) (mod p(x)),

then the polynomial spectrum Sk(x) is related to Gk(x) and Dk(x) by a componentwise
polynomial product

Sk(x) = Gk(x)Dk(x) (mod p(x)), k = 0, . . . , n − 1.

Proof By the inverse transform relationship

si(x) =
n−1∑
�=0

gi−�(x)d�(x)

=
n−1∑
�=0

n−1∑
k=0

x(n−1)(i−�)kGk(x)d�(x)

=
n−1∑
k=0

x(n−1)ikGk(x)
n−1∑
�=0

x�kd�(x),

376 Fast algorithms and multidimensional convolutions

where xnk has been set to one because, as before, everything holds modulo xn − 1.
Hence

si(x) =
n−1∑
k=0

x(n−1)kGk(x)Dk(x),

and so Gk(x)Dk(x) must equal Sk(x). �

11.8 Fast convolution of polynomials

The use of a polynomial representation of an extension field does have an advantage
for computing multidimensional convolutions. This is because there is no penalty in
turning the spectral products into polynomial products if they started out as polynomial
products. The extra work that would otherwise arise can be absorbed into work that
must be done anyway.

It is enough to study the two-dimensional cyclic convolution. Write the two-
dimensional cyclic convolution as a one-dimensional cyclic convolution of polyno-
mials:

si ′(y) =
n′−1∑
k′=0

g((i ′−k′))(y)dk′(y) (mod yn′ − 1).

Because yn′ − 1 is a product of cyclotomic polynomials, we can break the problem
into a set of computations of the form

si ′(y) =
n′−1∑
k′=0

g((i ′−k′))(y)dk′(y) (mod p(y)),

where p(y), a polynomial of degree m′, is one of the cyclotomic polynomials dividing
yn′ − 1. An algorithm for each of these subproblems can be combined to form an
algorithm for the original problem.

Consider gi ′(y) and di ′(y) for i ′ = 0, . . . , n′ − 1 as elements of Q(ω). We then have
the spectra

Gk′(y) =
n′−1∑
i ′=0

yi ′k′
gi ′(y) (mod p(y))

Dk′(y) =
n′−1∑
i ′=0

yi ′k′
di ′(y) (mod p(y)),

and

Sk′(y) = Gk′(y)Dk′(y) (mod p(y)), k′ = 0, . . . , n′ − 1.

377 11.8 Fast convolution of polynomials

Then si ′(y) is given by the inverse Fourier transform

si ′(y) = 1

n′

n′−1∑
k′=0

y−i ′k′
Sk′(y) (mod p(y)).

The Fourier transforms use no real multiplications.
The multiplications in this procedure all reside in the spectral products Gk′(y)Dk′(y).

These require n′ polynomial products modulo p(y); each requires at least 2m′ − 1
multiplications. This is a total of at least n′(2m′ − 1) multiplications to process a two-
dimensional array containing n′m′ numbers. In practice, the number of multiplications
needed for polynomial products modulo p(y) will be considerably greater than 2m′ − 1,
but still small enough to yield efficient algorithms. Some suitable algorithms for poly-
nomial products are shown in Table 11.3.

Now consider the two-dimensional cyclic convolution, as represented by the poly-
nomial product

s(x, y) = g(x, y)d(x, y) (mod xn′ − 1)(mod yn′′ − 1).

This polynomial product can be broken down by using the Chinese remainder theorem.
We shall carry through the details for the special case in which both n′ and n′′ are
powers of two, possibly equal. The method of computation is recursive. It employs a
smaller two-dimensional cyclic convolution. Hence, by using the recursion, a radix-
two, two-dimensional cyclic convolution can be computed by computing a number of
small pieces.

Let n′ = 2m′
and n′′ = 2m′′

with m′′ ≥ m′. Then we have the factorization

yn′′ − 1 = (yn′′/2 + 1)(yn′′/2 − 1)

= (yn′′/2 + 1)(yn′′/4 + 1)(yn′′/4 − 1)

= (yn′′/2 + 1) · · · (yn′/2 + 1)(yn′/2 − 1).

Although the last term could be factored further, we choose to stop here. Let the terms
on the right be denoted by fR−1(y), . . . , f0(y) and, for r = 0, . . . , R − 1,

d (r)(x, y) = d(x, y) (mod fr (y)),

g(r)(x, y) = g(x, y) (mod fr (y)),

and

s(r)(x, y) = s(x, y) (mod fr (y)),

then

s(r)(x, y) = g(r)(x, y)d (r)(x, y) (mod xn′ − 1)(mod fr (x)),

378 Fast algorithms and multidimensional convolutions

and by the Chinese remainder theorem for polynomials,

s(x, y) =
R−1∑
r=0

a(r)(y)s(r)(x, y) (mod xn′′ − 1),

where the a(r)(y) for r = 0, . . . , R − 1 form an appropriate set of Bézout polynomials.
This last step is straightforward and does not involve any real multiplications.

Most of the computations are in computing s(r)(x, y). There are two types of com-
putation. These are

s(r)(x, y) = g(r)(x, y)d (r)(x, y) (mod xn′ − 1)(mod yn′′ + 1)

and

s(r)(x, y) = g(r)(x, y)d (r)(x, y) (mod xn′ − 1)(mod yn′/2 − 1).

The second kind of computation, if x and y are interchanged, is just a smaller copy of the
problem being solved. By choosing a recursive formulation, as shown in Figure 11.5,
we can suppose that this smaller problem is solved in the same way that the larger
problem is solved.

The first kind of computation, with the superscript r dropped, is

s(x, y) = g(x, y)d(x, y) (mod xn′ − 1)(mod ym′ + 1)

and m′ ≥ n′/2. This computation can be viewed as a one-dimensional convolution in
the field Qm′

. That is,

s(x) = g(x)d(x) (mod xn′ − 1),

where the coefficients of the polynomials are elements of Qm′
. This means that they are

represented by polynomials in y of degree less than m′. Because n′ ≤ 2m′, a Fourier
transform of blocklength n′ exists and can be used to do the convolutions. The Fourier
transform uses no multiplications – only additions.

The convolution becomes

Sk′ = Gk′Dk′

in the frequency domain. This requires n′ multiplications in Qm′
. Each multiplication

is a polynomial multiplication modulo xm′ + 1, and so requires 2m′ − 1 real multipli-
cations. Hence, in total, there are n′(2m′ − 1) real multiplications to compute

s(x, y) = g(x, y)d(x, y) (mod xn′ − 1)(mod ym′ + 1)

and to compute the original two-dimensional cyclic convolution requires such compu-
tations be repeated several times.

For example, a 64 by 64 two-dimensional cyclic convolution requires 64 · 63 real
multiplications plus a 64 by 32 two-dimensional cyclic convolution. In turn, a 32 by

379 11.8 Fast convolution of polynomials

Enter

2 , 2 ,m mn n m mResidue computation
2/)0(

()
(,) (,)(mod 1)

(,) (,)(mod ())

n

r
r

d x y d x y y

d x y d x y f y

(0)(,)d y x

(0)(,)s y x

Call

 by
2

cyclic convolution
algorithm

n
n

Mod 1 convolutionsix

Exit

1
() ()

0
() ()

0, , 1

n
r ik r

ri k
k

s y S y

r R

() () ()() () () mod ()
0, , 1
0, , 1

r r r
rk k kS y G y D y f y

k n
r R

()

Precomputed
values of

()kG y

1
() ()

0
() () 0, , 1

n
r i k r

rk i
i

D y d y r R

Chinese remainder theorem

1
() ()

0
(,) (,) (mod 1)

R
r r n

r
s x y a s x y y

Figure 11.5 A multidimensional cyclic convolution algorithm

64 cyclic convolution requires 32(63) + 32(31) real multiplications plus a 32 by 16
cyclic convolution. In turn, a 16 by 32 cyclic convolution requires 16(31) + 16(15)
multiplications. Continue to break down the problem in this way until the cyclic
convolution is trivial. The total number of multiplications, in principle, is 8000. The
number of calculations is considerably smaller than the number that are required by
using a two-dimensional Cooley–Tukey algorithm with the convolution theorem, which
would be 73 728.

In practice, the polynomial products use more than n(2m − 1) real multiplications,
as tabulated in Table 11.3, and the total number of multiplications is 17 770 for a
practical 64 by 64 two-dimensional cyclic convolution. The performance of a number
of two-dimensional cyclic convolution algorithms, constructed in a similar way, is
given in Table 11.4.

380 Fast algorithms and multidimensional convolutions

Table 11.4 Performance of some two-dimensional cyclic convolutions

Array Number of real Number of real Real multiplications Real additions
size multiplications additions per point per point

3 by 3 13 70 1.44 7.78
4 by 4 22 122 1.37 7.62
5 by 5 55 369 2.20 14.76
6 by 6 52 424 1.44 11.78
7 by 7 121 1163 2.47 23.73
8 by 8 130 750 2.03 11.72
9 by 9 193 1382 2.38 17.06
10 by 10 220 1876 2.20 18.76
14 by 14 482 5436 2.47 27.73
16 by 16 634 4774 2.48 18.65
18 by 18 772 6576 2.38 20.30
24 by 24 1402 12 954 2.43 22.49
27 by 27 2893 21 266 3.97 29.17
32 by 32 3658 24 854 3.57 24.27
64 by 64 17770 142 902 4.34 34.89
128 by 128 78250 720 502 4.78 43.98

Problems for Chapter 11

11.1 a Compute the performance of a 7560-point cyclic convolution algorithm
based on the Agarwal–Cooley algorithm.

b Compute the performance of a 504 by 504 two-dimensional convolution
algorithm based on nesting.

11.2 An algorithm for a twelve-point cyclic convolution can be constructed by using
the Winograd convolution algorithm directly or by combining a three-point
cyclic convolution algorithm and a four-point cyclic convolution algorithm
using the Agarwal–Cooley algorithm. Compare the number of multiplications
used by these two methods.

11.3 a Outline a method for designing an algorithm to compute a six-point cyclic
convolution

s(x) = g(x)d(x) (mod x6 − 1).

How many multiplications will be needed?
b Use the Agarwal–Cooley algorithm to build a six-point cyclic convolution

algorithm out of a two-point cyclic convolution algorithm and a three-point
cyclic convolution algorithm. How many multiplications are needed?

381 Problems

11.4 Use the Agarwal–Cooley algorithm to set up the matrices for a 15-point cyclic
convolution algorithm in the standard form

s = C G Ad.

11.5 A cyclic convolution has blocklength n = n1n2n3n4, where the four factors are
coprime. We can obtain an algorithm for this cyclic convolution by combining
algorithms for cyclic convolutions of blocklengths n1, n2, n3, and n4. Two
schemes for building the algorithm by pairwise combinations are suggested by
the parameterizations n = ((n1n2)(n3n4)) and n = n1(n2(n3(n4))). Prove that
each of these schemes uses the same number of multiplications and additions,
provided that each pairwise combination is optimal.

11.6 An algorithm for complex convolution modulo xn − 1 was given in
Section 5.7.
a Derive this algorithm by developing an algorithm for two-dimensional poly-

nomial products modulo x2r + 1 modulo y2 + 1.
b One can obtain two algorithms for the same problem by starting with

s(x, y) = g(x, y)d(x, y) (mod x2r + 1)(mod y2 + 1)

or

s(x, y) = g(x, y)d(x, y) (mod y2 + 1)(mod x2r + 1).

Which is better?
11.7 Quaternions are defined in Problem 2.16.

a Write the two by two cyclic convolution

s(x, y) = g(x, y)d(x, y) (mod x2 − 1)(mod y2 − 1)

in the form of a four by four matrix times a four vector. Give an algorithm
that uses four multiplications.

b Write the two by two polynomial product

s(x, y) = g(x, y)d(x, y) (mod x2 + 1)(mod y2 − 1)

in the form of a four by four matrix times a four vector. Give an algorithm
that uses six multiplications.

c Write the two by two polynomial product

s(x, y) = g(x, y)d(x, y) (mod x2 + 1)(mod y2 + 1)

in the form of a four by four matrix times a four vector. Give an algorithm
that uses six multiplications.

d Write the quaternion product

s = gd

382 Fast algorithms and multidimensional convolutions

in the form of a four by four matrix times a four vector. Give an algorithm
that uses nine multiplications.

11.8 Determine the number of multiplications and additions used by the Agarwal–
Cooley algorithm to compute a 45-point cyclic convolution. How much can
this be improved by using a splitting algorithm?

11.9 a Compute the performance of an algorithm for computing a 15 by 15 two-
dimensional cyclic convolution that is computed by nesting a three by three
cyclic convolution algorithm and a five by five cyclic convolution algorithm.
Compare with the performance of an algorithm constructed by nesting a 15-
point one-dimensional cyclic convolution with itself.

b Repeat for a 21 by 21 two-dimensional cyclic convolution.
11.10 To compute an n by n cyclic convolution of complex vectors, one can always

simply use an algorithm designed for an n by n cyclic convolution of real
vectors with each real complex multiplication or addition replaced by a complex
multiplication or addition. How much better can you do for a five by five cyclic
convolution of complex arrays? How much better for a four by four cyclic
convolution?

Notes for Chapter 11

At the simplest level, a two-dimensional Fourier transform consists of two independent
Fourier transforms operating sequentially along the two axes of the array; a similar
statement applies to a two-dimensional convolution. Hence fast algorithms for a one-
dimensional convolution were readily applied to the two-dimensional convolution.
Algorithms that were intrinsically two-dimensional came later. Nussbaumer (1977)
pioneered this subject with his polynomial transforms. These were defined heuristically
by analogy with the Fourier transform because they did what was wanted. Later, it
was realized that they were more than just an analogy to a Fourier transform. The
interpretation as a Fourier transform using a polynomial representation of extension
fields is from Blahut (1983a). Similar ideas are due to Beth, Fumy, and Muhlfeld (1982).
Another kind of polynomial transform with a clearer structure but more computation
is due to Arambepola and Rayner (1979).

The use of the Good–Thomas type of indexing for computing one-dimensional
convolutions is due to Agarwal and Cooley (1977). They turned the one-dimensional
convolution into a multidimensional convolution, which they computed by nesting
one-dimensional algorithms, a procedure that we described in terms of the Kronecker
product. The nesting technique is the same as that proposed by Winograd (1978) for
computing multidimensional Fourier transforms.

383 Notes

The method of using the Chinese remainder theorem for polynomials at the level
of the multidimensional convolution to reduce the number of additions is due to
Nussbaumer (1978). The use of modulus polynomials with coefficients in a polynomial
extension field was suggested by Pitas and Strintzis (1982). Many of our tables are
based on Nussbaumer’s work.

12 Fast algorithms and multidimensional
transforms

In earlier chapters, we saw ways in which the Fourier transform can be broken into
pieces and ways in which a convolution algorithm can be turned into an algorithm for the
Fourier transform. It also is possible to break a multidimensional Fourier transform into
pieces and to turn an algorithm for the multidimensional convolution into an algorithm
for the multidimensional Fourier transform. The possibilities now are even richer than
they were in the one-dimensional case. We shall discuss a variety of methods.

The algorithms for multidimensional Fourier transforms are studied in the easy
way by studying only the algorithms for the two-dimensional Fourier transform as
representative of the more general case. The discussion and the formulas for the
two-dimensional Fourier transforms can be extended directly to a discussion of the
multidimensional Fourier transforms.

Multidimensional Fourier transforms arise naturally from problems that are intrin-
sically multidimensional. They also arise artificially as a way of computing a one-
dimensional Fourier transform. This chapter includes such methods for computing a
one-dimensional Fourier transform, and so we will give practical methods for building
large one-dimensional Fourier transform algorithms from the small one-dimensional
Fourier transform algorithms that were studied in Chapter 3.

12.1 Small-radix Cooley–Tukey algorithms

A two-dimensional discrete Fourier transform can be computed by applying the
Cooley–Tukey FFT first to each row and then to each column. This can be regarded
simply as a parenthesization of the equation of the two-dimensional Fourier transform
with either the row sum or the column sum within the inner parentheses.

Let v be an array of elements vi ′i ′′ , for i ′ = 0, . . . , n′ − 1 and i ′′ = 0, . . . , n′′ − 1,
from the field F . The two-dimensional Fourier transform of v is another two-
dimensional array V of elements of F , given by

Vk′k′′ =
n′−1∑
i ′=0

n′′−1∑
i ′′=0

ωi ′k′
µi ′′k′′

vi ′i ′′,
k′ = 0, . . . , n′ − 1,

k′′ = 0, . . . , n′′ − 1,

384

385 12.1 Small-radix Cooley–Tukey algorithms

where ω is an n′th root of unity in the field F and µ is an n′′th root of unity in the field
F , which ordinarily would be chosen equal to ω when n′ equals n′′. It follows that

Vk′k′′ =
n′−1∑
i ′=0

ωi ′k′
[

n′′−1∑
i ′′=0

µi ′′k′′
vi ′i ′′

]

=
n′′−1∑
i ′′=0

ωi ′′k′′
[

n′−1∑
i ′=0

µi ′k′
vi ′i ′′

]
.

Hence we see that one can compute the two-dimensional Fourier transform by com-
puting a one-dimensional Fourier transform, either first along every column then along
every row, or the other way around. Any FFT algorithm can be used on the rows and
any FFT algorithm, possibly a different one, can be used on the columns. Many good
FFT algorithms are available, and any one of them can be chosen for the purpose of
reducing the number of multiplications and the number of additions.

When the array is large, besides the number of multiplications and additions, one
also is concerned with problems of data management. A 1024 by 1024 array of real
numbers consists of more than one million numbers, and twice this many if the data
values are complex. A processor may store most of the array in bulk memory, and
only a portion in local memory. The transfer of data between bulk memory and local
memory can be an issue as important as the number of multiplications and the number
of additions.

We shall consider a simple model of the memory-transfer mechanism in which the
data is stored in bulk memory by rows and is transferred to local memory by rows. Then
the processing consists of a Fourier transform along each row, followed by a transpose
of the array, then followed by a Fourier transform along each of the new rows. A second
transpose operation will be needed if the final result must be stored in bulk memory by
its true rows. Fast transposition algorithms were discussed in Section 4.4 of Chapter 4.

To avoid taking the transpose, we shall develop multidimensional algorithms by
looking closely at the basic Cooley–Tukey decimation rule. The multidimensional
algorithms are formed by decimating the two-dimensional array directly rather than
decimating, in turn, the rows, then the columns. A comparison is shown in Figure 12.1.
In particular, the two-dimensional radix-two decimation will replace the n by n array
with four n/2 by n/2 arrays, and the two-dimensional radix-four decimation will
replace the n by n array with 16 n/4 by n/4 arrays. The latter algorithm in particular
is attractive, not only because the number of data transfers is small, but also because
the number of multiplications and additions is reduced.

We want to compute the n by n-point two-dimensional Fourier transform

Vk� =
n−1∑
i=0

n−1∑
j=0

ωikωj�vij ,

386 Fast algorithms and multidimensional transforms

One-dimensional
Radix-two

Two-dimensional

One-dimensional

Radix-four

Two-dimensional

Figure 12.1 Some decimation schemes

where n = n′n′′. Notice carefully that we have switched notation on indices here to
free the primed notation for use in the Cooley–Tukey decimation. Now n′ and n′′ are
used as factors of n, the dimension of the square array.

The Cooley–Tukey decimation formula for a one-dimensional Fourier transform,
given in Figure 3.1, is

Vk′k′′ =
n′−1∑
i ′=0

βi ′k′
[
ωi ′k′′

n′′−1∑
i ′′=0

γ i ′′k′′
vi ′i ′′

]
.

We use this formula twice for the two-dimensional transform – once on the row index
and once on the column index. Then we can arrange the order of the summations to
write

Vk′k′′�′�′′ =
n′−1∑
i ′=0

n′−1∑
j ′=0

βi ′k′
βj ′�′

ωi ′k′′
ωj ′�′′

n′′−1∑
i ′′=0

n′′−1∑
j ′′=0

γ i ′′k′′
γ j ′′i ′′

 vi ′i ′′j ′j ′′ .

This now is in the form of an n′′ by n′′ two-dimensional Fourier transform for each
value of i ′ and j ′, followed by an element-by-element multiplication, followed by an
n′ by n′ two-dimensional Fourier transform for each value of k′′ and �′′.

387 12.1 Small-radix Cooley–Tukey algorithms

To get a decimation-in-time radix-two two-dimensional Cooley–Tukey FFT, take
n′ = 2, and n′′ = n/2. Then the equation for the two-dimensional Fourier transform
can be put in the matrix form

Vk,�

Vk+n/2,�

Vk,�+n/2

Vk+(n/2),�+n/2

 =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

(n/2)−1∑
i=0

(n/2)−1∑
j=0

ω2ikω2j�v2i,2j

ωk

(n/2)−1∑
i=0

(n/2)−1∑
j=0

ω2ikω2j�v2i+1,2j

ω�

(n/2)−1∑
i=0

(n/2)−1∑
j=0

ω2ikω2j�v2i,2j+1

ωkω�

(n/2)−1∑
i=0

(n/2)−1∑
j=0

ω2ikω2j�v2i+1,2j+1

for k = 0, . . . , (n/2) − 1 and � = 0, . . . , (n/2) − 1. This FFT breaks the input data
array into four arrays according to whether the two indices are each even or odd. The
output array is broken into four arrays in a different way, by taking the first n/2 rows and
the second n/2 rows and by taking the first n/2 columns and the second n/2 columns.
The computation now requires four n/2 by n/2-point Fourier transforms plus 3

4n2

multiplications by powers of ω. Here we do not count the 1
4n2 trivial multiplications by

one that occur in a block and are easily suppressed. The remaining 3
4n2 multiplications

include a few more trivial multiplications that we do not bother to suppress. Let M(n ×
n) be the number of multiplications in the field F needed by this algorithm to compute
an n by n-point Fourier transform with n a power of two. It satisfies the recursion

M(n × n) = 4M
(n

2
× n

2

)
+ 3

4
n2.

This recursion is solved by

M(n × n) = 3

4
n2(log2 n − C),

where C is a constant to be chosen to fit the number of multiplications in the innermost
loop. In particular, one can start with either a two by two-point Fourier transform that
uses no multiplications so that M(2 × 2) = 0, or with a four by four-point Fourier
transform that uses no multiplications, so that M(4 × 4) = 0. Then

M(n × n) = 3
4n2(log2 n − 1)

or

M(n × n) = 3
4n2(log2 n − 2).

Further reductions are possible, but they would complicate the structure of the
algorithm.

388 Fast algorithms and multidimensional transforms

These formulas should be compared with

M(n × n) = n2 log2 n,

which gives the number of required multiplications in the field F if a basic radix-two
Cooley–Tukey FFT is used, in turn, on the rows and the columns.

One minor feature of the two-dimensional algorithm is the slight reduction in the
number of multiplications. A much more important feature is the sequence in which
the data is used because it reduces the number of data transfers between bulk memory
and local memory. The entire array is read into local memory, two rows at a time. Local
memory needs to be big enough to hold two rows. All of the 2 × 2 two-dimensional
transforms along each pair of rows are computed. This process on the array is repeated
log2 n times. In each iteration, the pairing of the rows is controlled by the Cooley–Tukey
bit-shuffling patterns, and the two by two arrays from within the pair of rows are also
selected by the Cooley–Tukey bit-shuffling pattern. In all, because there are n rows in
the array and the array is transferred log2 n times, there are n log2 n rows transferred
from bulk memory to local memory and the same number are transferred back.

To get a radix-four two-dimensional Cooley–Tukey FFT, take n′ = 4, n′′ = n/4 in
the general formula. This will break the two-dimensional array into 16 subarrays. The
computations can be expressed in the following matrix equation:

Vk,�

Vk+n/4,�

Vk+n/2,�

Vk+3n/4,�

Vk,�+n/4

Vk+n/4,�+n/4

Vk+n/2,�+n/4

Vk+3n/4,�+n/4

Vk,�+n/2

Vk+n/4,�+n/2

Vk+n/2,�+n/2

Vk+3n/4,�+n/2

Vk,�+3n/4

Vk+n/4,�+3n/4

Vk+n/2,�+3n/4

Vk+3n/4,�+3n/4

= M

(n/4)−1∑
i=0

(n/4)−1∑
j=0

ω4ikω4j�v2i,2j

ωk

(n/4)−1∑
i=0

(n/4)−1∑
j=0

ω4ikω4j�v2i+1,2j

ω2k

(n/4)−1∑
i=0

(n/4)−1∑
j=0

ω4ikω4j�v2i+2,2j

ω3k

(n/4)−1∑
i=0

(n/4)−1∑
j=0

ω4ikω4j�v2i+3,2j

ω�

(n/4)−1∑
i=0

(n/4)−1∑
j=0

ω4ikω4j�v2i,2j+1

ωk+�

(n/4)−1∑
i=0

(n/4)−1∑
j=0

ω4ikω4j�v2i+1,2j+1

...

ω3k+3�

(n/4)−1∑
i=0

(n/4)−1∑
j=0

ω4ikω4j�v2i+3,2j+3

,

389 12.2 The two-dimensional discrete cosine transform

where

M =

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

 ×

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

 .

In this form, the multiplying 16 by 16 matrix M is written as a Kronecker product of
two four by four matrices of elements ±1, ±j.

On the right side, all but one of the elements are multiplied by a power of ω. Of
these, a few are trivial, but to keep the structure simple, we include them in the count.
The number of multiplications satisfies the recursion

M(n × n) = 16M
(n

4
× n

4

)
+ 15

16
n2,

which is satisfied by

M(n × n) = 15

32
n2(log n − C),

where C is chosen so that M(4 × 4) = 0. Then

M(n × n) = 15

32
n2(log n − 2),

and we see that the radix-four algorithm is efficient in terms of multiplications as well
as having a good partitioning structure.

To use the radix-four two-dimensional decimation, the local memory must be large
enough to hold four rows of data at the same time. In all, the array is transferred from
bulk memory to local memory log4 n times, so there are 1

2n log2 n transfers of rows
from bulk memory to local memory.

12.2 The two-dimensional discrete cosine transform

The two-dimensional discrete cosine transform maps an n by n array of real numbers
v into another n by n array of real numbers V , called the two-dimensional discrete
cosine transform of v. The same term refers to both the mapping and the output of
the mapping. Given the n by n array v of real numbers, the two-dimensional discrete
cosine transform of v is the array given by

Vk′k′′ =
n−1∑
i ′=0

n−1∑
i ′′=0

vi ′i ′′ cos
π (2i ′ + 1)k′

2n
cos

π (2i ′′ + 1)k′′

2n

for k′ = 0, . . . , n − 1 and k′′ = 0, . . . , n − 1. The two-dimensional discrete cosine
transform is an obvious generalization of the one-dimensional discrete cosine trans-
form. Indeed, the two-dimensional discrete cosine transform can be regarded as the

390 Fast algorithms and multidimensional transforms

one-dimensional discrete cosine transform first applied to every column, then applied
to every row, or the same thing but for changing to the other order.

The inverse two-dimensional discrete cosine transform is

vi ′i ′′ =
n−1∑
i ′=0

n−1∑
i ′′=0

Vk′k′′
(
1 − 1

2δk′
) (

1 − 1
2δk′′

)
cos

π (2i ′ + 1)k′

2n
cos

π (2i ′′ + 1)k′′

2n
,

where δk = 1 if k = 0 and δk = 0 if k �= 0. This expression for the inverse two-
dimensional discrete cosine transform follows immediately by applying the inverse
one-dimensional discrete cosine transform to every row followed by the inverse one-
dimensional discrete cosine transform to every column.

As it is written, the two-dimensional discrete cosine transform must multiply each
element of the array v by the product of two cosine terms for every value of i ′, i ′′,
k′, and k′′. If the transform were computed as written, then 2n4 multiplications would
be required. Even if n is as small as eight, a total of 8192 multiplications would be
required. Clearly, a better algorithm for the two-dimensional discrete cosine transform
is needed.

It is more natural to compute this as a discrete cosine transform of each column
followed by a discrete cosine transform of each row. Thus, by writing the equation as

Vk′k′′ =
n−1∑
i ′=0

cos
π (2i ′ + 1)k′

2n

n−1∑
i ′′=0

vi ′i ′′ cos
π (2i ′′ + 1)k′′

2n
,

it can be seen as 2n one-dimensional discrete cosine transforms. If each one-
dimensional transform uses n2 multiplications, a total of 2n3 multiplications are now
needed. With this organization, only 1024 multiplications would be needed if n is equal
to eight.

An even better procedure is to use a fast algorithm for each one-dimensional discrete
cosine transform as described in Section 3.5. Any fast algorithm for computing the
one-dimensional discrete cosine transform can be used to compute the two-dimensional
discrete cosine transform by applying it first to every column, then to every row. If M(n)
multiplications are needed to compute the one-dimensional discrete cosine transform,
then 2nM(n) multiplications would be needed to compute the two-dimensional discrete
cosine transform.

One can go beyond this. Alternative algorithms can be developed based even more
directly on the structure of the computation. For example, if n is a power of two, the n by
n array v can be partitioned into four subarrays using Theorem 3.5.3 to decimate both
rows and columns. Each of the four subarrays could be computed as written by rows,
then by columns. Each subarray would require 2

(
n
2

) (
n
2

)2
multiplications. Altogether,

there would be n3 multiplications. Then 512 multiplications are needed if n equals
eight. Additional improvements can be made that further reduce the computational
complexity by treating each subarray more carefully.

391 12.3 Nested transform algorithms

12.3 Nested transform algorithms

Now we turn to another technique, the technique of nesting, to combine one-
dimensional fast Fourier transform algorithms, such as the Winograd FFT algorithm,
to construct multidimensional FFT algorithms. Recall that as a consequence of the two
factorizations

Vk′k′′ =
n′−1∑
i ′=0

ωi ′k′
[

n′′−1∑
i ′′=0

µi ′′k′′
vi ′i ′′

]

=
n′′−1∑
i ′′=0

µi ′′k′′
[

n′−1∑
i ′=0

ωi ′k′
vi ′i ′′

]
,

one can compute the two-dimensional Fourier transform by computing a one-
dimensional Fourier transform along every column, then along every row, or the
other way around. Methods for computing one-dimensional Fourier transforms can
be used in any convenient combination to do the row and column Fourier trans-
forms comprising a two-dimensional Fourier transform. We shall look at algorithms
that have the structure of the Winograd small FFT, finding ways to combine them
efficiently.

Let M(n′) and A(n′) be the number of multiplications and additions used by
some available n′-point one-dimensional Fourier transform algorithm. To do n′′ such
transforms of blocklength n′, it takes n′′M(n′) multiplications and n′′A(n′) addi-
tions. Similarly, to then do n′ transforms of blocklength n′′, it takes n′M(n′′) more
multiplications and n′A(n′′) more additions. Thus, when computed as sequential
one-dimensional transforms, the computational load of the two-dimensional Fourier
transform is

M(n′ × n′′) = n′′M(n′) + n′M(n′′),

A(n′ × n′′) = n′′A(n′) + n′A(n′′).

It does not matter which dimension is processed first. As long as they are processed
sequentially in this way, the computational complexity is the same.

A better approach is to nest the algorithms by using a method of Winograd. Because
it does not matter whether the rows or the columns of the two-dimensional Fourier
transform are transformed first, it seems that it may be possible somehow to do them
together. This is what the Winograd nesting does. It binds together the row computations
and the column computations in a way that reduces the total number of multiplications.
The technique uses the notion of a Kronecker product of matrices. We will still use
algorithms that are designed for a one-dimensional Fourier transform on the rows and
the columns, but we combine them more efficiently.

392 Fast algorithms and multidimensional transforms

00

10

20
00 01 02 0, 1

10 11 12 1, 1
1,0

20 21 22 2, 1
01

11
1,0 1,1 1,2 1, 1

21

11.

n

n
n

n

n n n n n

nn

v
v
vv v v v

v v v v
v

v v v v
v
v

v v v v
v

v

Figure 12.2 Mapping a two-dimensional array into one dimension

Let W ′ and W ′′ be matrix representations of Fourier transforms of size n′ and n′′,
respectively. That is,

V ′ = W ′v′,

V ′′ = W ′′v′′

are matrix representations of the Fourier transforms

V ′
k =

n′−1∑
i=0

βikv′
i ,

V ′′
k =

n′′−1∑
i=0

γ ikv′′
i .

An n′ by n′′ two-dimensional Fourier transform of the two-dimensional array vi ′i ′′

is obtained by applying W ′ to each column (a column has n′ components) and then
applying W ′′ to each row. An n′ by n′′ two-dimensional computation can be turned into
a one-dimensional computation by stacking columns, as shown in Figure 12.2.

Write the two-dimensional arrays v and V as one-dimensional arrays, also called v

and V , by stacking columns. We will write these as the n′n′′-point one-dimensional
input and output vectors, given by

v =

v0

v1

v2
...

vn′′−1

 , V =

V 0

V 1

V 2
...

V n′′−1

 ,

393 12.3 Nested transform algorithms

where vi ′′ and V i ′′ denote columns of the two-dimensional input and output arrays,
respectively, given by

vi ′′ =

v0i ′′

v1i ′′

v2i ′′

...
vn′−1,i ′′

 , Vi ′′ =

V0i ′′

V1i ′′

V2i ′′

...
Vn′−1,i ′′

 .

If we think of the arrays v and V rearranged into one-dimensional n′n′′-point vectors
in this way, then the two-dimensional Fourier transform can be written in the form of
a Kronecker product. First, write the computation by stacking columns as

V 0

V 1

V 2
...

V n′′−1

 =

w′′

00 I w′′
01 I · · · w′′

0,n′′−1 I
w′′

10 I w′′
11 I · · · w′′

1,n′′−1 I
w′′

20 I w′′
21 I · · · w′′

2,n′′−1 I
...

...
w′′

n′−1,0 I . . . w′′
n′−1,n′′−1 I

W ′ 0 . . . 0
0 W ′ . . . 0
0 0
...

...
...

0 0 . . . W ′

v0

v1

v2
...

vn′′−1

where W ′ is an n′ by n′ matrix, 0 is an n′ by n′ matrix of zeros, and I is an n′ by n′

identity matrix. But the product of the two matrices is easily recognized as a Kronecker
product, so we have

V = Wv,

where W = W ′′ × W ′ is an n′n′′ by n′n′′ matrix.
If we have Winograd small FFT algorithms of blocklength n′ and n′′, respectively,

then we have the matrix factorizations

W ′ = C ′ B′ A′,

W ′′ = C ′′ B′′ A′′,

where A′, A′′, C ′, and C ′′ are matrices of zeros and ones, and B′ and B′′ are diagonal
matrices. The multiplications by the matrix B′ or B′′ is where the Winograd algorithm
collects all of its multiplications. Let W = W ′′ × W ′, and apply Theorem 2.5.5 twice
to get

W = (C ′′ B′′ A′′) × (C ′ B′ A′)

= (C ′′ × C ′)(B′′ × B′)(A′′ × A′)

= C B A,

where the Kronecker products C = C ′′ × C ′ and A = A′′ × A′ are matrices of zeros
and ones, and the Kronecker product B = B′′ × B′ is again a diagonal matrix. Hence
we have an algorithm for an n′n′′-point two-dimensional Fourier transform algorithm in

394 Fast algorithms and multidimensional transforms

Componentwise
multiplication

Stored
array

of
constants

Frequency-domain
signal

Time-domain
signal

Input
array

Output
Array

n

n

()M n

n

()M n

()M n

()M n

()M n

()M n ()M n

()M n
n

n

Multiply
columns

by A

Multiply
rows
by A

Multiply
rows
by C

Multiply
columns

by C

n

Figure 12.3 Nested computation of a two-dimensional Fourier transform

the same form as the Winograd small FFT. In this way, two-dimensional FFT algorithms
can be built up from one-dimensional FFT algorithms.

A good way to organize the computations of a two-dimensional Fourier transform
is suggested by the form

V = (C ′′ × C ′)(B′′ × B′)(A′′ × A′)v

and is illustrated in Figure 12.3. Think of the data in the original two-dimensional array.
To multiply by A′′ × A′, first multiply every column by matrix A′; then multiply every
row by matrix A′′. The first operation uses only additions and expands the array to an
M(n′) by n′′ array; the second operation also uses only additions and expands the array
to an M(n′) by M(n′′) array. Next, one can multiply every column by matrix B′; then
multiply every row by matrix B′′. This takes 2M(n′)M(n′′) multiplications. A preferred
method for this step, however, is to prestore the M(n′) by M(n′′) array B, given by
B′′ × B′. In this form, the second step will use only M(n′)M(n′′) multiplications, but
will require more storage of constants. Finally, collapse the M(n′) by M(n′′) array back
to an n′ by n′′ array by multiplying each column by C ′, then every row by C ′′. This last
step uses only additions.

The total number of multiplications is

M(n′ × n′′) = M(n′)M(n′′).

A formula for the total number of additions is a little more difficult to derive and
depends on how the number of additions in each small algorithm is distributed between

395 12.4 The Winograd large fast Fourier transform

the preadditions and the postadditions. To simplify the formula and its derivation (and
even to reduce the number of additions), we will specify that the order in which matrices
C ′ and C ′′ are applied is interchanged. The interchange is justified by using the general
identity

∑
i ′ Ci ′k′

∑
i ′′ Ci ′′k′′Vi ′i ′′ = ∑

i ′′ Ci ′′k′′
∑

i ′ Ci ′k′Vi ′i ′′ . Then

A(n′ × n′′) = n′A(n′′) + M(n′′)A(n′).

We now have two ways to compute the two-dimensional Fourier transform. One
method has

M(n′ × n′′) = n′′M(n′) + n′M(n′′)

multiplications. The other has

M(n′ × n′′) = M(n′)M(n′′)

multiplications. The second method presumes that the Winograd small FFT is available
for the single dimensions. The first method works with any one-dimensional FFT.

For example, a 1008-point by 1008-point FFT with complex input data uses
4 × 1008 × 1782 real multiplications with the first method, and 2 × 17822 real mul-
tiplications with the second method. If the input data is real, then only half as many
real multiplications are used by the second method, but three-fourths as many are used
by the first method because, after the Fourier transforms along rows are computed, the
data is complex.

The second method, clearly, is better but it does require a temporary array of size 2
by 1782 by 1782 for complex data (which could initially contain the original 2 by 1008
by 1008 input data array); the first method needs only a one-dimensional temporary
array of 3564 words.

12.4 The Winograd large fast Fourier transform

The Winograd large FFT is a method of efficiently computing the one-dimensional
discrete Fourier transform when the blocklength n has coprime factors for which one
has Winograd small FFT algorithms. It is built from four separate ideas: the Rader
prime algorithm, the Winograd small convolution algorithm of Section 3.4, the Good–
Thomas prime factor indexing scheme, and the Winograd nesting algorithm. The first
two ideas were already combined into the Winograd small FFT in Section 3.8; and
the method of nesting was discussed in Section 12.3 for computing two-dimensional
Fourier transforms. As measured by the number of multiplications, the Winograd large
FFT is better than the Cooley–Tukey FFT, as shown in Table 12.1, but it is more intricate.
The price paid for having fewer multiplications is the absence of tight repetitive loops.

The general case of the Winograd large FFT has a blocklength n that is a product of
small primes or small prime powers. We shall discuss the case with two factors. Then

396 Fast algorithms and multidimensional transforms

Table 12.1 Comparison of some FFT algorithms

Performance of Winograd FFT (Basic radix-two Cooley–Tukey FFT)
(complex input data) (complex input data)

Blocklength Number of real Number of Blocklength Number of real Number of
n multiplications real additions n multiplications real additions

30 72 384 32 320 480
48 92 636
60 144 888 64 768 1152
91 318 2648

120 288 2076 128 1792 2688
168 432 3492
240 648 5016 256 4096 6144
420 1296 11 352
504 1584 14 642 512 9216 13 824
840 2592 24 804

1 008 3564 34 920 1024 20 480 30 720
2 520 9504 100 188 2048 45 056 67 584

10 920 38 760 320 196 8192 212 992 319 488

n = n′n′′. The Good–Thomas prime factor algorithm decomposes an n-point Fourier
transform into a two-dimensional n′ by n′′-point Fourier transform. The individual
components of this two-dimensional Fourier transform can be computed by an n′-point
Winograd small FFT and an n′′-point Winograd small FFT, respectively. Because it
does not matter which of these small Winograd fast Fourier transforms is computed
first, it seems that perhaps they should be done together. Indeed, we shall use Winograd
nesting, as in the previous section, to bind the two algorithms together and reduce the
amount of computation.

The procedure that we shall develop is illustrated by the example of a twelve-
point FFT. Figure 12.4 shows how the one-dimensional data is turned into a two-
dimensional array by using the Good–Thomas algorithm to obtain a two-dimensional
Fourier transform, and then back into another one-dimensional array by stacking the
columns of the two-dimensional array. All of this manipulation can be done with
indexing–it is not necessary to physically rearrange the data. A Kronecker product can
be found in the two-dimensional matrix, as shown in Figure 12.5, because of the way
the two-dimensional data array is mapped into a one-dimensional array by stacking
columns.

Let W ′ and W ′′ be matrix representations of Fourier transforms of blocklength n′

and n′′, respectively, where n′n′′ = n. In this representation, the Fourier transforms are

V ′ = W ′v′,

V ′′ = W ′′v′′.

397 12.4 The Winograd large fast Fourier transform

(a) Input scrambling

0
1
2
3
4
5
6
7
8
9

10
11

0
9
6
3
4
1

10
7
8
5
2

11

0 4 8
9 1 5
6 10 2
3 7 11

Mod 3
Mod 4

Stack
columns

0
1
2
3
4
5
6
7
8
9

10
11

0
3
6
9
4
7

10
1
8

11
2
5

0 4 8
3 7 11
6 10 2
9 1 5

(b) Output unscrambling

C.R.T.
Unstack
columns

Figure 12.4 Scrambling indices for a 12-point Winograd transform

An n′ by n′′ two-dimensional Fourier transform of the two-dimensional signal vi ′i ′′ is
obtained by applying W ′ to each column, and then applying W ′′ to each row. The n′

by n′′ two-dimensional signal vi ′i ′′ , which was previously obtained by rearranging a
one-dimensional signal, can be turned back into a one-dimensional signal by reading
it by columns.

If we think of v and V as permuted into scrambled one-dimensional n-point vectors
in this way, then the transform can be written by using a Kronecker product

V = (W ′′ × W ′)v.

But

W ′ = C ′ B′ A′,

W ′′ = C ′′ B′′ A′′,

where A′, A′′, C ′, and C ′′ are matrices of zeros and ones, and B′ and B′′ are diagonal
matrices. In the same way as we have seen in Section 12.3, by using Theorem 2.5.5,

398 Fast algorithms and multidimensional transforms

0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 110

0 2 4 6 8 10 0 2 4 6 8 101

2 0 3 6 9 0 3 6 9 0 3 6 9

3
0 4 8 0 4 8 0 4 8 0 4 8

4
0 5 10 3 8

5

6

7

8

9

10

11

V
V
V
V
V
V
V
V
V
V
V
V

1 6 11 4 9 2 7

0 6 0 6 0 6 0 6 0 6 0 6

0 7 2 9 4 11 6 1 8 3 10 5

0 8 4 0 8 4 0 8 4 0 8 4

0 9 6 3 0 9 6 3 0 9 6 3

0 10 8 6 4 2 0 10 6 6 4 2

0 11 10 9 8 7 6 5 4 3 2 1

0

1

2

3

4

5

6

7

8

9

10

11

v
v
v
v
v
v
v
v
v
v
v
v

0 0 0 0 0 0 0 0 0 0 0 0

0 3 6 9 0 3 6 9 0 3 6 90

0 6 0 6 0 6 0 6 0 6 0 63

6 0 9 6 3 0 9 6 3 0 9 6 3

9
0 0 0 0 4 4 4 4 8 8 8 8

4
0 3 6 9 4 7 10

7

10

1

8

11

2

5

V
V
V
V
V
V
V
V
V
V
V
V

1 8 11 2 5

0 6 0 6 4 10 4 10 8 2 8 2

0 9 6 3 4 1 10 7 8 5 2 11

0 0 0 0 8 8 8 8 4 4 4 4

0 3 6 9 8 11 2 5 4 7 10 1

0 6 0 6 8 2 8 2 4 10 4 10

0 9 6 3 8 5 2 11 4 1 10 7

0

9

6

3

4

1

10

7

8

5

2

11

v
v
v
v
v
v
v
v
v
v
v
v

0 0

3 9

6 6

9 3
0 0 0 0

0 0 04 4
0 3 6 9

7 10 4 8
0 6 0 610 100 8 4
0 9 6 31 7

8 8

11 5

2 2

5 11

V v
V v
V v
V v
V v
V v
V v
V v
V v
V v
V v
V v

Figure 12.5 Rearranging a 12-point Fourier transform as a Kronecker product

399 12.5 The Johnson–Burrus fast Fourier transform

this becomes

W = (C ′′ B′′ A′′) × (C ′ B′ A′)

= (C ′′ × C ′)(B′′ × B′)(A′′ × A′)

= C B A,

where the Kronecker products C = C ′′ × C ′ and A = A′′ × A′ are matrices of zeros
and ones, and the Kronecker product B = B′′ × B′ is again a diagonal matrix with
each element purely real or purely imaginary. Hence we have an n′n′′ Fourier transform
algorithm, again in the form of the Winograd FFT:

V = C B Av.

The algorithm that we have derived requires that v is in the scrambled order determined
by the Good–Thomas algorithm, and it computes V in a scrambled order. However,
once matrices A and C are derived, it is trivial to rearrange the columns of A so that v

is in its natural order and to rearrange the rows of C so that V is in its natural order.
The final form is referred to as the Winograd large FFT.

Let M(n′) and M(n′′) be the dimensions of matrices B′ and B′′, respectively. These
are the numbers of multiplications required of the n′-point and n′′-point Winograd FFT
algorithms, respectively, including multiplications by one. Then M(n) = M(n′)M(n′′)
is the number of multiplications needed by the n′n′′-point Winograd large FFT, includ-
ing multiplications by one. This is because B′′ × B′ is again a diagonal matrix of
dimension M(n′)M(n′′).

Figure 12.6 gives a menu for constructing a Winograd large FFT algorithm from
small FFT algorithms, and Table 12.2 shows the performance of the large FFT algo-
rithms. An example of a 1008-point transform is given in Figure 12.7. This FFT
algorithm will use 3564 real multiplications, the product of the number of multipli-
cations in the seven, nine, and 16 point Winograd small FFT algorithms, times two
for complex data because each element of the diagonal matrix is either purely real or
purely imaginary.

If one wants a more regular FFT algorithm with data handled in smaller blocks, one
can structure the algorithm as shown in Figure 12.8. In this case, only the nine-point
and the seven-point Fourier transforms are merged. The 1008-point transform then
appears as a 63-point by 16-point two-dimensional Fourier transform; each component
is computed with a Winograd FFT. The number of real multiplications is 4396 =
2(16M(63) + 63M(16)).

12.5 The Johnson–Burrus fast Fourier transform

We have seen two methods to bind together Winograd small FFT algorithms. These
are the Good–Thomas prime factor nesting scheme and the Winograd nesting. The

400 Fast algorithms and multidimensional transforms

Table 12.2 Performance of the Winograd large FFT

Number of real
multiplications∗ Number Nontrivial

Blocklength of real multiplications Additions
n Total Nontrivial additions∗ per point∗ per point∗

15 18 17 81 1.13 5.4
21 27 26 150 1.24 7.14
30 36 34 192 1.13 6.40
35 54 53 333 1.51 9.51
48 54 46 318 0.96 6.62
63 99 98 704 1.56 11.17
80 94 86 676 1.07 8.45

120 144 138 1038 1.15 8.65
168 216 210 1746 1.25 10.39
240 324 316 2508 1.32 10.45
420 648 644 5676 1.53 13.51
504 792 786 7270 1.56 14.42
840 1296 1290 12 402 1.54 14.76

1008 1782 1774 17 334 1.76 17.20
2520 4752 4746 49 814 1.88 19.77

∗ Double for complex input data.

Time-domain
input

Frequency
domain input

-pointsn -pointsn

Adder
stage

Adder
stage

Multiplier
stage

Winograd small FFT

Items

2
3

4
5

7
8

9
11

13
16

A B C D E F
n

n
n

n
n

n
n

n
n

n

Mult
0(2) 2
2(3) 6
0(4) 8
5(6) 17
8(9) 36
2(8) 26

10(11) 44
20(21) 84
20(21) 94
10(18) 74

Adds
Price

Ordering from a Winograd menu
 Order no more than one item from each column
 Cascade
 Migrate multiplications (to taste)
 Combine multiplications, combine additions

Figure 12.6 A menu of Winograd small transform

401 12.5 The Johnson–Burrus fast Fourier transform

Time
samples Winograd

small FFT
Winograd
small FFT

Winograd
small FFT

Frequency
samples

(7 point) (16 point)(9 point)

Winograd nesting

AA AM A AM A AM

M A AAA AA MM

AMA

Figure 12.7 Structure of a 1008-point Winograd large FFT

Time
samples Winograd

small FFT
Winograd
small FFT

Winograd
small FFT

Frequency
samples

(7 point) (16 point)(9 point)

Winograd nesting

AA AM A AM A AM

AA A MMM AA A

(63 point)
(16 point)

Figure 12.8 Structure of another 1008-point transform

Johnson–Burrus fast Fourier transform algorithms are a whole family of nested algo-
rithms that include the Good–Thomas and Winograd methods as special cases. The idea
of the Johnson–Burrus FFT is to moderate the use of the Kronecker product theorem
in reordering the computations. In this way, one has the control to reduce the number
of multiplications while keeping the number of additions small. One also can obtain
FFT architectures that have improved control and data-flow properties.

We shall discuss a Fourier transform whose blocklength n has been broken into two
factors n′ and n′′. One can also apply the same method if there are more than two
factors, and the number of design options can become enormous. For example, when n

402 Fast algorithms and multidimensional transforms

has four factors, there can be more than 1012 different Johnson–Burrus FFT algorithms
built from the same Winograd small FFT algorithms.

Suppose that an n-point input vector has been mapped into a n′ by n′′ two-
dimensional array V along the extended diagonal, provided n′ and n′′ are coprime.
The Good–Thomas algorithm tells us that a one-dimensional Fourier transform of
the original data is computed by first taking the n′-point Fourier transform of each
column followed by the n′′-point Fourier transform of each row. We will represent
this by

V = W ′′W ′v.

This is an unconventional notation because v is a two-dimensional array. By W ′v, we
mean to multiply every column of v, one column at a time, by the matrix W ′. By W ′′v,
we mean to multiply every row of v, one row at a time, by W ′′. It would be more
precise to append further notation to distinguish matrices that operate on columns from
matrices that operate on rows, but we will rely on the prime and double prime to convey
this information.

Because it does not matter whether the Fourier transforms along rows or the Fourier
transforms along columns are computed first, we can also write

V = W ′W ′′v.

That is, operations on rows commute with operations on columns. This is nothing more
than a straightforward interchange in the order of summation.

Now suppose we have the Winograd small FFT algorithms

W ′ = C ′ B′ A′,

W ′′ = C ′′ B′′ A′′.

Then

V = (C ′′ B′′ A′′)(C ′ B′ A′)v

= (C ′ B′ A′)(C ′′ B′′ A′′)v.

Two matrices with the same number of primes do not commute. However, the Winograd
nesting tells us that we can commute matrices having primes with matrices having
double primes. We have already appealed to the Kronecker product theorem to prove
this. Again, this amounts to nothing more than a straightforward interchange in the
order of summation. Thus we can write

V = C ′C ′′ B′ B′′ A′ A′′v,

which is the form of a Winograd large FFT. We also have other options such as

V = C ′ B′C ′′ B′′ A′ A′′v.

403 12.6 Splitting algorithms

To get the Johnson–Burrus FFT, we need one more trick. Each of the addition
matrices can be factored further before reordering them. We write

W ′ = (G′ H ′)B′(E′ F′),

W ′′ = (G′′ H ′′)B′′(E′′ F′′),

anticipating that C ′ can be factored as G′ H ′, and so forth. Now we have

V = G′ H ′ B′ E′ F′G′′ H ′′ B′′ E′′ F′′v,

which can be rendered in many ways, such as

V = (G′G′′ H ′ H ′′)(B′ B′′)(E′ E′′ F′ F′′)v.

In this instance, the two diagonal matrices B′ and B′′ have been brought together, and
the parentheses are intended only to highlight this.

A 35-point Fourier transform illustrates the ideas nicely. In Figure 12.9, the five-
point and seven-point Winograd FFTs are given, but each is factored into five stages.
There are many ways to combine these to obtain a 35-point FFT. Figure 12.9 gives three
that are the most interesting. Of these, one method uses Good–Thomas nesting and
one uses Winograd nesting. The Good–Thomas method results in the fewest additions,
while the Winograd method results in the fewest multiplications. There is no need to
decide between these two alternatives, however. There is a Johnson–Burrus nesting
method that has the same number of multiplications as the Winograd method and
nearly the same number of additions as the Good–Thomas method, and so will usually
be preferred.

There is no penalty in using the Johnson–Burrus FFT. All that it entails is breaking
the additions into several packages that can form subroutines and then calling these
subroutines in the right sequence. The computations jump back and forth between
additions along rows and additions along columns.

12.6 Splitting algorithms

This chapter opened with a discussion of how fast algorithms for a two-dimensional
Fourier transform can be constructed by combining fast algorithms for a one-
dimensional Fourier transform. Then we discussed fast algorithms for a one-
dimensional Fourier transform by turning it into a two-dimensional Fourier trans-
form. Now we return to the case of two-dimensional Fourier transforms, this time
working with the two-dimensional Fourier transform directly. The Winograd small
FFT algorithm, developed in Chapter 3, uses the Rader prime algorithm to turn a
one-dimensional Fourier transform into a one-dimensional cyclic convolution. In this
chapter we shall apply the same procedure for a multidimensional Fourier transform.

404 Fast algorithms and multidimensional transforms

0
1

1
2

2
3

3
4

4
5

1
1 0 0 0 0 1 0 0 0 0 0
1 1 1 1 0 0 1 0 0 0 0
1 1 1 0 1 0 0 1 0 0 0
1 1 1 0 1 0 0 0 1 1 0
1 1 1 1 0 0 0 0 1 0 1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 1

V
B

V
B

V
B

V
B

V
B

0

1

2

3

4

1 1 1 1 1
0 1 1 1 1
0 1 1 1 1
0 0 1 1 0
0 1 0 0 1

v
v
v
v
v

0
1
2
3
4
5
6

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0
1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0
1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1

V
V
V
V
V
V
V

1
2

3
4

5
6

7
8

1

1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 0 0 0 0 1 0 1 1 0 1
0 0 1 1 0 0 0 0 0 1 1 1 1 0
0 0 0 0 1 0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 1 1

B
B

B
B

B
B

B
B

0
1
2
3
4
5
6

0 1 0 1 1 0 1
0 0 1 1 1 1 0

v
v
v
v
v
v
v

Real RealOrdering additionsmultiplications
Good–Thomas 75 299nesting

Winograd 53 333nesting
Johnson–Burrus 53 305nesting

G H B E F G H B E F

G H G H B B E F E F

G G H H B B E E F F

Figure 12.9 Example of Johnson–Burrus FFT

Generally, the transform will split into several one-dimensional and two-dimensional
cyclic convolutions. Each dimension of the multidimensional Fourier transform must
have a blocklength that is a prime or a prime power, but the blocklength need not be
the same on each axis. First, the Rader algorithm or its generalization is applied on
each axis to change the multidimensional Fourier transform into a multidimensional
convolution. Then a fast multidimensional convolution algorithm is used. In those
cases in which the blocklength is the same on every axis, the method to be described
in Section 12.7 gives better performance and so should usually be preferred. Therefore
the splitting algorithms are of interest primarily for the case in which the blocklength
is not the same on every axis.

405 12.6 Splitting algorithms

The idea is a simple generalization of the method used in the one-dimensional case.
We begin with the n′ by n′′ two-dimensional Fourier transform

Vk′k′′ =
n′−1∑
i ′=0

n′′−1∑
i ′′=0

ωi ′k′
µi ′′k′′

vi ′i ′′,
k′ = 0, . . . , n′ − 1,

k′′ = 0, . . . , n′′ − 1,

where n′ and n′′ are each a prime, possibly different primes. To apply the Rader
algorithm, we must restructure the equations to exclude zero as an exponent of ω or µ.
Therefore break the equation into four cases by analogy with the Rader algorithm

V00 =
n′−1∑
i ′=0

n′′−1∑
i ′′=0

vi ′i ′′,

V0k′′ − V00 =
n′′−1∑
i ′′=1

(µi ′′k′′ − 1)
n′−1∑
i ′=0

vi ′i ′′, k′′ = 1, . . . , n′′ − 1,

Vk′0 − V00 =
n′−1∑
i ′=1

(ωi ′k′ − 1)
n′′−1∑
i ′′=0

vi ′i ′′, k′ = 1, . . . , n′ − 1,

Vk′k′′ − Vk′0 − V0k′′ + V00 =
n′−1∑
i ′=1

n′′−1∑
i ′′=1

(ωi ′k′ − 1)(µi ′′k′′ − 1)vi ′i ′′,
k′ = 1, . . . , n′ − 1,

k′′ = 1, . . . , n′′ − 1.

With the problem so broken into four equations, and the permutations of the Radar
algorithm applied to the last three equations, the computation of the Fourier transform
is replaced with a simple sum, an (n′ − 1)-point convolution, an (n′′ − 1)-point convo-
lution, and an (n′ − 1) by (n′′ − 1)-point two-dimensional convolution. The Winograd
convolution algorithms, studied in Chapter 3, can be used for the two one-dimensional
convolutions. Theorem 3.8.1 and Theorem 3.8.2 tell us that each multiplication in the
algorithm is a multiplication by a purely real or a purely imaginary constant, and so
each takes only one real multiplication if the input array is real.

Any good method may be used for the two-dimensional convolution. One such
method is the use of a polynomial transform, which was studied in Chapter 11. An
(n′ − 1) by (n′′ − 1)-point two-dimensional convolution algorithm can be obtained
by nesting any suitable small two-dimensional cyclic convolution algorithms or even
small one-dimensional cyclic convolution algorithms. For example, a four by 12 two-
dimensional convolution can be converted to a four by four by three three-dimensional
cyclic convolution algorithm by using the Agarwal–Cooley algorithm on the second
axis. This then can be computed by nesting a four by four two-dimensional cyclic
convolution algorithm with a three-point cyclic convolution algorithm.

When a two-dimensional convolution algorithm is used to form a two-dimensional
Fourier transform, the multiplications always turn out to have one factor as a purely
real or a purely imaginary number. A special case of this is given in the next theorem
as an analog of Theorem 3.8.1.

406 Fast algorithms and multidimensional transforms

Table 12.3 Performance of some splitting algorithms

Number of real
multiplications∗ Nontrivial

Array size Number of real multiplications∗ Additions* per
n by n Total Nontrivial additions∗ per output point output point

5 by 5 33 32 230 1.28 9.20
7 by 7 69 68 650 1.39 13.26
9 by 9 109 108 908 1.33 11.21
7 by 9 87 86 712 1.36 11.30
5 by 13 114 113 917 1.74 14.10

∗ Double for complex input data.

6 6
Cyclic

convolution

1

6

6 1

7

7

Figure 12.10 Breaking a seven by seven Fourier transform

Theorem 12.6.1 Let g(x, y) be a two-dimensional (p − 1) by (p − 1) Rader polyno-
mial, where p is an odd prime. Let �(x) and �′(x) be two cyclotomic polynomials
dividing xp − 1. Then g(x, y) (mod �(x)) and (mod �′(y)) has coefficients that are
either purely real or purely imaginary.
Proof Similar to the proof of Theorem 3.8.1. �

A more general theorem can be proved for the case in which the two blocklengths
are primes or prime powers, not necessarily equal.

A tabulation of the performance for some two-dimensional Fourier transform algo-
rithms is shown in Table 12.3. The performance of the algorithms should be compared
with the performance of the algorithms described later in Section 12.7 to see that the
p by p FFT algorithms described here are not quite as good as those FFT algorithms.

As an example, consider the seven by seven two-dimensional Fourier transform. This
transform decomposes into two six-point cyclic convolutions and one six by six two-
dimensional cyclic convolution, as shown in Figure 12.10. Each six-point convolution
uses eight real multiplications. The six by six two-dimensional convolution can be

407 12.6 Splitting algorithms

formed by nesting the two by two cyclic convolution algorithm and the three by three
cyclic convolution algorithm given in Table 11.4. This takes 52 multiplications, so there
is a total of 68 multiplications. An additional trivial multiplication (by 1) is needed
to bring the computation of V00 into the same format. This becomes essential if the
seven by seven FFT is to be nested with another two-dimensional FFT to get a larger
two-dimensional FFT.

To count additions is a little more cumbersome, and the count can be changed
by making finer adjustments in the organization of the equations. First, we look at
the equations as we have already structured them. The computation consists of some
preadditions, followed by calling a six-point cyclic convolution algorithm twice and a
six by six cyclic convolution algorithm once, followed by some postadditions. There
will also be some preadditions and postadditions within the convolution algorithms.

The additions can be counted as follows:

Preadditions 84
Two six-point cyclic convolutions 68
Six by six cyclic convolution 424
Postadditions 84

660

However, we know that if all of the preadditions are gathered together, including those in
the convolutions, it may be possible to rearrange them to reduce their number. Similarly,
it may be possible to reduce the number of postadditions by gathering them together.
This we will not do in full generality because we have no general theory for minimizing
the number of additions, and because it would result in an algorithm that is not neatly
broken into small subroutines as we now have. However, we can still do something.
The six-point cyclic convolutions can be combined with some of the preadditions
and postadditions to become six-point Fourier transforms. This does not change the
number of multiplications. Instead, we can rearrange the computation into the form of
some preadditions, followed by one seven-point Fourier transform, followed by one
six-point cyclic convolution, followed by a six by six cyclic convolution, followed by
some postadditions. The number of additions will reduce as follows.

Preadditions 78
Seven-point FFT 36
Six-point cyclic convolution 34
Six by six cyclic convolution 424
Postadditions 78

650

which is a small improvement.

408 Fast algorithms and multidimensional transforms

12-point cyclic convolution

4 by 12
cyclic

convolution
4-point
cyclic

convolution

5

13

Figure 12.11 Breaking a five by 13 Fourier transform

The second example is a five by 13 two-dimensional Fourier transform. This
will break into a four by 12 two-dimensional cyclic convolution, a four-point one-
dimensional cyclic convolution, and a 12-point one-dimensional cyclic convolution,
as shown in Figure 12.11. The four by 12 two-dimensional cyclic convolution can be
computed by changing it to a four by four by three three-dimensional cyclic convolu-
tion, then nesting a four by four cyclic convolution algorithm and a three-point cyclic
convolution algorithm to get an algorithm with 88 real multiplications and 608 real
additions. Appending a four-point cyclic convolution and a 12-point cyclic convolution
algorithm (with 20 real multiplications and 100 real additions) and one trivial multi-
plication for the term V00 will yield a five by 13 FFT with 114 real multiplications and
939 real additions.

A slightly better five by 13 FFT can be formed if a subroutine is available for the
13-point FFT that uses 20 nontrivial real multiplications and 94 real additions. Using
this in place of the 12-point cyclic convolution will yield a five by 13 FFT with 114
real multiplications and 917 real additions.

The method also works when the blocklengths are powers of a prime. Now the index
sets must be broken into more complicated subsets. For an example, consider a seven by
nine two-dimensional FFT. Because nine is not itself a prime, this construction requires
a more general method than we have discussed above. When generalizing the Rader
prime algorithm to nine points in Chapter 3, we had to pull out all indices not coprime
to nine to get a six-point cyclic convolution and two two-point cyclic convolutions.
We do the same thing here to find a six by six two-dimensional cyclic convolution and
two copies of a two by six two-dimensional cyclic convolution. Figure 12.12 shows
that the seven by nine FFT can be built from one six by six cyclic convolution, two six
by two cyclic convolutions, one nine-point FFT, and one six-point cyclic convolution.
This appears to take a total of 102 multiplications (52 + 2 · 16 + 10 + 8), but we can
do better if we build the structure carefully. We have not yet used the fact that the
six-point convolution that comes from the nine-point Fourier transform by the Rader
algorithm leads to several multiplications by zero. These multiplications, identified by
Theorem 3.8.2, need not be counted.

The six by six convolution arises from a computation of the two-dimensional version
of the generalized Rader algorithm. The two-dimensional Rader prime algorithm for

409 12.6 Splitting algorithms

6 6

9

9-point FFT

7
6

1

6×2
(twice)

Figure 12.12 Breaking a seven by nine Fourier transform

66

3

3

66

0
(3)

0
(3)

0
(3)

0
(3)

0
(1)

0
(1)

0
(1)

0
(1)

2 1x x 2 1x 1x 2 1x x

2 1y y

1y

1y

2 1y y

3

3

Figure 12.13 Partition of a six by six convolution

the seven by nine Fourier transform is

g(x, y) =
 5∑

j=0

(ω3j − 1)xj

[
5∑

k=0

(µ2k − 1)yk

]
,

where ω is a sixth root of unity and µ is a ninth root of unity.
To construct the six by six cyclic convolution algorithm, we write

x6 − 1 = (x2 + x + 1)(x − 1)(x + 1)(x2 − x + 1),

y6 − 1 = (y2 + y + 1)(y − 1)(y + 1)(y2 − y + 1)

and compute the residues of g(x, y) modulo these factors. Figure 12.13 shows how the
computation will break into 16 pieces. But by Theorem 3.8.2, we know that the pieces
modulo (y − 1) and (y + 1) are zero and can be dropped.

410 Fast algorithms and multidimensional transforms

In Figure 12.13, each rectangle shows the number of multiplications needed for
that piece and, in parentheses, the number of additional multiplications needed if the
residues in those blocks are not equal to zero. Hence a total of 36 multiplications is
needed for the six by six cyclic convolution, and so 86 nontrivial multiplications are
needed for the seven by nine-point FFT.

12.7 An improved Winograd fast Fourier transform

The performance of the methods developed in the previous section for computing a
two-dimensional Fourier transform motivates us to return to the computation of the
one-dimensional Fourier transform and to apply these same techniques to that problem.
Whenever a one-dimensional Fourier transform can be converted into a multidimen-
sional Fourier transform by using the Good–Thomas algorithm, then by using the
methods of Section 12.6, it can be computed by turning it into a multidimensional
convolution. A one-dimensional Fourier transform algorithm formed in this way is like
a Winograd large FFT, but with an extra twist. Recall that the Winograd large FFT
combines two or more small FFT algorithms but does not change the structure of the
underlying small algorithms. However, each small FFT algorithm was constructed from
a convolution algorithm, so we may expect to find a multidimensional convolution in
the large problem. The Winograd large FFT does not go deep enough to find this multi-
dimensional convolution, instead it nests two one-dimensional FFT algorithms that are
each formed from a one-dimensional convolution algorithm. If the multidimensional
convolution is large enough, there may be an improvement in performance if a stronger
algorithm is used. The performance of an n′n′′-point improved Winograd FFT is better
than the n′n′′-point Winograd large FFT whenever φ(n′) and φ(n′′) have a common fac-
tor at least as large as four. The performance of some of these improved FFT algorithms
is tabulated in Table 12.4. This table should be compared with Table 12.2.

The improved algorithm is a combination of three ideas: the use of the Good–Thomas
algorithm to convert a one-dimensional Fourier transform into a multidimensional
Fourier transform, a multidimensional version of the Rader algorithm, and the use of a
polynomial transform to compute the multidimensional Rader convolution. The first of
these ideas is an indexing operation. The second and third ideas are already combined
in the splitting algorithm of the previous section. To obtain the improved FFT, we need
only to modify one of these two-dimensional algorithms by permuting the columns of
the matrix of preadditions and permuting the rows of the matrix of postadditions. First
consider a fifteen-point Fourier transform. This can be converted into a three by five
two-dimensional Fourier transform. By using the Rader algorithm on each axis, we
extract a two by four two-dimensional cyclic convolution, which we express as

s(x, y) = g(x, y)d(x, y) (mod x4 − 1)(mod y2 − 1).

411 12.8 The Nussbaumer–Quandalle permutation algorithm

Table 12.4 Performance of improved fast Fourier transform algorithms

Number of real
multiplications∗ Nontrivial

Blocklength Number of real multiplications Additions∗

n Total Nontrivial additions∗ per point∗ per point

15∗∗ 18 17 103 1.13 6.87
21∗∗ 27 26 184 1.24 8.76
35∗∗ 54 53 411 1.51 11.74
63 86 85 712 1.37 11.30
65 114 113 917 1.74 14.10
91 159 158 1560 1.75 17.14

∗ Double for complex input data.
∗∗ Same number of multiplications and Winograd large FFT.

These convolutions are so short that the two-dimensional convolution is best com-
puted by nesting two one-dimensional convolution algorithms. When n equals 15, the
improved FFT is not better than the Winograd large FFT. In fact, it is not as good
because there are more additions.

Our last example is a 63-point Fourier transform. The Winograd nesting algo-
rithm gives an FFT with 98 nontrivial real multiplications and 704 real additions.
The improved algorithm is derived by starting with the 63-point Fourier transform
expressed in the form of a seven by nine two-dimensional Fourier transform and using
the algorithm with the structure that was shown in Figure 12.12. The improved 63-point
algorithm uses 85 nontrivial real multiplications and 712 real additions.

12.8 The Nussbaumer–Quandalle permutation algorithm

The last topic of this chapter deals again with the computation of the two-dimensional
Fourier transform, now using yet another method. Recall that in Chapter 11, dealing
with multidimensional convolution, we posed the multidimensional convolution as a
convolution of polynomials, using the polynomial representation of extension fields to
construct algorithms for multidimensional convolutions. Now we shall use the polyno-
mial representation of extension fields to construct algorithms for the multidimensional
Fourier transform. Of course, one of the applications of the multidimensional Fourier
transform is to compute multidimensional convolutions, so indirectly we will have
another way of computing multidimensional convolutions.

Once again, we are able to obtain good algorithms for one class of problems by twist-
ing that class into the form of a class of problems already solved. This instance might
appear especially tantalizing because we had introduced the polynomial transform as

412 Fast algorithms and multidimensional transforms

Table 12.5 Performance of the Nussbaumer–Quandalle FFT

Number of real
multiplications∗ Nontrivial

Array size Number of real multiplications∗ Additions∗ per
n by n Total Nontrivial additions∗ per output point output point

2 by 2 4 0 8 0 2
3 by 3 9 8 36 0.89 4
4 by 4 16 0 64 0 4
5 by 5 31 30 221 1.20 8.84
7 by 7 65 64 635 1.31 12.96
8 by 8 64 24 408 0.375 6.37
9 by 9 105 104 785 1.28 9.69

16 by 16 304 216 2264 0.84 8.85

∗ Double for complex input.

a notational variation of the Fourier transform, but then suppressed that viewpoint,
treating the polynomial transform as its own case. Now we are shifting ground again
and using the polynomial transform to compute a Fourier transform, albeit not the same
one that originally gave rise to the polynomial transform.

The Nussbaumer–Quandalle permutation algorithm is a multidimensional fast
Fourier transform algorithm. It is derived by changing a multidimensional Fourier
transform into a number of one-dimensional Fourier transforms. This is different from
the splitting algorithms of Section 11.3, which change a multidimensional Fourier
transform into several multidimensional convolutions. The Nussbaumer–Quandalle
fast Fourier transform has superior performance, but it can be used only when the
blocklength is the same in all dimensions or has a common factor in all dimensions
that can be extracted by using the Chinese remainder theorem. We shall study the
Nussbaumer–Quandalle FFT in this section. The performance of the Nussbaumer–
Quandalle FFT is shown in Table 12.5 for two dimensions and in Table 12.6 for three
dimensions. Table 12.6 should be compared with Table 12.3.

The Nussbaumer–Quandalle algorithm can be used to compute a multidimensional
Fourier transform with the same number of points n in each dimension, whenever n

is a prime or a power of a prime. Three subcases must be treated separately: n is a
prime p; n is a power of an odd prime pm, and n is a power of two 2m. These can be
nested to form a larger two-dimensional Fourier transform algorithms. The nesting of
multidimensional Fourier transform algorithms can be done in the same way as was
done for a one-dimensional transform. For example, a 63 by 63 Fourier transform is
first mapped into a (seven by nine) by (seven by nine) transform. This four-dimensional
Fourier transform is viewed as a (seven by seven) by (nine by nine) transform, which
is computed by nesting a seven by seven algorithm and a nine by nine algorithm.

413 12.8 The Nussbaumer–Quandalle permutation algorithm

Table 12.6 Performance of the three-dimensional Nussbaumer–Quandalle

Number of real
multiplications∗ Nontrivial

Array size Number of real multiplications∗ Additions∗ per
n by n by n Total Nontrivial additions∗ per output point output point

2 by 2 by 2 8 0 24 0.00 3.0
3 by 3 by 3 27 26 162 0.96 6.0
4 by 4 by 4 64 0 384 0.00 6.0
5 by 5 by 5 156 155 1686 1.24 13.5
7 by 7 by 7 457 456 6767 1.33 19.7
8 by 8 by 8 512 224 4832 0.44 9.4
9 by 9 by 9 963 962 10 383 1.32 14.2

16 by 16 by 16 4992 3808 52 960 0.93 12.9

∗ Double for complex input.

This will entail 49 applications of a nine by nine algorithm to 49 subarrays of the
data set, followed by 81 applications of a seven by seven algorithm to 81 subarrays of
the data set, provided that we view each seven by seven subarray as a 49 vector and
each nine by nine subarray, in turn, as an 81 vector. The algorithms can be put in the
standard form of a matrix of postadditions, followed by a diagonal matrix, followed by
a matrix of postadditions. The required manipulation of the 63 by 63 array is done by
indexing. No arithmetic is required, nor is it necessary to physically move the data to
view it differently. Then, just as for the one-dimensional algorithms, the components
can be merged by using the Kronecker product theorem. This amounts to moving all
preadditions before all multiplications and all multiplications before all postadditions.
The total number of multiplications needed for an n′n′′ by n′n′′ Fourier transform when
built in this way by nesting is

M(n′n′′ × n′n′′) = M(n′ × n′)M(n′′ × n′′),

and the number of trivial multiplications satisfies an equation of the same form. The
number of additions is

A(n′n′′ × n′n′′) = (n′)2A(n′′ × n′′) + M(n′′ × n′′)A(n′ × n′).

These formulas have the same explanation as the corresponding formulas for nest-
ing one-dimensional transform algorithms. The performance of nested Nussbaumer–
Quandalle FFT algorithms is shown in Table 12.7.

The algorithms we study here will replace a p by p two-dimensional Fourier
transform with p + 1 one-dimensional Fourier transforms whenever p is a prime. To
illustrate the structure that we are working toward, we begin with the three by three

414 Fast algorithms and multidimensional transforms

Table 12.7 Performance of some nested FFT algorithms

Number of real
multiplications∗ Nontrivial

Array size Number of real multiplications∗ Additions∗ per
n by n Total Nontrivial additions∗ per output point output point

12 by 12 144 128 1152 0.89 8.00
15 by 15 279 278 2889 1.24 12.84
21 by 21 585 584 7499 1.32 16.96
30 by 30 1116 1112 13 356 1.24 14.84
35 by 35 2015 2014 30 240 1.64 24.90
48 by 48 2736 2648 29 592 1.15 12.84
63 by 63 6825 6824 102 460 1.72 25.81
80 by 80 9424 9336 123 784 1.46 19.34

120 by 120 17 856 17 816 276 696 1.24 19.21
168 by 168 37 440 37 400 658 584 1.32 23.33
240 by 240 84 816 84 728 1 344 456 1.47 23.34
420 by 420 290 160 290 144 5 765 760 1.65 32.69
504 by 504 436 800 436 760 8 176 792 1.72 32.19
840 by 840 1 160 640 1 160 600 24 738 840 1.64 35.06

1008 by 1008 2 074 800 2 074 712 40 133 656 2.04 39.50
2520 by 2520 13 540 800 13 540 760 298 481 560 2.13 47.00

∗ Double for complex input.

Fourier transform as an example. If the three by three input array and the three by three
output array are represented as column vectors by stacking columns, then the three by
three Fourier transform can be expressed as

V00

V10

V20

V01

V11

V21

V02

V12

V22

=

1 1 1 1 1 1 1 1 1

1 ω ω2 1 ω ω2 1 ω ω2

1 ω2 ω 1 ω2 ω 1 ω2 ω

1 1 1 ω ω ω ω2 ω2 ω2

1 ω ω2 ω ω2 1 ω2 1 ω

1 ω2 ω ω 1 ω2 ω2 ω 1

1 1 1 ω2 ω2 ω2 ω ω ω

1 ω ω2 ω2 1 ω ω ω2 1

1 ω2 ω ω2 ω 1 ω 1 ω2

v00

v10

v20

v01

v11

v21

v02

v12

v22

with ω an element of order three. The matrix has been blocked to show its origin as a
Kronecker product. The equation can be abbreviated as

V = Wv,

415 12.8 The Nussbaumer–Quandalle permutation algorithm

where V and v denote the above output vector and input vector, respectively, and W is
the matrix of powers of ω. Our goal in this section is to obtain the factorization

W = C B A,

where A and C are matrices of preadditions and postadditions, respectively, and B is
a matrix representing a collection of one-dimensional Fourier transforms. The matrix
B has the form

B =

1 1 1
1 ω ω2

1 ω2 ω

1 1 1
1 ω ω2

1 ω2 ω

1 1 1
1 ω ω2

1 ω2 ω

1 1 1
1 ω ω2

1 ω2 ω

,

where the unfilled blocks of B are all three by three zero matrices.
The factorization W = C B A has a striking resemblance to the form of the Winograd

small FFT. Now, however, we are working at a different level; the block diagonal matrix
in the center represents a batch of one-dimensional Fourier transforms instead of a batch
of multiplications. Once we find this factorization, the three by three Fourier transform
is computed by executing the preadditions specified by the A matrix, followed by
calling the three-point one-dimensional FFT four times, followed by executing the
postadditions specified by the C matrix. We shall see later that we do not always
need to compute all of the terms for some of the one-dimensional Fourier transforms.
Routines called punctured FFT algorithms (and discussed later) could be used here to
attain a slight further reduction in the amount of computation.

The one-dimensional n-point Fourier transform can be thought of as the process of
evaluating a polynomial v(x) at ωk , where ω is an element of order n. Thus

Vk = v(ωk), k = 0, . . . , n − 1,

where

v(x) =
n−1∑
i=0

vix
i .

The same idea can be used for a two-dimensional Fourier transform. It turns out that it
is more fruitful to treat only one dimension of the two-dimensional n by n array in this

416 Fast algorithms and multidimensional transforms

way. Toward this purpose, the n by n array is represented by a vector of polynomials
of blocklength n:

vi ′′(x) =
n−1∑
i ′=0

vi ′i ′′x
i ′, i ′′ = 0, . . . , n − 1.

Define

Vk′′(x) =
n−1∑
i ′′=0

ωi ′′k′′
vi ′′(x), k′′ = 0, . . . , n − 1.

This is a one-dimensional Fourier transform of polynomials. Then the original two-
dimensional Fourier transform, written as a polynomial remainder, is

Vk′k′′ = Rx−ωk′ [Vk′′(x)] = Vk′′(ωk′
),

k′ = 0, . . . , n − 1,

k′′ = 0, . . . , n − 1.

With this description, the two axes of the Fourier transform are described differently
and will play different roles.

Now we are ready to begin to change this into the form of a polynomial transform
by a clever permutation technique. Let r be any positive integer coprime to n. Let k′′

be expressed as k′′ = kr modulo n for some k in the set {0, . . . , n − 1}. This modulo
n representation is a valid, though indirect, way to rewrite k′′ because r and n are
coprime, and so as k runs from 0 to n − 1, k′′ will take on all values from 0 to n − 1.
Then, because ω has order n, ωk′′ = ωkr , and we can write the previous two equations
as

V((kr))(x) =
n−1∑
i ′′=0

ωi ′′krvi ′′(x),

Vk′((kr)) = Rx−ωk′ [V((kr))(x)],
k′ = 0, . . . , n − 1,

k = 0, . . . , n − 1

for any r coprime to n, where the double parentheses denote modulo n. Indeed, when
k′ itself is coprime to n, we can even choose r equal to k′ so that the second equation
becomes

Vk′((kk′)) = Rx−ωk′ [V((kk′))(x)],
k = 0, . . . , n − 1,

GCD[k′, n] = 1.

Every component of the output array with first index coprime to n can be written in
this way.

With this much as preliminaries, we are ready to bring in the polynomial transform.
We will jump directly to the final result in the following theorem. When reading the
theorem, notice that all k′ that share the same cyclotomic polynomial will share the
same computations, that the same index k′ is used both as an output index and to form
the permutation, and that division by k′ modulo n is defined because k′ is coprime to n.

417 12.8 The Nussbaumer–Quandalle permutation algorithm

Theorem 12.8.1 Let k′ be a fixed integer coprime to n. Let �(x) be the cyclo-
tomic polynomial having ωk′

as a zero. Then Vk′k′′ for k′′ = 0, . . . , n − 1 and k′

coprime to n can be evaluated by the following three steps: first the polynomial
transform

V ′
k(x) =

n−1∑
i ′′=0

vi ′′(x)xi ′′k (mod �(x)), k = 0, . . . , n − 1,

followed by the set of n Fourier transforms

V ′′
k′k =

n−2∑
i ′=0

ωi ′k′
V ′

i ′k,
k′ : GCD(k′, n) = 1,

k = 0, . . . , n − 1,

followed by the permutation

Vk′k′′ = V ′′
k′((k′′/k′)),

k′ : GCD(k′, n) = 1,

k′′ = 0, . . . , n − 1.

Proof We shall work with the equations

V((kk′))(x) =
n−1∑
i ′′=0

ωi ′′kk′
vi ′′(x),

Vk′((kk′)) = Rx−ωk′ [V((kk′))(x)].

Because x − ωk′
divides the cyclotomic polynomial �(x), the validity of the second

equation is not changed by taking the first equation modulo �(x). Then the equations
can be rewritten as

V((kk′))(x) =
n−1∑
i ′′=0

vi ′′(x)ωk′i ′′k (mod �(x)),

Vk′((kk′)) = Rx−ωk′ [V((kk′))(x)].

But now the second equation makes ωk′
congruent to x. Therefore we can replace

ωk′
by x in the first equation without changing the final result. Then rewrite the two

equations once more as

V ′
((kk′))(x) =

n−1∑
i ′′=0

vi ′′(x)xi ′′k (mod �(x)),

Vk′((kk′)) = Rx−ωk′ [V((kk′))(x)] =
n−2∑
i ′=0

ωi ′k′
V ′

i ′((kk′)).

We can now clean up the notation and rewrite the equations in final form to complete
the proof of the theorem. �

418 Fast algorithms and multidimensional transforms

Table 12.8 Subroutines used by Nussbaumer–Quandalle FFT

Blocklength n Polynomial transforms Fourier transforms Extra additions

prime p p-point transform modulo
(xp − 1)/(x − 1)

(p + 1) transforms∗ of
blocklength p

p3 + p2 − 5p + 4

prime power p2 p2-point transform
modulo
(xp2 − 1)/(xp − 1)

(p2 + p) transforms∗∗

of blocklength p2

2p5 + p4 − 5p3 + p2 + 6

p-point transform modulo
(xp2 − 1)/(xp − 1)

(p + 1) transforms∗ of
blocklength p

p-point transform modulo
(xp − 1)/(x − 1)

power of two 2m 2m-point transform
modulo x2m−1 + 1

3

2
2m transforms∗∗ of

blocklength 2m

(3m + 5)22t−2

2m−1-point transform
modulo x2m−1 + 1

1 two-dimensional
transform of size
2m−1 × 2m−1

∗ of which p are punctured.
∗∗ of which all are punctured.

There are three cases to which the theorem can be applied: blocklength a prime,
blocklength a power of an odd prime, and blocklength a power of two. We shall discuss
each of these cases, in turn. Table 12.8 summarizes the conclusions that will follow.

Blocklength a prime For p a prime, we can use the theorem to change a two-
dimensional p by p Fourier transform into p + 1 distinct one-dimensional Fourier
transforms. In a more general form, the method will change an N -dimensional p-point
Fourier transform into (pN − 1)/(p − 1) distinct one-dimensional p-point Fourier
transforms. In contrast, the straightforward method, one dimension at a time, uses
NpN−1 distinct one-dimensional p-point Fourier transforms.

For p prime we have the factorization

xp − 1 = (x − 1)(xp−1 + xp−2 + · · · + x + 1).

Every nonzero k′′ is a zero of the cyclotomic polynomial at the right. Theorem 12.8.1
tells how to compute Vk′k′′ for k′ = 0, . . . , p − 1 and k′′ = 1, . . . , p − 1, using one
polynomial transform and p Fourier transforms of blocklength p. To complete the
computation of Vk′k′′ , we need those elements with k′′ equal to zero. But these elements
can be obtained immediately with one more Fourier transform:

V0k′′ =
p−1∑
i ′′=0

ωi ′′k′′
p−1∑
i ′=0

vi ′i ′′, k′′ = 0, . . . , p − 1.

419 12.8 The Nussbaumer–Quandalle permutation algorithm

Fourier transform
1 1

,0 ,
0 ' 0

 0, , 1
p p

ik
k i i

i i
V v k p

Polynomial transform
1

,
0
1

0

() 0, , 1

))((mod)()(

p
i

i i i
i
p

ik
k i

i

v x v x i p

xx xvxV

 Fourier transformsp
2

1,1, ,,
0

p
i k pkk ik k

i
V V

(Note: 0, 1 not needed)k i p

Unscramble

1, (()),
 1, , 1ik k k k k

V V k p

Enter

Exit

,

,

,

,

Figure 12.14 The Nussbaumer–Quandalle permutation algorithm

Thus there is a total of p + 1 one-dimensional Fourier transforms of blocklength
p. Figure 12.14 summarizes the algorithm for a prime blocklength. The last step
unscrambles the data by using the inverse of k′′ modulo p.

There is one more simplification. Most of the Fourier transforms have some missing
coefficients, so their algorithm can be simplified by puncturing, that is, by dropping
those input terms that are known to be zero and those output terms that are not wanted.
In Figure 12.14 the major step computes p-point Fourier transforms of vectors only of
length p − 1 because the high-order coefficient of the vector is always zero. Further,
only p − 1 output values are needed; the low-order coefficient of the transform is dis-
carded. These one-dimensional Fourier transforms can be computed by the punctured
FFT algorithms, given in Table 12.9.

420 Fast algorithms and multidimensional transforms

Table 12.9 Performance of some punctured transform algorithms

Punctured Fourier transform

Vk =
pm−1(p−1)−1∑

i=0
ωikvi k �= 0 (mod p)

where ωn = 1, n = pm

Normal Winograd FFT Punctured Winograd FFT

Number∗ of Number∗ of
multiplications multiplications

Blocklength Number of Number∗ of
n Total Nontrivial additions Total Nontrivial additions

2 2 0 2
3 3 2 6 2 2 4
4 4 0 8 2 0 2
5 6 5 17 5 5 15
7 9 8 36 8 8 34
8 8 2 26 4 2 10
9 11 10 44 8 8 28

16 18 10 74 10 8 32

∗ Double for complex input.

As an example of the Nussbaumer–Quandalle FFT, we construct a three by three
two-dimensional FFT algorithm. The first piece is the easiest to write down:V00

V01

V11

 =

1 1 1
1 ω ω2

1 ω2 ω

v00 + v10 + v20

v01 + v11 + v21

v02 + v12 + v22

 .

Next, we note that the appropriate cyclotomic polynomial is

�(x) = x2 + x + 1 = (x3 − 1)/(x − 1)

and

v0(x) = v20x
2 + v10x + v00,

v1(x) = v21x
2 + v11x + v01,

v2(x) = v22x
2 + v12x + v02.

The polynomial transform is computed modulo x2 + x + 1 on polynomials of degree
one. We replace these polynomials by their residues modulo �(x):

v0(x) = (v10 − v20)x + (v00 − v20),

v1(x) = (v11 − v21)x + (v01 − v21),

v2(x) = (v12 − v22)x + (v02 − v22),

421 12.8 The Nussbaumer–Quandalle permutation algorithm

although it would do no harm to defer the modulo �(x) reduction. The polynomial
transforms areV ′

0(x)
V ′

1(x)
V ′

2(x)

 =

1 1 1
1 x x2

1 x2 x

v0(x)

v1(x)
v2(x)

 (mod �(x)),

which can be written out as follows:

V ′
00

V ′
10

V ′
01

V ′
11

V ′
02

V ′
12

=

1 0 1 0 1 0
0 1 0 1 0 1
1 0 0 −1 −1 1
0 1 1 −1 −1 0
1 0 −1 1 0 −1
0 1 −1 0 1 −1

v00 − v20

v10 − v20

v01 − v21

v11 − v21

v02 − v22

v12 − v22

.

The next step consists of the punctured FFT algorithms. Rather than the complete
Fourier transforms of the formV ′′

0k

V ′′
1k

V ′′
2k

 =

1 1 1
1 ω ω2

1 ω2 ω

V ′

0k

V ′
1k

0

 ,

we need to compute only the punctured Fourier transforms:[
V ′′

1k

V ′′
2k

]
=

[
1 ω

1 ω2

][
V ′

0k

V ′
1k

]
for k = 0, 1, 2. Put together, these become

V ′′
10

V ′′
20

V ′′
11

V ′′
21

V ′′
12

V ′′
22

=

1 ω 0 0 0 0
1 ω2 0 0 0 0
0 0 1 ω 0 0
0 0 1 ω2 0 0
0 0 0 0 1 ω

0 0 0 0 1 ω2

V ′
00

V ′
10

V ′
01

V ′
11

V ′
02

V ′
12

.

Next, we have the unscrambling:

V10

V20

V11

V21

V12

V22

=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

v′′
10

v′′
20

v′′
11

v′′
21

v′′
12

v′′
22

.

Finally, all of the pieces are put together. The final algorithm is shown in Figure 12.15.

422 Fast algorithms and multidimensional transforms

0,0
2

1,0
2

2,0

0,1
2

1,1

2,1
2

0,2

1,2

2,2

1 1 1
1 0 0 0 0 0 0 0 0

10 0 0 1 0 0 0 0 0
10 0 0 0 0 0 1 0 0

10 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 0

V

V

V

V

V

V

V

V

V 2

0,0

1,0

2,0

0,1

1,1

2,1

0,2

1,2

2,

1

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 1 1 0 1 1 0 1
0 1 1 0 1 1 0 1 1
1 0 1 0 1 1 1 1 0
0 1 1 1 1 0 1 0 1
1 0 1 1 1 0 0 1 1
0 1 1 1 0 1 1 1 0

v

v

v

v

v

v

v

v

v 2

Figure 12.15 A three by three Nussbaumer–Quandalle FFT

Blocklength a power of an odd prime To illustrate the technique, it is enough to treat
only the case in which the blocklength is the square of a prime. The construction is
essentially the same as before, but it is more complicated because first we must pull
away all troublesome indices for special handling. The polynomial notation is a helpful
aid in doing this. For example, the polynomial factorization

xp2 − 1 = (x − 1)(xp−1 + xp−2 + · · · + x + 1)

(xp(p−1) + xp(p−2) + · · · + xp + 1)

= �1(x)�p(x)�p2 (x)

must be a factorization into cyclotomic polynomials by Theorem 9.5.3 because the only
factors of p2 are 1, p, and p2. The indices k are divided into three sets, corresponding
to the three sets of conjugates into which the roots of unity ωk are divided by their
cyclotomic polynomials. Theorem 12.8.1 can be applied for the indices of the set of
conjugates that are zeros of �p2 (x). This requires one polynomial transform of p2

terms modulo �p2 (x) and p2 punctured Fourier transforms of length p2.
To complete the computation of Vk′k′′ , we need the elements with k′′ equal to a

multiple of p. These elements can be written

Vk′,�p =
p2−1∑
i ′=0

ωi ′k′
p2−1∑
i ′′=0

ωi ′′�pvi ′i ′′,
k′ = 0, . . . , p2 − 1,

� = 0, . . . , p − 1,

423 Problems

where ω is an element of order p2. The inner sum can be collapsed to a p-point Fourier
transform because the exponent in that term is a multiple of p. Let γ = ωp. Then γ is
an element of order p. Let

v′
i ′r =

p−1∑
�=0

vi ′,r+�p,
i ′ = 0, . . . , p2 − 1,

r = 0, . . . , p − 1,

and let V ′
k′� = Vk′,�p. Then

V ′
k� =

p2−1∑
i ′=0

ωi ′k′
p−1∑
r=0

γ r�v′
i ′r ,

k′ = 0, . . . , p2 − 1,

� = 0, . . . , p − 1.

Now interchange the order of summation and apply Theorem 12.8.1 again. This requires
another polynomial transform modulo �p2 (x) of p terms and p more punctured Fourier
transforms. There will still remain a p by p two-dimensional Fourier transform, which
can be computed as before.

There is a total of p2 + p one-dimensional Fourier transforms of blocklength p2

and p + 1 one-dimensional Fourier transforms of blocklength p. Except for a single
Fourier transform of length p, all of these are punctured transforms.

Blocklength a power of two The construction for the case with blocklength n equal
to 2m is essentially the same as before, yet different enough to require individual
attention. The odd integers less than 2m are coprime to 2m, so Theorem 12.8.1 applies.
We can compute Vk′k′′ for k′ odd and k′′ = 0, . . . , n − 1 with a polynomial transform
modulo xn/2 + 1 of blocklength n, and n Fourier transforms of blocklength n = 2m.
The polynomial transform can be organized in the form of a radix-two Cooley–Tukey
FFT because the blocklength is a power of two. The number of additions will be
proportional to n log2 n. The n Fourier transforms are all punctured Fourier transforms
that have input components with even indices equal to zero.

We now have described the computation for half of the components of Vk′k′′ , those
components with k′ odd and k′′ = 0, . . . , n − 1. We next interchange the roles of k′

and k′′ to compute the components with k′′ odd and k′ even. Only points with k′ even
need to be computed because we have already computed the others. To compute these
points requires another polynomial transform and n/2 more Fourier transforms.

Finally, we need to compute those components of Vk′k′′ with k′ and k′′ both even.
But this is just a 2m−1 by 2m−1 Fourier transform and can be treated the same way as
the 2m by 2m Fourier transform.

Problems for Chapter 12

12.1 Prepare a table of the number of multiplications and additions used by a two-
dimensional Fourier transform, computed by using various one-dimensional
Fourier transforms along the rows, then along the columns.

424 Fast algorithms and multidimensional transforms

12.2 Determine the number of additions used by the radix-two and the radix-four
two-dimensional Cooley–Tukey FFT algorithms discussed in the text.

12.3 Let A(n) and M(n) denote the number of additions and multiplications used
by selected Winograd FFT algorithms of blocklength n.
a Prove that to nest two such algorithms, the blocklength designations n′ and

n′′ should be assigned so that

[M(n′) − n′]/A(n′) ≥ [M(n′′) − n′′]/A(n′′)

in order to minimize the number of additions. This ratio of “excess multi-
plications” to additions specifies the order in which algorithms should be
nested.

b Give a similar analysis for preadditions and for postadditions treated sepa-
rately.

12.4 a Given the two-point and five-point Winograd small FFT algorithms

[
V0

V1

]
=

[
1 0
0 1

][
1 0
0 1

][
1 1
1 −1

][
v0

v1

]
,

V0

V1

V2

V3

V4

 =

1 0 0 0 0 0
1 1 1 1 −1 0
1 1 −1 1 0 1
1 1 −1 −1 0 −1
1 1 1 −1 1 0

1
−1.25

.559
j.951

j.1538
−j.363

•

1 1 1 1 1
0 1 1 1 1
0 1 −1 −1 1
0 1 −1 1 −1
0 0 −1 1 0
0 1 0 0 −1

v0

v1

v2

v3

v4

 ,

construct a ten-point Winograd large FFT algorithm.
b How many real multiplications are there?
c How many real multiplications are there if the two-point and five-point

transforms are combined by using the Good–Thomas algorithm?
d Suppose the ten-point FFT algorithm is used with the Cooley–Tukey algo-

rithm to construct a 1000-point FFT. How many real multiplications are
there? How does this compare with a 1024-point radix-two Cooley–Tukey
FFT?

425 Notes

e Suppose that we use instead the two-point algorithm[
V0

V1

]
=

[
1 1
1 −1

][
1 0
0 1

][
1 0
0 1

][
v0

v1

]
.

Is there an advantage or disadvantage?
12.5 The Winograd large FFT algorithm can be used to compute Fourier trans-

forms of blocklengths 72, 315, and 5040. Find the number of additions and
multiplications used for each of these cases.

12.6 Combine the Cooley–Tukey FFT with the Nussbaumer–Quandalle permutation
algorithm to give a 256 by 256 two-dimensional FFT. How many multiplica-
tions and additions are used?

12.7 Sketch the derivation of a 1040-point FFT based on a three-dimensional cyclic
convolution. How many multiplications are required?

12.8 A 63 by 63 two-dimensional FFT can be constructed in many ways. Find the
number of multiplications used by each of the following procedures:
a By nesting a 63-point FFT with a 63-point FFT. (What are some of the

options here?)
b By nesting a seven by seven FFT with a nine by nine FFT.
c By using the Nussbaumer–Quandalle splitting algorithm once on the entire

problem to construct a seven by seven by nine by nine four-dimensional
FFT.

12.9 For which values of n does the Nussbaumer–Quandalle permutation algo-
rithm for two-dimensional transforms offer no advantage over nesting of one-
dimensional algorithms? Does the conclusion change for three-dimensional
transforms (if the blocklength is a prime)?

12.10 Give a splitting structure for a five by five Fourier transform that uses 230
additions and for one that uses 236 additions.

12.11 a Prove that the two-dimensional Rader polynomial g(x, y) is a product of a
polynomial in x and a polynomial in y.

b State and prove a version of Theorem 3.8.2 for two-dimensional Fourier
transforms.

12.12 Construct the five by five Nussbaumer–Quandalle FFT.
12.13 Starting with the fast algorithms for a four-point Fourier transform and for a

three by three two-dimensional Fourier transform given in this book, construct
a twelve by three two-dimensional FFT.

Notes for Chapter 12

At the simplest level, a two-dimensional Fourier transform consists of two independent
Fourier transforms operating sequentially along the two axes of the array. Hence,

426 Fast algorithms and multidimensional transforms

early on, fast algorithms for the one-dimensional case were readily applied to the
two-dimensional case. Algorithms that were intrinsically two-dimensional came later.
The two-dimensional Cooley–Tukey decimation was first proposed by Rivard (1977),
and expanded by Harris, McClellan, Chan, and Schuessler (1977). Mersereau and
Speake (1981) gave a slick unification of the various two-dimensional Cooley–Tukey
FFT algorithms.

Winograd (1976) proposed a way to bind his small one-dimensional algorithms
together by his nesting technique to make a more efficient package. His interest was
in two-dimensional problems formed artificially as a way to compute one-dimensional
Fourier transforms, but the same technique also applies to two-dimensional Fourier
transforms that arise naturally. The use of Winograd’s nesting for computing one-
dimensional Fourier transforms was further discussed by Kolba and Parks (1977)
and by Silverman (1977). Methods for developing a sequence of FFT algorithms
intermediate between the Good–Thomas FFT and the Winograd FFT were discussed
by Johnson and Burrus (1983). Nussbaumer and Quandalle (1979) gave a method of
using Nussbaumer’s polynomial transforms to compute Fourier transforms. Another
development of a two-dimensional transform algorithm using permutations – in this
case using the cyclic structure in a Galois extension field – is due to Auslander,
Feig, and Winograd (1983). Their algorithm has nearly the same performance as the
Nussbaumer–Quandalle FFT.

Appendix A

A collection of cyclic convolution algorithms

Cyclic convolution algorithms over the field of reals are given for n = 2, 3, 4, 5, 7, 8,
and 9. The algorithms are in the form

s = CG Ad.

The matrix G is a diagonal matrix, and the diagonal elements are given as the elements
of the vector G = Bd. The matrices A and C are given in full. Using the notation

D = Ad,

S = G D,

s = C S,

a sequence of additions that will multiply by matrix A or C is given as well.

Two-point cyclic convolution; two real multiplications, four real additions:

A =
[

1 1
1 −1

]
, C =

[
1 1
1 −1

]
,

[
G0

G1

]
= 1

2

[
1 1
1 −1

][
g0

g1

]
,

D0 = d0 + d1, s0 = S0 + S1,

D1 = d0 − d1, s1 = S0 − S1.

Three-point cyclic convolution; four real multiplications, 11 real additions:

A =

1 1 1
1 0 −1
0 1 −1
1 1 −2

 , C =

1 1 0 −1
1 −1 −1 2
1 0 1 −1

 ,

G0

G1

G2

G3

 = 1

3

1 1 1
3 0 −3
0 3 −3
1 1 −2

g0

g1

g2

 ,

427

428 A collection of cyclic convolution algorithms

t0 = d0 + d1,

D0 = t0 + d2,

D1 = d0 − d2,

D2 = d1 − d2,

D3 = d1 + d2,

T0 = S1 − S3,

T1 = S2 − S3,

s0 = S0 + T0,

s1 = S0 − T0 − T1,

s2 = S0 + T1.

Four-point cyclic convolution; five real multiplications, five real additions:

A =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 0 −1 0
0 1 0 −1

 , C =

1 1 1 0 −1
1 −1 1 1 0
1 1 −1 0 1
1 −1 −1 −1 0

 ,

G0

G1

G2

G3

G4

 = 1

4

1 1 1 1
1 −1 1 −1
2 0 −2 0

−2 2 2 −2
2 2 −2 −2

g0

g1

g2

g3

 ,

t0 = d0 + d2,

t1 = d1 + d3,

D0 = t0 + t1,

D1 = t0 − t1,

D3 = d0 − d2,

D4 = d1 − d3,

D2 = D3 + D4,

T0 = S0 + S1,

T1 = S0 − S1,

T2 = S2 − S4,

T3 = S2 + S3,

s0 = T0 + T2,

s1 = T1 + T3,

s2 = T0 − T2,

s3 = T1 − T3.

Five-point cyclic convolution; ten real multiplications, 31 real additions:

A =

1 0 0 0 −1
0 1 0 0 −1
1 1 0 0 −2
0 0 1 0 −1
0 0 0 1 −1
0 0 1 1 −2
1 0 −1 0 0
0 1 0 −1 0
1 1 −1 −1 0
1 1 1 1 1

, C =

1 0 1 0 0 0 −1 0 −1 1

−1 −1 −2 −1 −1 −2 0 0 0 1
0 0 0 0 1 1 0 1 1 1
0 0 0 1 0 1 1 0 1 1
0 1 1 0 0 0 0 −1 −1 1

,

429 A collection of cyclic convolution algorithms

G0

G1

G2

G3

G4

G5

G6

G7

G8

G9

= 1

5

5 0 −5 5 −5
0 5 −5 5 −5

−2 −2 3 −2 3
−5 5 −5 5 0
−5 5 −5 0 5

3 −2 3 −2 −2
0 0 −5 5 0
0 5 −5 0 0

−1 −1 4 −1 −1
1 1 1 1 1

g0

g1

g2

g3

g4

 ,

D0 = d0 − d4,

D1 = d1 − d4,

D2 = D0 + D1,

D3 = d2 − d4,

D4 = d3 − d4,

D5 = D3 + D4,

D6 = D0 − D3,

D7 = D1 − D4,

D8 = D2 − D5,

D9 = d0 + d1 + d2 + d3 + d4,

T0 = S0 + S2,

T1 = S1 + S2,

T2 = S3 + S5,

T3 = S4 + S5,

T4 = S6 + S8,

T5 = S7 + S8,

s0 = T0 − T4 + S9,

s1 = −T0 − T1 − T2 − T3 + S9,

s2 = T3 + T5 + S9,

s3 = T2 + T4 + S9,

s4 = T1 − T5 + S9.

Seven-point cyclic convolution; 16 real multiplications, 70 real additions:

A =

1 0 0 0 0 0 −1
1 1 1 0 0 0 −3
1 −1 1 0 0 0 −1
1 2 4 0 0 0 −7
0 0 1 0 0 0 −1
0 0 0 1 0 0 −1
0 0 0 1 1 1 −3
0 0 0 1 −1 1 −1
0 0 0 1 2 4 −7
0 0 0 0 0 1 −1

−1 0 0 1 0 0 0
−1 −1 −1 1 1 1 0
−1 1 −1 1 −1 1 0
−1 −2 −4 1 2 4 0

0 0 −1 0 0 1 0
1 1 1 1 1 1 1

,

430 A collection of cyclic convolution algorithms

C =

1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1
−1 −3 −1 −7 −1 −1 −3 1 −7 −1 0 0 0 0 0 1

0 0 0 0 0 0 1 1 4 1 0 −1 −1 −4 −1 1
0 0 0 0 0 0 1 −1 2 0 0 −1 1 −2 0 1
0 0 0 0 0 1 1 1 1 0 −1 −1 −1 −1 0 1
0 1 1 4 1 0 0 0 0 0 0 1 1 4 1 1
0 1 −1 2 0 0 0 0 0 0 0 1 −1 2 0 1

,

2 G0

14 G1

6 G2

6 G3

G4

G5

14 G6

6 G7

6 G8

G9

2 G10

14 G11

6 G12

6 G13

G14

7 G15

=

2 1 −2 −1 3 −2 −1
−4 −11 3 10 −11 3 10

0 −1 3 −2 −1 3 −2
0 1 0 −1 1 0 −1
1 −2 −1 3 −1 −1 2

−1 3 −2 −1 2 1 −2
10 −11 3 10 −4 −11 3
−2 −1 3 −2 0 −1 3
−1 1 0 −1 0 1 0

3 −2 −1 2 1 −2 −1
0 1 −2 −1 2 0 0

−2 −9 5 12 −2 −2 −2
0 −1 3 −2 0 0 0
0 1 0 −1 0 0 0
1 −2 −1 2 0 0 0
1 1 1 1 1 1 1

g0

g1

g2

g3

g4

g5

g6

,

t0 = d1 − d6,

t1 = d2 − d6,

t2 = d4 − d6,

t3 = d5 − d6,

t4 = t0 + t1,

t5 = −t0 + t1,

t6 = t2 + t3,

t7 = −d4 + d5,

D0 = d0 − d6,

D1 = D1 + t4,

D2 = D0 + t5,

D3 = D1 + t4 + t4 + t5,

D4 = t1,

D5 = d3 − d6,

D6 = D5 + t6,

D7 = D5 + t7,

D8 = D6 + t6 + t6 + t7,

D9 = t3,

D10 = D5 − D0,

D11 = D6 − D1,

D12 = D7 − D2,

D13 = D8 − D3,

D14 = D9 − D4,

D15 = D11 + 2(d2 + d1 + d0) + d6,

T0 = S0 + S10,

T1 = S1 + S11,

T2 = S2 + S12,

T3 = S3 + S13,

T4 = S4 + S14,

T5 = S5 − S10,

431 A collection of cyclic convolution algorithms

T6 = S6 − S11,

T7 = S7 − S12,

T8 = S8 − S13,

T9 = S9 − S14,

T10 = T1 + T3,

T11 = T10 + T2,

T12 = T0 + T11,

T13 = T10 + T3,

T14 = T13 − T2,

T15 = (T13 + T3 + T3 + T4) + T2,

T16 = −T12 − T13 − (T13 + T3 + T3 + T4),

T17 = T6 + T8,

T18 = T17 + T7,

T19 = T5 + T18,

T20 = T17 + T8,

T21 = T20 − T7,

T22 = (T20 + T8 + T8 + T9) + T7,

T23 = −T19 − T20 − (T20 + T8 + T8 + T9),

s0 = T12 + S15,

s1 = T16 + T23 + S15,

s2 = T22 + S15,

s3 = T21 + S15,

s4 = T19 + S15,

s5 = T15 + S15,

s6 = T14 + S15.

Eight-point cyclic convolution; 14 real multiplications, 46 real additions:

A =

1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1
1 0 −1 0 1 0 −1 0
0 1 0 −1 0 1 0 −1
1 1 1 1 0 0 0 0
1 −1 1 −1 0 0 0 0
0 1 0 1 0 −1 0 −1
1 0 1 0 −1 0 −1 0
1 −1 1 −1 −1 1 −1 1
0 0 1 −1 0 0 −1 1
1 −1 0 0 −1 1 0 0
1 1 −1 −1 1 1 −1 −1

,

C =

0 0 0 1 0 −1 1 1 1 0 1 −1 0 1
0 0 −1 0 1 0 1 −1 0 1 −1 1 0 1
0 1 0 0 0 1 1 1 1 0 1 0 1 −1
1 0 0 0 −1 0 1 −1 0 1 −1 0 −1 −1
0 0 0 1 0 −1 1 1 −1 0 −1 1 0 1
0 0 1 0 1 0 1 −1 0 −1 1 −1 0 1
0 −1 0 0 0 1 1 1 −1 0 −1 0 −1 −1

−1 0 0 0 −1 0 1 −1 0 −1 1 0 1 −1

,

432 A collection of cyclic convolution algorithms

2 G0

2 G1

2 G2

2 G3

4 G4

4 G5

8 G6

8 G7

2 G8

2 G9

2 G10

2 G11

2 G12

2 G13

=

−1 −1 1 1 1 1 −1 −1
−1 1 1 1 1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1
1 1 1 −1 −1 −1 −1 1

−1 1 1 −1 −1 1 1 −1
1 1 −1 −1 1 1 −1 −1
1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 0 0 −1 −1 0 0 1
1 1 0 0 −1 −1 0 0
1 0 0 0 −1 0 0 0
1 0 1 0 −1 0 −1 0

−1 0 1 0 1 0 −1 0
1 0 −1 0 1 0 −1 0

g0

g1

g2

g3

g4

g5

g6

g7

,

t0 = d0 + d4,

t1 = d1 + d5,

t2 = d2 + d6,

t3 = d3 + d7,

t4 = t0 + t2,

t5 = t1 + t3,

D0 = d0 − d4,

D1 = d1 − d5,

D2 = d2 − d6,

D3 = d3 − d7,

D4 = t0 − t2,

D5 = t1 − t3,

D6 = t4 + t5,

D7 = t4 − t5,

D8 = D1 + D3,

D9 = D0 + D2,

D10 = D9 − D8,

D11 = D2 − D3,

D12 = D0 − D1,

D13 = D4 + D5,

T0 = S8 + S10,

T1 = S9 − S10,

T2 = S3 + S11,

T3 = S11 − S2,

T4 = S1 + S12,

T5 = S0 − S12,

T6 = S13 − S5,

T7 = S13 + S4,

T8 = S7 + S6,

T9 = S6 − S7,

T10 = T0 − T2,

T11 = T6 + T8,

T12 = T1 + T3,

T13 = T7 + T9,

T14 = T0 + T4,

T15 = −T6 + T8,

T16 = T1 + T5,

T17 = −T7 + T9,

s0 = T10 + T11,

s1 = T12 + T13,

s2 = T14 + T15,

s3 = T16 + T17,

s4 = −T10 + T11,

s5 = −T12 + T13,

s6 = −T14 + T15,

s7 = −T16 + T17.

433 A collection of cyclic convolution algorithms

Nine-point cyclic convolution; 19 real multiplications, 74 real additions:

A =

1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 −1 −1 −1
1 1 1 0 0 0 −1 −1 −1
1 1 1 −1 −1 −1 0 0 0
0 0 0 1 −1 1 −1 1 −1
1 −1 1 0 0 0 −1 1 −1
1 −1 1 −1 1 −1 0 0 0
0 0 0 1 0 0 −1 0 0
1 0 0 −1 0 0 0 0 0
1 0 0 0 0 0 −1 0 0
0 0 0 0 0 1 0 0 −1
0 0 1 0 0 −1 0 0 0
0 0 1 0 0 0 0 0 −1
1 0 −1 0 −1 1 −1 1 0
1 −1 0 −1 0 1 0 1 −1
0 1 −1 1 −1 0 −1 0 1
1 0 −1 1 0 −1 1 0 −1
0 1 −1 0 1 −1 0 1 −1
1 1 −2 1 1 −2 1 1 −2

,

C =

1 1 0 1 1 0 1 0 −1 1 0 0 0 1 −1 0 1 0 −1
1 0 1 −1 0 1 −1 0 0 0 0 −1 1 0 1 1 −1 −1 2
1 0 1 −1 0 −1 1 0 0 0 0 0 0 1 −1 0 0 1 −1
1 0 1 −1 0 1 −1 −1 0 −1 0 0 0 −1 0 −1 1 0 −1
1 −1 −1 0 −1 −1 0 0 0 0 −1 0 −1 1 −1 0 −1 −1 2
1 −1 −1 0 1 1 0 0 0 0 0 0 0 −1 0 −1 0 1 −1
1 −1 −1 0 −1 −1 0 1 1 0 0 0 0 0 1 1 1 0 −1
1 1 0 1 1 0 1 0 0 0 1 1 0 −1 0 −1 −1 −1 2
1 1 0 1 −1 0 −1 0 0 0 0 0 0 0 1 1 0 1 −1

,

9 G0
6 G1
6 G2
6 G3
6 G4
6 G5
6 G6
3 G7
3 G8
3 G9
3 G10
3 G11
3 G12
3 G13
3 G14
3 G15
3 G16
3 G17
3 G18

=

1 1 1 1 1 1 1 1 1
−1 −2 −1 1 1 0 0 1 1

0 1 1 −1 −2 −1 1 1 0
−1 −1 0 0 −1 −1 1 2 1

1 −2 1 1 1 −2 −2 1 1
−2 1 1 1 −2 1 1 1 −2
−1 −1 2 2 −1 −1 −1 2 −1
−4 −1 2 2 −1 −1 2 2 −1
−2 1 1 −2 −2 1 4 1 −2

2 2 −1 −4 −1 2 2 −1 −1
−1 2 2 −1 −1 2 2 −1 −4

1 1 −2 −2 1 4 1 −2 −2
2 −1 −4 −1 2 2 −1 −1 2

−1 0 1 1 0 −1 0 0 0
0 0 0 1 0 −1 −1 0 1
1 0 −1 0 0 0 −1 0 1
1 0 −1 1 0 −1 1 0 −1
0 1 −1 0 1 −1 0 1 −1
1 1 −2 1 1 −2 1 1 −2

g0

g1

g2

g3

g4

g5

g6

g7

g8

,

434 A collection of cyclic convolution algorithms

t0 = d0 − d6,

t1 = d1 − d7,

t2 = d2 − d8,

t3 = d3 − d6,

t4 = d4 − d7,

t5 = d5 − d8,

t6 = d0 + d3 + d6,

t7 = d1 + d4 + d7,

t8 = d2 + d5 + d8,

t9 = t0 + t2,

t10 = t3 + t5,

D0 = t6 + t7 + t8,

D1 = t10 + t4,

D2 − t9 + t1,

D3 = D2 − D1,

D4 = t10 − t4,

D5 = t9 − t1,

D6 = D5 − D4,

D7 = t3,

D8 = t0 − t3,

D9 = t0,

D10 = t5,

D11 = t2 − t5,

D12 = t2,

D13 = −D11 + t0 − t4,

D14 = D8 + t5 − t1,

D15 = −D14 + D13,

D16 = t6 − t8,

D17 = t7 − t8,

D18 = D16 + D17,

T0 = S1 + S2,

T1 = S4 + S5,

T2 = S14 + S15,

T3 = T0 + T1,

T4 = S1 + S3,

T5 = S4 + S6,

T6 = S13 + S15,

T7 = −T3 + S7,

T8 = T4 + T5,

T9 = S10 − T6,

T10 = S8 + T2 + T7,

T11 = T8 + S11 + T9,

T12 = T4 − T5 + T2,

T13 = T7 + T8 + S9 + T6,

T14 + T3 + S12 + T9 + T2,

T15 = T0 − T1 + T6,

T16 = S16 − S18,

T17 = S17 − S18,

T18 = S0 + T16,

T19 = S0 − T16 − T17,

T20 = S0 + T17,

s0 = T13 − T10 + T18,

s1 = T14 − T11 + T19,

s2 = T15 − T12 + T20,

s3 = −T13 + T18,

s4 = −T14 + T19,

s5 = −T15 + T20,

s6 = T10 + T18,

s7 = T11 + T19,

s8 = T12 + T20.

Appendix B

A collection of Winograd small FFT
algorithms

Winograd small FFT algorithms are given for n = 2, 3, 4, 5, 7, 8, 9, and 16. The
algorithms are in the form

V = C B Av.

The matrix B is a diagonal matrix, and only the diagonal elements are given. The
matrices A and C are given in full. In addition, a sequence of additions that will multiply
by matrix A or C is given, using the notation

a = Av,

b = Ba,

V = Cb.

The algorithms have been presented with all appearances of j moved from the diagonal
matrix and absorbed into the matrix of postadditions C . Trivial additions (additions of
a purely real number to a purely imaginary number) are labeled as such but are included
in the count of additions. They are not trivial if the input data is complex. The number
of multiplications is stated as the number of nontrivial real multiplications followed,
in parentheses, by the total number of real multiplications.

Two-point Fourier transform; 0(2) real multiplications, two real additions

A =
[

1 1
1 −1

]
, C =

[
1 0
0 1

]
,

a0 = v0 + v1, B0 = 1, V0 = b0,

a1 = v0 − v1, B1 = 1, V1 = b1.

435

436 A collection of Winograd small FFT algorithms

Three-point Fourier transform; two(three) real multiplications, six real additions:

A =

1 1 1
0 1 1
0 1 −1

 , C =

1 0 0
1 1 −j
1 1 j

 ,

a2 = v1 + v2,

a1 = v1 − v2,

a0 = v0 + a2,

θ = 2π/3,

B0 = 1,

B1 = cos θ − 1,

B2 = sin θ,

V0 = b0,

T0 = b0 + b1,

V1 = T0 − jb2,

V2 = T0 + jb2.

Four-point Fourier transform; zero(four) real multiplications, eight real additions:

A =

1 1 1 1
1 −1 1 −1
1 0 −1 0
0 1 0 −1

 , C =

1 0 0 0
0 0 1 −j
0 1 0 0
0 0 1 j

 ,

a2 = v0 − v2,

a3 = v1 − v3,

t0 = v0 + v2,

t1 = v1 + v3,

a0 = t0 + t1,

a1 = t0 − t1,

B0 = 1,

B1 = 1,

B2 = 1,

B3 = 1,

V0 = b0,

V1 = b2 − jb3,

V2 = b1,

V3 = b2 + jb3.

Five-point Fourier transform; five(six) real multiplications, 17 real additions:

A =

1 1 1 1 1
0 1 1 1 1
0 1 −1 −1 1
0 1 −1 1 −1
0 0 −1 1 0
0 1 0 0 −1

, C =

1 0 0 0 0 0
1 1 1 −j j 0
1 1 −1 −j 0 −j
1 1 −1 j 0 j
1 1 1 j −j 0

 ,

t0 = v1 + v4,

t1 = v2 + v3,

a4 = v3 − v2,

a5 = v1 − v4,

a1 = t0 + t1,

a2 = t0 − t1,

a3 = a4 + a5,

a0 = v0 + a1,

θ = 2π/5,

B0 = 1,

B1 = 1
2 (cos θ + cos 2θ) − 1,

B2 = 1
2 (cos θ − cos 2θ),

B3 = sin θ,

B4 = sin θ + sin 2θ,

B5 = sin 2θ − sin θ,

V0 = b0,

T0 = b0 + b1,

T1 = b3 − b4,

T2 = b3 + b5,

T3 = T0 + b2,

T4 = T0 − b2,

V1 = T3 − jT1,

V2 = T4 − jT2,

V3 = T3 + jT1,

V4 = T4 + jT2.

437 A collection of Winograd small FFT algorithms

Seven-point Fourier transform; eight(nine) real multiplications, 36 real additions:

A =

1 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 0 −1 −1 0 1
0 0 −1 1 1 −1 0
0 −1 1 0 0 1 −1
0 1 1 −1 1 −1 −1
0 1 0 1 −1 0 −1
0 0 −1 −1 1 1 0
0 −1 1 0 0 −1 1

,

C =

1 0 0 0 0 0 0 0 0
1 1 1 1 0 −j −j −j 0
1 1 −1 0 −1 −j j 0 j
1 1 0 −1 1 j 0 −j j
1 1 0 −1 1 −j 0 j −j
1 1 −1 0 −1 j −j 0 −j
1 1 1 1 0 j j j 0

,

t0 = v1 + v6,

t1 = v1 − v6,

t2 = v2 + v5,

t3 = v2 − v5,

t4 = v4 + v3,

t5 = v4 − v3,

t6 = t2 + t0,

a4 = t2 − t0,

a2 = t0 − t4,

a3 = t4 − t2,

t7 = t5 + t3,

a7 = t5 − t3,

a6 = t1 − t5,

a8 = t3 − t1,

a1 = t6 + t4,

a5 = t7 + t1,

a0 = v0 + a1,

θ = 2π/7,

B0 = 1,

B1 = 1
3 (cos θ + cos 2θ + cos 3θ) − 1,

B2 = 1
3 (2 cos θ − cos 2θ − cos 3θ),

B3 = 1
3 (cos θ − 2 cos 2θ + cos 3θ),

B4 = 1
3 (cos θ + cos 2θ − 2 cos 3θ),

B5 = 1
3 (sin θ + sin 2θ − sin 3θ),

B6 = 1
3 (2 sin θ − sin 2θ + sin 3θ),

B7 = 1
3 (sin θ − 2 sin 2θ − sin 3θ),

B8 = 1
3 (sin θ + sin 2θ + 2 sin 3θ),

T0 = b0 + b1,

T1 = b2 + b3,

T2 = b4 − b3,

T3 = −b2 − b4,

T4 = b6 + b7,

T5 = b8 − b7,

T6 = −b8 − b6,

T7 = T0 + T1,

T8 = T0 + T2,

T9 = T0 + T3,

T10 = T4 + b5,

T11 = T5 + b5,

T12 = T6 + b5,

V0 = b0,

V1 = T7 − jT10,

V2 = T9 − jT12,

V3 = T8 + jT11,

V4 = T8 − jT11,

V5 = T9 + jT12,

V6 = T7 + jT10.

438 A collection of Winograd small FFT algorithms

Eight-point Fourier transform; two(eight) real multiplications, 26 real additions:

A =

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 0 −1 0 1 0 −1 0
1 0 0 0 −1 0 0 0
0 1 0 −1 0 −1 0 1
0 1 0 −1 0 1 0 −1
0 0 1 0 0 0 −1 0
0 1 0 1 0 −1 0 −1

,

C =

1 0 0 0 0 0 0 0
0 0 0 1 1 0 −j −j
0 0 1 0 0 −j 0 0
0 0 0 1 −1 0 j −j
0 1 0 0 0 0 0 0
0 0 0 1 −1 0 −j j
0 0 1 0 0 j 0 0
0 0 0 1 1 0 j j

,

t0 = v0 + v4,

a3 = v0 − v4,

t1 = v1 + v5,

t2 = v1 − v5,

t3 = v2 + v6,

a6 = v2 − v6,

t4 = v3 + v7,

t5 = v3 − v7,

t6 = t0 + t3,

a2 = t0 − t3,

t7 = t1 + t4,

a5 = t1 − t4,

a4 = t2 − t5,

a7 = t2 + t5,

a0 = t6 + t7,

a1 = t6 − t7,

θ = 2π/8,

B0 = 1,

B1 = 1,

B2 = 1,

B3 = 1,

B4 = cos θ,

B5 = 1,

B6 = 1,

B7 = sin θ,

V0 = b0,

V4 = b1,

V2 = b2 − jb5,

V6 = b2 + jb5,

T0 = b3 + b4,

T1 = b3 − b4,

T2 = b6 + b7,

T3 = b6 − b7,

V1 = T0 − jT2,

V5 = T0 + jT2,

V7 = T1 − jT3,

V3 = T1 + jT3.

439 A collection of Winograd small FFT algorithms

Nine-point Fourier transform; 10(11) real multiplications, 44 real additions:

A =

1 1 1 1 1 1 1 1 1
0 0 0 1 0 0 1 0 0
0 1 1 0 1 1 0 1 1
0 1 −1 0 0 0 0 −1 1
0 0 1 0 −1 −1 0 1 0
0 0 0 0 1 1 0 0 1
0 0 −1 0 2 0 0 1 0
0 0 0 0 1 −1 0 0 0
0 −1 −1 0 0 0 0 1 1
0 0 −1 0 −1 1 0 1 0
0 1 0 0 −1 1 0 0 −1

,

C =

1 0 0 0 0 0 0 0 0 0 0
1 0 −1 1 1 1 0 0 j j j
1 0 −1 1 0 −1 j 0 −j −j 0
1 −1 0 0 0 0 0 j 0 0 0
1 0 −1 1 −1 0 −j 0 j j −j
1 0 −1 1 −1 0 −j 0 −j −j j
1 −1 0 0 0 0 0 −j 0 0 0
1 0 −1 1 0 −1 j 0 j j 0
1 0 −1 1 1 1 0 0 −j −j −j

,

t0 = v1 + v8,

t1 = v2 + v7,

a1 = v3 + v6,

t2 = v4 + v5,

a2 = t0 + t1 + t2,

t3 = v1 − v8,

t4 = v7 − v2,

t5 = v3 − v6,

a7 = v4 − v5,

a6 = t3 + t4 + a7,

a3 = t0 − t1,

a4 = t1 − t2,

a8 = t4 − t3,

a9 = t4 − a7,

a0 = v0 + a1 + a2,

a5 = −a4 − a3,

a10 = −a8 + a9,

θ = 2π/9,

B0 = 1,

B1 = 3
2 ,

B2 = − 1
2 ,

B3 = 1
3 (2 cos θ − cos 2θ − cos 4θ),

B4 = 1
3 (cos θ + cos 2θ − 2 cos 4θ),

B5 = 1
3 (cos θ − 2 cos 2θ + cos 4θ),

B6 = sin 3θ,

B7 = sin 3θ,

B8 = − sin θ,

B9 = − sin 4θ,

B10 = − sin 2θ,

T0 = −b3 − b4,

T1 = b5 − b4,

T2 = −b8 − b9,

T3 = b9 − b10,

T4 = b0 + b2 + b2,

T5 = T4 − b1,

T6 = T4 + b2,

T7 = T5 − T0,

T8 = T1 + T5,

T9 = T0 − T1 + T5,

T10 = b7 − T2,

T11 = b7 − T3,

T12 = b7 + T2 + T3,

V0 = b0,

V1 = T7 + jT10,

V2 = T8 − jT11,

V3 = T6 + jb6,

V4 = T9 + jT12,

V5 = T9 − jT12,

V6 = T6 − jb6,

V7 = T8 + jT11,

V8 = T7 − jT10.

440 A collection of Winograd small FFT algorithms

Sixteen-point Fourier transform; 10(18) real multiplications, 74 real additions:

A =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

1 0 −1 0 1 0 −1 0 1 0 −1 0 1 0 −1 0

1 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0 0

1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 1 0 −1 0 −1 0 1 0 1 0 −1 0 −1 0 1

0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0

0 1 0 −1 0 1 0 −1 0 −1 0 1 0 −1 0 1

0 1 0 0 0 0 0 −1 0 −1 0 0 0 0 0 1

0 0 0 −1 0 1 0 0 0 0 0 1 0 −1 0 0

0 −1 0 1 0 −1 0 1 0 −1 0 1 0 −1 0 1

0 0 −1 0 0 0 1 0 0 0 −1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0

0 1 0 1 0 −1 0 −1 0 1 0 1 0 −1 0 −1

0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0

0 1 0 1 0 1 0 1 0 −1 0 −1 0 −1 0 −1

0 1 0 0 0 0 0 1 0 −1 0 0 0 0 0 −1

0 0 0 1 0 1 0 0 0 0 0 −1 0 −1 0 0

,

C =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 −1 1 0 0 0 j 0 j j j 0

0 0 0 1 0 1 0 0 0 0 0 j 0 j 0 0 0 0

0 0 0 0 1 0 −1 1 0 −1 0 0 −j 0 j j 0 −j

0 0 1 0 0 0 0 0 0 0 j 0 0 0 0 0 0 0

0 0 0 0 1 0 −1 −1 0 1 0 0 j 0 −j j 0 −j

0 0 0 1 0 −1 0 0 0 0 0 −j 0 j 0 0 0 0

0 0 0 0 1 0 1 1 −1 0 0 0 −j 0 −j j j 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 1 −1 0 0 0 j 0 j −j −j 0

0 0 0 1 0 −1 0 0 0 0 0 j 0 −j 0 0 0 0

0 0 0 0 1 0 −1 −1 0 1 0 0 −j 0 j −j 0 j

0 0 1 0 0 0 0 0 0 0 −j 0 0 0 0 0 0 0

0 0 0 0 1 0 −1 1 0 −1 0 0 j 0 −j −j 0 j

0 0 0 1 0 1 0 0 0 0 0 −j 0 −j 0 0 0 0

0 0 0 0 1 0 1 −1 1 0 0 0 −j 0 −j −j −j 0

,

441 A collection of Winograd small FFT algorithms

t0 = v0 + v8,

t1 = v4 + v12,

t2 = v2 + v10,

t3 = v2 − v10,

t4 = v6 + v14,

t5 = v6 − v14,

t6 = v1 + v9,

t7 = v1 − v9,

t8 = v3 + v11,

t9 = v3 − v11,

t10 = v5 + v13,

t11 = v5 − v13,

t12 = v7 + v15,

t13 = v7 − v15,

t14 = t0 + t1,

t15 = t2 + t4,

t16 = t14 + t15,

t17 = t6 + t10,

t18 = t6 − t10,

t19 = t8 + t12,

t20 = t8 − t12,

t21 = t17 + t19,

a16 = t7 + t13,

a8 = t7 − t13,

a17 = t11 + t9,

a9 = t11 − t9,

a0 = t16 + t21,

a1 = t16 − t21,

a2 = t14 − t15,

a3 = t0 − t1,

a4 = v0 − v8,

a5 = t18 − t20,

a6 = t3 − t5,

a7 = a8 + a9,

a10 = t19 − t17,

a11 = t4 − t2,

a12 = v12 − v4,

a13 = t18 + t20,

a14 = t3 + t5,

a15 = a16 + a17,

θ = 2π/16,

B0 = 1,

B1 = 1,

B2 = 1,

B3 = 1,

B4 = 1,

B5 = cos 2θ,

B6 = cos 2θ,

B7 = cos 3θ,

B8 = cos θ + cos 3θ,

B9 = − cos θ + cos 3θ,

B10 = 1,

B11 = 1,

B12 = 1,

B13 = − sin 2θ,

B14 = − sin 2θ,

B15 = − sin 3θ,

B16 = − sin θ + sin 3θ,

B17 = − sin θ − sin 3θ,

T0 = b3 + b5,

T1 = b3 − b5,

T2 = b11 + b13,

T3 = b13 − b11,

T4 = b4 + b6,

T5 = b4 − b6,

T6 = b8 − b7,

T7 = b9 − b7,

T8 = T4 + T6,

T9 = T4 − T6,

T10 = T5 + T7,

T11 = T5 − T7,

T12 = b12 + b14,

T13 = b12 − b14,

T14 = b15 + b16,

T15 = b15 − b17,

T16 = T12 + T14,

T17 = T12 − T14,

T18 = T13 + T15,

T19 = T13 − T15,

V0 = b0,

V1 = T8 + jT16,

V2 = T0 + jT2,

V3 = T11 − jT19,

V4 = b2 + jb10,

V5 = T10 + jT18,

V6 = T1 + jT3,

V7 = T9 − jT17,

V8 = b1,

V9 = T9 + jT17,

V10 = T1 − jT3,

V11 = T10 − jT18,

V12 = b2 − jb10,

V13 = T11 + jT19,

V14 = T0 − jT2,

V15 = T8 − jT16.

Bibliography

R. C. Agarwal and C. S. Burrus, Fast Digital Convolution Using Fermat Transforms, Southwest IEEE
Conference Record, Houston, 538–543, 1973.

R. C. Agarwal and C. S. Burrus, Fast Convolution Using Fermat Number Transforms with Applica-
tions to Digital Filtering, IEEE Transaction on Acoustics, Speech, and Signal Processing, ASSP-22,
87–97, 1974a.

R. C. Agarwal and C. S. Burrus, Fast One-Dimensional Digital Convolution by Multidimensional
Techniques, IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-22, 1–10,
1974b.

R. C. Agarwal and C. S. Burrus, Number Theoretic Transforms to Implement Fast Digital Convolution,
Proceedings of the IEEE, 63, 550–560, 1975.

R. C. Agarwal and J. W. Cooley, New Algorithms for Digita1 Convolution, IEEE Transactions on
Acoustics, Speech, and Signal Processing, ASSP-25, 392–410, 1977.

N. Ahmed, T. Natarajan, and K. R. Rao, Discrete Cosine Transform, IEEE Transactions on Computers,
C-23, 90–93, 1974.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Reading, MA, Addison-Wesley, 1974.

B. Arambepola and P. J. W. Rayner, Efficient Transforms for Multidimensional Convolutions, Elec-
tronic Letters, 15, 189–190, 1979.

L. Auslander, E. Feig, and S. Winograd, New Algorithms for the Multidimensional Discrete Fourier
Transform, IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-31, 388–403,
1983.

L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, Optimal Decoding of Linear Codes for Minimizing Symbol
Error Rate, IEEE Transactions on Information Theory, IT-20, 284–287, 1974.

B. Baumslag and B. Chandler, Theory and Problems of Group Theory, Schaum’s Outline Series, New
York, McGraw-Hill, 1968.

E. R. Berlekamp, Algebraic Coding Theory, New York, McGraw-Hill, 1968.
R. Bernardini, G. M. Cortelazzo, and G. A. Mian, A New Technique for Twiddle-Factor Elimination

in Multidimensional FFTs, IEEE Transactions on Signal Processing, SP-42, 2176–2178, 1994.
T. Beth, W. Fumy, and R. Muhlfeld, On Algebraic Discrete Fourier Transforms, Abstracts on the

1982 IEEE International Symposium on Information Theory, Les Arcs, France, 1982.
G. Birkhoff and S. MacLane, A Survey of Modern Algebra, New York, MacMillan, 1941; rev. ed.,

1953.
R. E. Blahut, Fast Convolution of Rational Sequences, Abstracts on the 1983 IEEE International

Symposium on Information Theory, St. Jovite, Quebec, Canada, 1983a.
R. E. Blahut, Theory and Practice of Error Control Codes, Reading, MA, Addison-Wesley,

1983b.

442

443 Bibliography

R. E. Blahut, Algebraic Methods for Signal Processing and Communications Coding, New York,
Springer-Verlag, 1992.

R. E. Blahut, Algebraic Codes for Data Transmission, Cambridge, Cambridge University Press, 2003.
R. E. Blahut and D. E. Waldecker, Half-Angle Sine-Cosine Generator, IBM Technical Disclosure

Bulletin, 13, no. 1, 222–223, 1970.
L. I. Bluestein, A Linear Filtering Approach to the Computation of the Discrete Fourier Transform,

IEEE Transactions on Audio Electroacoustics, AU-18, 451–455, 1970.
R. P. Brent, F. O. Gustavson, and D. Y. Y. Yun, Fast Solution of Toeplitz Systems of Equations and

Computation of Pade Approximants, Journal on Algorithms, 1, 259–295, 1980.
C. S. Burrus and P. W. Eschenbacher, An In-Place, In-Order Prime Factor FFT Algorithm, IEEE

Transactions on Acoustics, Speech, and Signal Processing, ASSP-29, 806–817, 1979.
J. Butler and R. Lowe, Beam-forming Matrix Simplifies Design of Electronically Scanned Antennas,

Electronic Design, 9, 170–173, 1961.
W.-H. Chen, C. H. Smith, and S. C. Fralick, A Fast Computational Algorithm for the Discrete Cosine

Transform, IEEE Transactions on Communications, COM-25, 1004–1009, 1977.
P. R. Chevillat, Transform-Domain Filtering with Number Theoretic Transforms, and Limited Word

Length, IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-26, 284–290, 1978.
P. R. Chevillat and D. J. Costello, Jr., An Analysis of Sequential Decoding for Specific Time-Invariant

Convolutional Codes, IEEE Transactions on Information Theory, IT-24, 443–451, 1978.
J. W. Cooley, P. A. W. Lewis, and P. D. Welch, Historical Notes on the Fourier Transform, IEEE

Transactions on Audio Electroacoustics, AU-15, 76–79, 1967.
J. W. Cooley and J. W. Tukey, An Algorithm for the Machine Computation of Complex Fourier

Series, Mathematics of Computation, 19, 297–301, 1965.
D. Coppersmith and S. Winograd, Matrix Multiplication via Arithmetic Progressions, Journal of

Symbolic Computation, 9, 251–280, 1990.
J. H. Cozzens and L. A. Finkelstein, Computing the Discrete Fourier Transform Using Residue

Number Systems in a Ring of Algebraic Integers, IEEE Transactions on Information Theory,
IT-31, 580–588, 1985.

R. E. Crochiere and L. R. Rabiner, Interpolation and Decimation of Digital Signals – A Tutorial
Review, Proceedings of the IEEE, 69, 330–331, 1981.

B. W. Dickinson, Efficient Solution of Linear Equations with Banded Toeplitz Matrices, IEEE
Transactions on Acoustics, Speech, and Signal Processing, ASSP-27, 421–423, 1979.

B. W. Dickinson, M. Morf, and T. Kailath, A Minimal Realization Algorithm for Matrix Sequences,
IEEE Transactions on Automatic Control, AC-19, 31–38, 1974.

E. DuBois and A. N. Venetsanopoulos, Convolution Using a Conjugate Symmetry Property for the
Generalized Discrete Fourier Transform, IEEE Transactions on Acoustics, Speech, and Signal
Processing, ASSP-26, 165–170, 1978.

J. Durbin, The Fitting of Time-Series Models, Reviews of the International Statistical Institute, 23,
233–244, 1960.

S. R. Dussé and B. S. Kaliski, A Cryptographic Library for the Motorola DSP56000, Advances in
Cryptology, Eurocrypt90, I. B. Damgard, editor, 230–244, New York, Springer-Verlag, 1991.

J. O. Eklundh, A Fast Computer Method for Matrix Transposing, IEEE Transactions on Computers,
C-21, 801–803, 1972.

R. M. Fano, A Heuristic Discussion of Probabilistic Decoding, IEEE Transactions on Information
Theory, IT-11, no. 9, 64–74, 1963.

S. V. Fedorenko, A Method for Computation of the Discrete Fourier Transform over a Finite Field,
Problemy Peredachi Informatsii, 42, 81–93, 2006, English translation: Problems of Information
Transmission, 42, 139–151, 2006.

444 Bibliography

E. Feig and S. Winograd, Fast Algorithms for the Discrete Cosine Transform, IEEE Transactions on
Signal Processing, SP-40, 2174–2193, 1992.

C. M. Fiduccia, Polynomial Evaluation via the Division Algorithm – The Fast Fourier Transform
Revisited, Proceedings of the 4th Annual ACM Symposium on the Theory of Computing, 88–93,
1972.

G. D. Forney, Convolutional Codes III: Sequential Decoding, Information and Control, 25, 267–297,
1974.

J. B. Fraleigh, A First Course in Abstract Algebra, 2nd edition, Reading, MA, Addison-Wesley,
1976.

B. Friedlander, M. Morf, T. Kailath, and L. Ljung, New Inversion Formulas for Matrices Classified
in Terms of Their Distance from Toeplitz Matrices, Linear Algebra and Its Application, 27, 31–60,
1979.

R. G. Gallager, Information Theory and Reliable Communications, New York, John Wiley, 1968.
R. A. Games, Complex Approximations Using Algebraic Integers, IEEE Transactions on Information

Theory, IT-31, 565–579, 1985.
R. A. Games, An Algorithm for Complex Approximations in Z[e2πi/8], IEEE Transactions on

Information Theory, IT-32, 603–607, 1986.
C. F. Gauss, Nachlass: Theoria interpolationis methodo nova tractata, Werke band 3, 265–327.

Göttingen Königliche Gesellschaft der Wissenschaften, 1866.
I. Gertner, A New Efficient Algorithm to Compute the Two-Dimensional Discrete Fourier Transform,

IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-36, 1036–1050, 1988.
G. Goertzel, An Algorithm for the Evaluation of Finite Trigonometric Series, American Mathematics

Monthly, 65, 34–35, 1968.
I. J. Good, The Interaction Algorithm and Practical Fourier Analysis, Journal of the Royal Statistics

Society, B20, 361–375, 1958. Addendum, 22, 372–375, 1960.
I. J. Good, The Relationship between Two Fast Fourier Transforms, IEEE Transactions on Computers,

C-20, 310–317, 1971.
D. Haccoun and M. J. Ferguson, Generalized Stack Algorithms for Decoding Convolutional Codes,

IEEE Transactions on Information Theory, IT-21, 638–651, 1975.
G. H. Hardy and E. M. Wright, The Theory of Numbers, Oxford, Oxford University Press, 1960.
D. B. Harris, J. H. McClellan, D. S. K. Chan, and H. W. Schuessler, Vector Radix Fast Fourier

Transform, Record of the 1977 IEEE International Conference on Acoustics, Speech, and Signal
Processing, 548–551, 1977.

M. T. Heideman, D. H. Johnson, and C. S. Burrus, Gauss and the History of the FFT, IEEE Signal
Processing Magazine, 1, 14–21, 1984.

C. A. R. Hoare, Quicksort, Computer Journal 5, 5, no. 1, 10–16, 1962. (Reprinted in Hoare and
Jones: Essays in Computing Science, New York, Prentice Hall, 1989.)

J. E. Hopcroft and I. Musinski, Duality Applied to the Complexity of Matrix Multiplication and
Other Bilinear Forms, SIAM Journal of Computation, 2, 159–173, 1973.

T. S. Huang, How the Fast Fourier Transform Got Its Name, Computer, 3, 15, 1971.
I. M. Jacobs and E. R. Berlekamp, A Lower Bound to the Distribution of Computations for Sequential

Decoding, IEEE Transactions on Information Theory, IT-13, 167–174, 1967.
F. Jelinek, Probabilistic Information Theory, New York, McGraw-Hill, 1968.
F. Jelinek, A Fast Sequential Decoding Algorithm Using a Stack, IBM Journal of Research and

Development, 13, 675–685, 1969a.
F. Jelinek, An Upper Bound on Moments of Sequential Decoding Effort, IEEE Transactions on

Information Theory, IT-15, 140–149, 1969b.

445 Bibliography

W. K. Jenkins and J. V. Krogmeier, The Design of Dual-Mode Complex Signal Processors Based
on Quadratic Modular Number Codes, IEEE Transactions on Circuits and Systems, CAS-34,
354–364, 1987.

W. K. Jenkins and B. J. Leon, The Use of Residue Number Systems in the Design of Finite Impulse
Response Digital Filters, IEEE Transactions on Circuits and Systems, CAS-24, 191–201, 1977.

R. Johannesson and K. Sh. Zigangirov, Fundamentals of Convolutional Coding, New York, IEEE
Press, 1999.

H. W. Johnson and C. S. Burrus, Large DFT Modules: 11, 13, 17, 19 and 25, Technical Report 8105,
Department of Electrical Engineering, Rice University, Houston, TX, 1981.

H. W. Johnson and C. S. Burrus, The Design of Optimal DFT Algorithms Using Dynamic Program-
ming, IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-31, 378–387, 1983.

S. G. Johnson and M. Frigo, A Modified Split-Radix FFT with Fewer Arithmetic Operations, IEEE
Transactions on Signal Processing, SP-55, 111–119, 2007.

B. S. Kaliski, The Montgomery Inverse and its Applications, IEEE Transactions on Computers,
C-44, 1064–1065, 1995.

D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Reading, MA,
Addison-Wesley, 1968.

D. P. Kolba and T. W. Parks, A Prime Factor FFT Algorithm Using High Speed Convolution, IEEE
Transactions on Acoustics, Speech, and Signal Processing, ASSP-25, 281–294, 1977.

L. M. Leibowitz, A Simplified Binary Arithmetic for the Fermat Number Transform, IEEE
Transactions on Acoustics, Speech, and Signal Processing, ASSP-24, 356–359, 1976.

N. Levinson, The Wiener RMS Error Criterion in Filter Design and Prediction, Journal of
Mathematical Physics, 25, 261–278, 1947.

B. Liu and F. Mintzer, Calculation of Narrow-Band Spectra by Direct Decimation, IEEE Transactions
on Acoustics, Speech, and Signal Processing, ASSP-26, 529–534, 1978.

J. Makhoul, A Fast Cosine Transform in One and Two Dimensions, IEEE Transaction on Acoustics,
Speech, and Signal Processing, ASSP-28, 27–34, 1980.

J. L. Massey, Shift-Register Synthesis and BCH Decoding, IEEE Transactions on Information Theory,
IT-15, 122–127, 1969.

J. H. McClellan, Hardware Realization of a Fermat Number Transform, IEEE Transactions on
Acoustics, Speech, and Signal Processing, ASSP-24, 216–225, 1976.

J. H. McClellan and C. M. Rader, Number Theory in Digital Signal Processing, Englewood Cliffs,
NJ, Prentice-Hall, 1979.

R. Mersereau and T. C. Speake, A Unified Treatment of Cooley–Tukey Algorithms for the Evaluation
of the Multidimensional DFT, IEEE Transactions on Acoustics, Speech, and Signal Processing,
ASSP-29, 1011–1018, 1981.

R. L. Miller, T. K. Truong, and I. S. Reed, Efficient Program for Decoding the (255, 223)
Reed–Solomon Code Over GF (28) with Both Errors and Erasures Using Transform Coding,
Proceedings of the IEEE, 127, 136–142, 1980.

Y. Monden and S. Arimoto, Generalized Rouche’s Theorem and Its Application to Multivariate
Autoregressions, IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-28, 733–
738, 1980.

P. L. Montgomery, Modular Multiplication Without Trial Division, Mathematics of Computation, 44,
519–521, 1985.

M. Morf, B. W. Dickinson, T. Kailath, and A. C. O. Vieira, Efficient Solution of Covariance Equations
for Linear Prediction, IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-25,
429–433, 1977.

446 Bibliography

R. L. Morris, A Comparative Study of Time Efficient FFT and WFTA Programs for General Purpose
Computers, IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-26, 141–150,
1978.

M. J. Narasimha and A. M. Peterson, On the Computation of the Discrete Cosine Transform, IEEE
Transactions on Communications, COM-26, 934–936, 1978.

H. Nawab and J. H. McClellan, Bounds on the Minimum Number of Data Transfers in WFTA and FFT
Programs, IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-27, 393–398,
1979.

H. J. Nussbaumer, Digital Filtering Using Complex Mersenne Transforms, IBM Journal of Research
and Development, 20, 498–504, 1976.

H. J. Nussbaumer, Digital Filtering Using Polynomial Transforms, Electronics Letters, 13, 386–387,
1977.

H. J. Nussbaumer, New Algorithms for Convolution and DFT Based on Polynomial Transforms,
Proceedings of the 1978 IEEE International Conference on Acoustics, Speech, and Signal
Processing, 638–641, 1978.

H. J. Nussbaumer and P. Quandalle, Fast Computation of Discrete Fourier Transforms Using
Polynomial Transforms, IEEE Transactions on Acoustics, Speech and Signal Processing,
ASSP-27, 169–181, 1979.

H. J. Nussbaumer and P. Quandalle, New Polynomial Transform Algorithms for Fast DFT Com-
putations, Proceedings of the 1EEE 1979 International Acoustics, Speech and Signal Processing
Conference (1979), 510–513, 1979.

A. V. Oppenheim and R. W. Shafer, Digital Signal Processing, Englewood Cliffs, NJ, Prentice-Hall,
1975.

O. Ore, Number Theory and its History, New York, McGraw-Hill, 1948.
O. Panda, R. N. Pal, and B. Chatterjee, Error Analysis of Good-Winograd Algorithm Assuming

Correlated Truncation Errors, IEEE Transactions on Acoustics, Speech, and Signal Processing,
ASSP-31, 508–512, 1983.

T. W. Parsons, A Winograd–Fourier Transform Algorithm for Real-Valued Data, IEEE Transactions
on Acoustics, Speech, and Signal Processing, ASSP-27, 398–402, 1979.

R. W. Patterson and J. H. McClellan, Fixed-Point Error Analysis of Winograd Fourier Transform
Algorithms, IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-26, 447–455,
1978.

I. Pitas and M. G. Strintzis, On the Multiplicative Complexity of Two-Dimensional Fast Convolution
Methods, Abstr. 1982 IEEE International Symposium on Information Theory, Les Arcs, France,
1982.

J. M. Pollard, The Fast Fourier Transform in a Finite Field, Mathematics of Computation, 25, 365–374,
1971.

F. P. Preparata and D. V. Sarwate, Computational Complexity of Fourier Transforms over Finite
Fields, Mathematics of Computation, 31, 740–751, 1977.

R. D. Preuss, Very Fast Computation of the Radix-2 Discrete Fourier Transform, IEEE Transactions
on Acoustics, Speech, and Signal Processing, ASSP-30, 595–607, 1982.

J. G. Proakis and D. K. Manolakis, Digital Signal Processing (fourth edition), Englewood Cliffs,
NJ, Prentice Hall, 2006.

L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Englewood Cliffs,
NJ, Prentice-Hall, 1975.

C. M. Rader, Discrete Fourier Transforms When the Number of Data Samples Is Prime, Proceedings
of the IEEE, 56, 1107–1108, 1968.

447 Bibliography

C. M. Rader, An Improved Algorithm for High Speed Autocorrelation with Applications to Spectral
Estimation, IEEE Transactions on Audio Electroacoustics, AU-18, 439–441, 1970.

C. M. Rader, Discrete Convolutions via Mersenne Transforms, IEEE Transactions on Computers,
C-21, 1269–1273, 1972.

C. M. Rader, Memory Management in a Viterbi Decoder, IEEE Transactions on Communications,
COM-29, 1399–1401, 1981.

C. M. Rader and N. M. Brenner, A New Principle for Fast Fourier Transformation, IEEE Transactions
on Acoustics, Speech, and Signal Processing, ASSP-24, 264–265, 1976.

I. S. Reed and T. K. Truong, The Use of Finite Fields to Compute Convolutions, IEEE Transactions
on Information Theory, IT-21, 208–213, 1975.

B. Rice, Some Good Fields and Rings for Computing Number Theoretic Transforms, IEEE
Transactions on Acoustics, Speech, and Signal Processing, ASSP-27, 432–433, 1979.

B. Rice, Winograd Convolution Algorithms overt Finite Fields, Congressus Numberatium, 29,
827–857, 1980.

G. E. Rivard, Direct Fast Fourier Transform of Bivariate Functions, IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-25, 250–252, 1977.

S. Robinson, Towards an Optimal Algorithm for Matrix Multiplication, SIAM News, 9, 8, 2005.
D. V. Sarwate, Semi-Fast Fourier Transforms Over GF(2m), IEEE Transactions on Computers, C-27,

283–284, 1978.
J. E. Savage, Sequential Decoding-The Computation Problem, Bell System Technical Journal, 45,

149–175, 1966.
I. W. Selesnick and C. S. Burrus, Automatic Generations of Prime Length FFT Programs, IEEE

Transactions on Signal Processing, 44, 14–24, 1996.
H. F. Silverman, An Introduction to Programming the Winograd Fourier Transform Algorithm

(WFTA), IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-25, 152–165,
1977.

R. C. Singleton, An Algorithm for Computing the Mixed Radix Fast Fourier Transform, IEEE
Transactions on Audio Electroacoustics, AU-17, 93–103, 1969.

K. Steiglitz, An Introduction to Discrete Systems, New York, John Wiley, 1974.
T. G. Stockham, High Speed Convolution and Correlation, Spring Joint Computer Conference,

AFIPS Conference Proceedings, 28, 229–233, 1966.
G. Strang, Linear Algebra and Its Applications, second edition, New York, Academic Press, 1980.
V. Strassen, Gaussian Elimination is not Optimal, Numerical Mathematics, 13, 354–356, 1969.
Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, A Method for Solving Key Equations

for Decoding Goppa Codes, Information and Control, 27, 87–99, 1975.
N. S. Szabo and R. I. Tanaka, Residue Arithmetic and Its Application to Computer Technology, New

York, McGraw-Hill, 1967.
L. H. Thomas, Using a Computer to Solve Problems in Physics, in Applications of Digital Computers,

Boston, MA, Ginn and Co., 1963.
R. M. Thrall and L. Tornheim, Vector Spaces and Matrices, New York, John Wiley, 1957.
R. Tolmieri, M. An, and C. Lu, Mathematics of Multidimensional Fourier Transform Algorithms,

New York, Springer-Verlag, 1993, second edition, 1997.
W. F. Trench, An Algorithm for the Inversion of Finite Toeplitz Matrices, J. SIAM, 12, no. 3,

512–522, 1964.
P. V. Trifonov and S. V. Fedorenko, A Method for Fast Computation of the Fourier Transform

Over a Finite Field, Problemy Peredachi Informatsaii, 39, no. 3, 3–10, 2003, English translation,
Problems of Information Transmission, 39, 231–238, 2003.

448 Bibliography

B. L. Van der Waerden, Modern Algebra, two volumes, translated by F. Blum and T. J. Benac, New
York, Frederick Ungar Publishing Co., 1949, 1953.

A. Vieira and T. Kailath, On Another Approach to the Schur–Cohn Criterion, IEEE Transactions on
Circuits and Systems, CAS-24, no. 4, 218–220, 1977.

A. J. Viterbi, Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding
Algorithm, IEEE Transactions on Information Theory, IT-13, 260–269, 1967.

J. E. Volder, The CORDIC Trigonometric Computing Technique, IRE Transactions on Electronic
Computers, EC-8, no. 3, 330–334, 1959.

J. S. Walther, A Unified Algorithm for Elementary Functions, Conference Proceedings, Spring Joint
Computer Conference, 379–385, 1971.

L. R. Welch and R. A. Scholtz, Continued Fractions and Berlekamp’s Algorithm, IEEE Transactions
on Information Theory, IT-25, 19–27, 1979.

R. A. Wiggins and B. A. Robinson, Recursive Solution to the Multichannel Filtering Problem,
Journal of Geophysical Research, 70, 1885–1891, 1965.

N. M. Wigley and G. A. Jullien, On Modulus Replication for Residue Arithmetic Computation of
Complex Inner Products, IEEE Transactions on Computers, C-39, 1065–1076, 1990.

N. M. Wigley, G. A. Jullien, and D. Reaume, Large Dynamic Range Computations over Small Finite
Rings, IEEE Transactions on Computers, C-43, 78–86, 1994.

J. W. J. Williams, Algorithm 232: Heapsort, Communications of the ACM, 7, 347–348, 1964.
S. Winograd, A New Algorithm for Inner Product, IEEE Transactions on Computers, C-17, 693–694,

1968.
S. Winograd, On Computing the Discrete Fourier Transform, Proceedings of the National Academy

of Science USA, 73, 1005–1006, 1976.
S. Winograd, Some Bilinear Forms Whose Multiplicative Complexity Depends on the Field of

Constants, Mathematical Systems Theory, 10, 169–180, 1977.
S. Winograd, On Computing the Discrete Fourier Transform, Mathematics of Computation, 32,

175–199, 1978.
S. Winograd, On the Complexity of Symmetric Filters, Proceedings of the International Symposium

on Circuits and Systems, Tokyo, 262–265, 1979.
S. Winograd, Arithmetic Complexity of Computations, CBMS-NSF Regional Conference Series

Appl. Math, Siam Publications 33, 1980a.
S. Winograd, Signal Processing and Complexity of Computation, Proceedings of the International

Conference on Acoustics, Speech, and Signal Processing, 24, 94–101, 1980b.
J. M. Wozencraft, Sequential Decoding for Reliable Communication, 1957 National IRE Convention

Record, 5, part 2, 11–25, 1957.
J. M. Wozencraft and B. Reiffen, Sequential Decoding, Cambridge, MA, MIT Press, 1961.
E. L. Zapata and F. Arguëllo, Application-Specific Architecture for Fast Transforms Based on the

Successive Doubling Method, IEEE Transactions on Signal Processing, SP-41, 1476–1481, 1993.
Y. Zheng, G. Bi, and A. R. Leyman, New Polynomial Transform Algorithm for Multidimensional

DCT, IEEE Transactions on Signal Processing, SP-48, 2814–2821, 2000.
K. Zigangirov, Some Sequential Decoding Procedures, Problemy Peredachi Informatsii, 2, 13–25,

1966.
S. Zohar, The Solution of a Toeplitz Set of Linear Equations, Journal of the Association for

Computing Machinery, 21, 272–276, 1974.

Index

abelian group, 22, 304
adder, 10
addition, 26
Agarwal–Cooley algorithm, 168, 171, 350
algebraic integer, 306
algebraic number, 306
algorithm

Agarwal–Cooley, 350
Berlekamp–Massey, 249
Bluestein, 91
Cook–Toom, 148
Cooley–Tukey, 17, 69
cosine, 144
Durbin, 237
euclidean, 46, 54
Fano, 274
Goertzel, 85
Good–Thomas, 17, 80
Levinson, 232
Montgomery, 320
Nussbaumer–Quandalle, 411
Preparata–Sarwate, 339
Rader, 91, 318
Rader–Brenner, 76
Rader–Winograd, 97
semifast, 328
sequential, 270
sine, 144
stack, 271
Strassen, 125
Trench, 239
Viterbi, 18, 267
Winograd, 18
Winograd convolution, 158

antidiagonal, 38
associativity, 21, 26, 35
autocorrelation, 222
autoregressive filter, 10, 15, 85, 231, 249

Bézout polynomial, 56, 188
Bézout’s identity, 55
basis, 37

of a vector space, 37

Berlekamp–Massey algorithm, 249
accelerated, 260

Bluestein algorithm, 91, 112, 189
buffer, 119
buffer overflow, 271, 273, 277
Butler matrix, 18
butterfly

decimation-in-frequency, 74
decimation-in-time, 73
two-point, 217

cancellation, 50
characteristic

of a field, 34, 295
of a ring, 28

Chinese remainder theorem, 58, 80, 168,
350

for integers, 58
for polynomials, 61

closure, 21, 26
coefficient, 49
cofactor, 39
column rank, 41, 181
column rank theorem, 182
column space, 41
commutative group, 22
commutative property, 22
commutative ring, 27
companion matrix, 187
complex multiplication, 2, 191
complex number, 31
complex rational, 31, 370
componentwise product, 35
composite, 44
congruence, 45, 51

polynomial, 51
conjugate, 300, 329
connection polynomial, 250
constraint length, 264
continued fraction, 261
convolution, 12

cyclic, 11
two-dimensional, 346

449

450 Index

convolution algorithm, 145
Agarwal–Cooley, 350
Cook–Toom, 148
iterated, 168, 199, 362
two-dimensional, 350
Winograd, 155

convolution theorem, 17
polynomial ring, 375

Cook–Toom algorithm, 148, 166, 365
Cooley–Tukey FFT, 17

decimation in frequency, 74
decimation in time, 73
radix-four, 78
radix-two, 72
two-dimensional, 387

coordinate rotation, 128
coprime

integers, 44
polynomials, 50

cordic algorithm, 144
correlation, 12
coset, 25

left, 25
right, 25

coset decomposition, 25
coset leader, 25
cosine transform, 86

two-dimensional, 389
crosscorrelation, 222
cycle, 24
cyclic convolution, 12, 228

two-dimensional, 347
cyclic group, 23, 288
cyclic subgroup, 24
cyclotomic polynomial, 172, 300, 369, 376,

406

decimating FIR filter, 213
decimation-in-frequency, 74
decimation-in-time, 73
decoding window

Fano algorithm, 277
Viterbi algorithm, 268

decomposition, 25
deconvolution, 231
degree, 49
derivative

formal, 50
descendant, 119
determinant, 38
diagonal, 38
dimension, 36

vector space, 36
direct product

of groups, 24
direct sum, 24

of abelian group, 24

discrepancy
Fano algorithm, 274
stack algorithm, 278
Viterbi algorithm, 267

discrete cosine transform, 86
inverse, 86, 112
two-dimensional, 389

discrete Fourier transform, 15
distance

euclidean, 265
Fano, 272
Hamming, 265, 269

distance function, 265
distributivity, 26

scalar multiplication, 35
vector addition, 35

divisible, 44, 49
division, 49

of integers, 44
of polynomials, 15, 49

division algorithm, 44
for integers, 44
for polynomials, 50

doubling, 116
doubly-linked list, 120
down-sampling filter, 213
Durbin algorithm, 237

element
primitive, 34

elementary matrix, 41
elementary row operation, 41
error-control code, 231
euclidean algorithm, 46, 245

accelerated, 130
for polynomials, 54
recursive, 130, 245

euclidean distance, 265
Euler’s theorem, 288
exchange matrix, 38, 64, 175, 232, 240
extended euclidian algorithm, 47
extension field, 33

Fano algorithm, 274
Fano distance, 272
fast Fourier transform

Cooley–Tukey, 68
Good–Thomas, 80
Johnson–Burrus, 399
Nussbaumer–Quandalle, 412
Rader–Brenner, 76
Winograd large, 395
Winograd small, 102

feedback shift register, 250, 252
Fermat number transform, 314
Fermat prime, 315, 331
Fermat’s theorem, 288

451 Index

field, 30
characteristic, 34
finite, 31, 295
Galois, 31
number, 306
prime, 295

field of constants, 179
field of the computation, 179
filter

autoregressive, 10
decimating, 213
down-sampling, 213
finite-impulse-response, 10
interpolating, 213
skew-symmetric, 207
symmetric, 207
up-sampling, 213

filter section, 196, 200
finite field, 31, 295
finite group, 22
finite-dimensional vector space, 36
finite-impulse-response (FIR) filter , 10
finite-state machine, 262
first-in first-out (FIFO) buffer, 119
formal derivative, 50, 308
Fourier transform, 15, 64

finite field, 328
limited-range, 221
punctured, 422
two-dimensional, 384

frame, 264

Galois field, 31
gaussian elimination, 231
gaussian integer, 306
gaussian rational, 306
generalized Rader polynomial, 97
generator, 23
Goertzel algorithm, 84
Good–Thomas FFT algorithm, 17, 82, 351
greatest common divisor

of integers, 44
of polynomials, 50

ground field, 179
group, 21

abelian, 22
commutative, 22
cyclic, 23
finite, 22
quotient, 23

Hamming distance, 265, 269
Horner’s rule, 83

identity, 21
identity element, 21
identity matrix, 38

indeterminate, 49, 179
indirect address, 120
inner product, 36
integer, 44

algebraic, 306
gaussian, 306
of a ring, 28
prime, 44

integer ring, 44, 293
integer ring transform, 336
interpolating FIR filter, 213
inverse, 22

left, 27
matrix, 38
nonsingular, 38
right, 27

irreducible polynomial, 49
isomorphic, 22
iterated algorithm

convolution, 362
filter section, 202

Klein four-group, 63
Kronecker product, 40, 354, 393

Lagrange interpolation, 58, 149, 154, 168
Lagrange theorem, 26
Laplace expansion formula, 39
last-in first-out (LIFO) buffer, 119
leader

coset, 25
least common multiple

of integers, 44
of polynomials, 50

left coset, 25
left inverse, 27
Levinson algorithm, 18, 232
linear combination, 36
linear convolution, 11
linear prediction, 231
linearly dependent, 36
linearly independent, 37
linked list, 120
list, 119

marginalize, 281
matrix

companion, 187
exchange, 38, 232
identity, 38
inverse, 38, 40
nonsingular, 38
persymmetric, 239
singular, 38
square, 37
Toeplitz, 37, 231
transpose, 38

452 Index

matrix algebra, 37
matrix exchange theorem, 175
matrix inverse, 38, 40
matrix multiplication, 37
mergesort, 121, 143
Mersenne number transform, 317
Mersenne prime, 317, 331, 332
metric, 265
minimal polynomial, 299
minor, 39
monic polynomial, 49
Montgomery multiplication, 320
Montgomery reduction, 321
multiple

least common, 50
multiplication, 26

complex, 2
matrix, 37
Montgomery, 320

multiplier, 10

nesting, 391
nonsingular matrix, 38
null space, 41
number field, 306
number system, 8
number theory, 286
Nussbaumer–Quandalle FFT, 412, 425

one’s-complement, 9, 317
optimum algorithm, 200
order, 22, 24, 65, 288
origin, 35
orthogonal, 36
orthogonal complement, 36, 41
outer product, 41
overlap, 15
overlap–add method, 197
overlap–save method, 195

parametric algorithm, 273
path sequence, 265
permutation, 38
persymmetric matrix, 239
polar transformation, 128
polynomial, 48

Bézout, 56
connection, 250
cyclotomic, 172, 300
irreducible, 49
minimal, 299
monic, 49
prime, 49, 171
quotient, 51
reciprocal, 207
remainder, 51
zero, 49

polynomial over a field, 48
polynomial ring, 48
prime, 44
prime field, 295
prime integer, 44
prime polynomial, 49, 171, 297
primitive element, 34, 304, 330
product

componentwise, 35
inner, 36
Kronecker, 40
of groups, 24
outer, 41

punctured FFT algorithm, 415
push-down stack, 117, 119

quadratic residue, 335
quaternion, 65, 381
queue, 119
quicksort, 121
quotient, 44
quotient group, 23
quotient polynomial, 51
quotient ring, 27

integers, 293
polynomials, 296

Rader polynomial, 94, 95, 103, 105, 140,
318

generalized, 97, 107, 110, 140
Rader prime algorithm, 91, 103, 112, 189, 318,

403
two-dimensional, 408

Rader–Brenner FFT, 76
Rader–Winograd algorithm, 97
radix, 72
radix-four Cooley–Tukey FFT, 72

two-dimensional, 388
radix-two Cooley–Tukey FFT, 72

two-dimensional, 387
rank, 43
rational number, 31
real number, 31
reciprocal polynomial, 207
recursive procedure, 117
relatively prime, 44

polynomials, 50
remainder, 45
remainder polynomial, 51
right coset, 25
right inverse, 27
ring, 26

algebraic, 306
characteristic, 28
commutative, 27
gaussian, 306
identity, 27

453 Index

integer, 28
noncommutative, 27
quotient, 293
unit, 29

ring integer, 44
ring of polynomials, 48
ring with identity, 27
row rank, 41, 181
row rank theorem, 181
row space, 41
row-echelon form, 42

scalar, 34, 49, 179
scalar multiplication, 34, 35
scaler, 10
semifast algorithm, 328
sequential algorithm, 270
shift-register stage, 10
singular matrix, 38
skew-symmetric filter, 207
source sequence, 265
span, 36
spectral analysis, 237
spectral estimation, 231
square

of a prime field, 335
square matrix, 37
stack, 119

push-down, 117
stack algorithm, 271
state diagram, 263
Strassen algorithm, 124, 144
string, 119
subfield, 33
subgroup, 24

cyclic, 24
subring, 27
subspace

vector, 35
surrogate field, 311
symmetric filter, 207

theorem
column rank, 182
Euler, 288
Fermat, 288
Lagrange, 26
matrix exchange, 175
row rank, 181
unique factorization, 53

Toeplitz matrix, 37, 143, 205, 231, 232
symmetric, 232

totient function, 286, 302
transcendental number, 299
transformation principle, 200
transpose, 38
transposition, 38
tree, 119
trellis, 263
Trench algorithm, 239
two’s-complement, 9

unique factorization theorem, 53
unit

of a ring, 29, 65
up-sampling filter, 213

variable, 179
vector, 34, 119
vector addition, 34, 35
vector space, 34

finite-dimensional, 36
vector subspace, 35
Viterbi algorithm, 18, 267

Winograd convolution algorithm, 158
Winograd large FFT, 395
Winograd small fast Fourier transform, 102
Winograd small FFT, 393

zero, 27
of a polynomial, 57

zero polynomial, 49

	Half-title
	Title
	Copyright
	Dedication
	Contents
	Preface
	Acknowledgments
	1 Introduction
	1.1 Introduction to fast algorithms
	1.2 Applications of fast algorithms
	1.3 Number systems for computation
	1.4 Digital signal processing
	1.5 History of fast signal-processing algorithms
	Problems for Chapter 1
	Notes for Chapter 1

	2 Introduction to abstract algebra
	2.1 Groups
	2.2 Rings
	2.3 Fields
	2.4 Vector space
	2.5 Matrix algebra
	2.6 The integer ring
	2.7 Polynomial rings
	2.8 The Chinese remainder theorem
	Problems for Chapter 2
	Notes for Chapter 2

	3 Fast algorithms for the discrete Fourier transform
	3.1 The Cooley-Tukey fast Fourier transform
	3.2 Small-radix Cooley-Tukey algorithms
	3.3 The Good-Thomas fast Fourier transform
	3.4 The Goertzel algorithm
	3.5 The discrete cosine transform
	3.6 Fourier transforms computed by using convolutions
	3.7 The Rader-Winograd algorithm
	3.8 The Winograd small fast Fourier transform
	Problems for Chapter 3
	Notes for Chapter 3

	4 Fast algorithms based on doubling strategies
	4.1 Halving and doubling strategies
	4.2 Data structures
	4.3 Fast algorithms for sorting
	4.4 Fast transposition
	4.5 Matrix multiplication
	4.6 Computation of trigonometric functions
	4.7 An accelerated euclidean algorithm for polynomials
	4.8 A recursive radix-two fast Fourier transform
	Problems for Chapter 4
	Notes for Chapter 4

	5 Fast algorithms for short convolutions
	5.1 Cyclic convolution and linear convolution
	5.2 The Cook-Toom algorithm
	5.3 Winograd short convolution algorithms
	5.4 Design of short linear convolution algorithms
	5.5 Polynomial products modulo a polynomial
	5.6 Design of short cyclic convolution algorithms
	5.7 Convolution in general fields and rings
	5.8 Complexity of convolution algorithms
	Problems for Chapter 5
	Notes for Chapter 5

	6 Architecture of filters and transforms
	6.1 Convolution by sections
	6.2 Algorithms for short filter sections
	6.3 Iterated filter sections
	6.4 Symmetric and skew-symmetric filters
	6.5 Decimating and interpolating filters
	6.6 Construction of transform computers
	6.7 Limited-range Fourier transforms
	6.8 Autocorrelation and crosscorrelation
	Problems for Chapter 6
	Notes for Chapter 6

	7 Fast algorithms for solving Toeplitz systems
	7.1 The Levinson and Durbin algorithms
	7.2 The Trench algorithm
	7.3 Methods based on the euclidean algorithm
	7.4 The Berlekamp-Massey algorithm
	7.5 An accelerated Berlekamp-Massey algorithm
	Problems for Chapter 7
	Notes for Chapter 7

	8 Fast algorithms for trellis search
	8.1 Trellis and tree searching
	8.2 The Viterbi algorithm
	8.3 Sequential algorithms
	8.4 The Fano algorithm
	8.5 The stack algorithm
	8.6 The Bahl algorithm
	Problems for Chapter 8
	Notes for Chapter 8

	9 Numbers and fields
	9.1 Elementary number theory
	9.2 Fields based on the integer ring
	9.3 Fields based on polynomial rings
	9.4 Minimal polynomials and conjugates
	9.5 Cyclotomic polynomials
	9.6 Primitive elements
	9.7 Algebraic integers
	Problems for Chapter 9
	Notes for Chapter 9

	10 Computation in finite fields and rings
	10.1 Convolution in surrogate fields
	10.2 Fermat number transforms
	10.3 Mersenne number transforms
	10.4 Arithmetic in a modular integer ring
	10.5 Convolution algorithms in finite fields
	10.6 Fourier transform algorithms in finite fields
	10.7 Complex convolution in surrogate fields
	10.8 Integer ring transforms
	10.9 Chevillat number transforms
	10.10 The Preparata-Sarwate algorithm
	Problems for Chapter 10
	Notes for Chapter 10

	11 Fast algorithms and multidimensional convolutions
	11.1 Nested convolution algorithms
	11.2 The Agarwal-Cooley convolution algorithm
	11.3 Splitting algorithms
	11.4 Iterated algorithms
	11.5 Polynomial representation of extension fields
	11.6 Convolution with polynomial transforms
	11.7 The Nussbaumer polynomial transforms
	11.8 Fast convolution of polynomials
	Problems for Chapter 11
	Notes for Chapter 11

	12 Fast algorithms and multidimensional transforms
	12.1 Small-radix Cooley-Tukey algorithms
	12.2 The two-dimensional discrete cosine transform
	12.3 Nested transform algorithms
	12.4 The Winograd large fast Fourier transform
	12.5 The Johnson-Burrus fast Fourier transform
	12.6 Splitting algorithms
	12.7 An improved Winograd fast Fourier transform
	12.8 The Nussbaumer-Quandalle permutation algorithm
	Problems for Chapter 12
	Notes for Chapter 12

	Appendix A: A collection of cyclic convolution algorithms
	Appendix B: A collection of Winograd small FFT algorithms
	Bibliography
	Index

